123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431 |
- // SPDX-License-Identifier: GPL-2.0-or-later
- /* LRW: as defined by Cyril Guyot in
- * http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
- *
- * Copyright (c) 2006 Rik Snel <[email protected]>
- *
- * Based on ecb.c
- * Copyright (c) 2006 Herbert Xu <[email protected]>
- */
- /* This implementation is checked against the test vectors in the above
- * document and by a test vector provided by Ken Buchanan at
- * https://www.mail-archive.com/[email protected]/msg00173.html
- *
- * The test vectors are included in the testing module tcrypt.[ch] */
- #include <crypto/internal/skcipher.h>
- #include <crypto/scatterwalk.h>
- #include <linux/err.h>
- #include <linux/init.h>
- #include <linux/kernel.h>
- #include <linux/module.h>
- #include <linux/scatterlist.h>
- #include <linux/slab.h>
- #include <crypto/b128ops.h>
- #include <crypto/gf128mul.h>
- #define LRW_BLOCK_SIZE 16
- struct lrw_tfm_ctx {
- struct crypto_skcipher *child;
- /*
- * optimizes multiplying a random (non incrementing, as at the
- * start of a new sector) value with key2, we could also have
- * used 4k optimization tables or no optimization at all. In the
- * latter case we would have to store key2 here
- */
- struct gf128mul_64k *table;
- /*
- * stores:
- * key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
- * key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
- * key2*{ 0,0,...1,1,1,1,1 }, etc
- * needed for optimized multiplication of incrementing values
- * with key2
- */
- be128 mulinc[128];
- };
- struct lrw_request_ctx {
- be128 t;
- struct skcipher_request subreq;
- };
- static inline void lrw_setbit128_bbe(void *b, int bit)
- {
- __set_bit(bit ^ (0x80 -
- #ifdef __BIG_ENDIAN
- BITS_PER_LONG
- #else
- BITS_PER_BYTE
- #endif
- ), b);
- }
- static int lrw_setkey(struct crypto_skcipher *parent, const u8 *key,
- unsigned int keylen)
- {
- struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(parent);
- struct crypto_skcipher *child = ctx->child;
- int err, bsize = LRW_BLOCK_SIZE;
- const u8 *tweak = key + keylen - bsize;
- be128 tmp = { 0 };
- int i;
- crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
- crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
- CRYPTO_TFM_REQ_MASK);
- err = crypto_skcipher_setkey(child, key, keylen - bsize);
- if (err)
- return err;
- if (ctx->table)
- gf128mul_free_64k(ctx->table);
- /* initialize multiplication table for Key2 */
- ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
- if (!ctx->table)
- return -ENOMEM;
- /* initialize optimization table */
- for (i = 0; i < 128; i++) {
- lrw_setbit128_bbe(&tmp, i);
- ctx->mulinc[i] = tmp;
- gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
- }
- return 0;
- }
- /*
- * Returns the number of trailing '1' bits in the words of the counter, which is
- * represented by 4 32-bit words, arranged from least to most significant.
- * At the same time, increments the counter by one.
- *
- * For example:
- *
- * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
- * int i = lrw_next_index(&counter);
- * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
- */
- static int lrw_next_index(u32 *counter)
- {
- int i, res = 0;
- for (i = 0; i < 4; i++) {
- if (counter[i] + 1 != 0)
- return res + ffz(counter[i]++);
- counter[i] = 0;
- res += 32;
- }
- /*
- * If we get here, then x == 128 and we are incrementing the counter
- * from all ones to all zeros. This means we must return index 127, i.e.
- * the one corresponding to key2*{ 1,...,1 }.
- */
- return 127;
- }
- /*
- * We compute the tweak masks twice (both before and after the ECB encryption or
- * decryption) to avoid having to allocate a temporary buffer and/or make
- * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
- * just doing the lrw_next_index() calls again.
- */
- static int lrw_xor_tweak(struct skcipher_request *req, bool second_pass)
- {
- const int bs = LRW_BLOCK_SIZE;
- struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
- const struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
- struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
- be128 t = rctx->t;
- struct skcipher_walk w;
- __be32 *iv;
- u32 counter[4];
- int err;
- if (second_pass) {
- req = &rctx->subreq;
- /* set to our TFM to enforce correct alignment: */
- skcipher_request_set_tfm(req, tfm);
- }
- err = skcipher_walk_virt(&w, req, false);
- if (err)
- return err;
- iv = (__be32 *)w.iv;
- counter[0] = be32_to_cpu(iv[3]);
- counter[1] = be32_to_cpu(iv[2]);
- counter[2] = be32_to_cpu(iv[1]);
- counter[3] = be32_to_cpu(iv[0]);
- while (w.nbytes) {
- unsigned int avail = w.nbytes;
- be128 *wsrc;
- be128 *wdst;
- wsrc = w.src.virt.addr;
- wdst = w.dst.virt.addr;
- do {
- be128_xor(wdst++, &t, wsrc++);
- /* T <- I*Key2, using the optimization
- * discussed in the specification */
- be128_xor(&t, &t,
- &ctx->mulinc[lrw_next_index(counter)]);
- } while ((avail -= bs) >= bs);
- if (second_pass && w.nbytes == w.total) {
- iv[0] = cpu_to_be32(counter[3]);
- iv[1] = cpu_to_be32(counter[2]);
- iv[2] = cpu_to_be32(counter[1]);
- iv[3] = cpu_to_be32(counter[0]);
- }
- err = skcipher_walk_done(&w, avail);
- }
- return err;
- }
- static int lrw_xor_tweak_pre(struct skcipher_request *req)
- {
- return lrw_xor_tweak(req, false);
- }
- static int lrw_xor_tweak_post(struct skcipher_request *req)
- {
- return lrw_xor_tweak(req, true);
- }
- static void lrw_crypt_done(struct crypto_async_request *areq, int err)
- {
- struct skcipher_request *req = areq->data;
- if (!err) {
- struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
- rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
- err = lrw_xor_tweak_post(req);
- }
- skcipher_request_complete(req, err);
- }
- static void lrw_init_crypt(struct skcipher_request *req)
- {
- const struct lrw_tfm_ctx *ctx =
- crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
- struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
- struct skcipher_request *subreq = &rctx->subreq;
- skcipher_request_set_tfm(subreq, ctx->child);
- skcipher_request_set_callback(subreq, req->base.flags, lrw_crypt_done,
- req);
- /* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
- skcipher_request_set_crypt(subreq, req->dst, req->dst,
- req->cryptlen, req->iv);
- /* calculate first value of T */
- memcpy(&rctx->t, req->iv, sizeof(rctx->t));
- /* T <- I*Key2 */
- gf128mul_64k_bbe(&rctx->t, ctx->table);
- }
- static int lrw_encrypt(struct skcipher_request *req)
- {
- struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
- struct skcipher_request *subreq = &rctx->subreq;
- lrw_init_crypt(req);
- return lrw_xor_tweak_pre(req) ?:
- crypto_skcipher_encrypt(subreq) ?:
- lrw_xor_tweak_post(req);
- }
- static int lrw_decrypt(struct skcipher_request *req)
- {
- struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
- struct skcipher_request *subreq = &rctx->subreq;
- lrw_init_crypt(req);
- return lrw_xor_tweak_pre(req) ?:
- crypto_skcipher_decrypt(subreq) ?:
- lrw_xor_tweak_post(req);
- }
- static int lrw_init_tfm(struct crypto_skcipher *tfm)
- {
- struct skcipher_instance *inst = skcipher_alg_instance(tfm);
- struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
- struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
- struct crypto_skcipher *cipher;
- cipher = crypto_spawn_skcipher(spawn);
- if (IS_ERR(cipher))
- return PTR_ERR(cipher);
- ctx->child = cipher;
- crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
- sizeof(struct lrw_request_ctx));
- return 0;
- }
- static void lrw_exit_tfm(struct crypto_skcipher *tfm)
- {
- struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
- if (ctx->table)
- gf128mul_free_64k(ctx->table);
- crypto_free_skcipher(ctx->child);
- }
- static void lrw_free_instance(struct skcipher_instance *inst)
- {
- crypto_drop_skcipher(skcipher_instance_ctx(inst));
- kfree(inst);
- }
- static int lrw_create(struct crypto_template *tmpl, struct rtattr **tb)
- {
- struct crypto_skcipher_spawn *spawn;
- struct skcipher_instance *inst;
- struct skcipher_alg *alg;
- const char *cipher_name;
- char ecb_name[CRYPTO_MAX_ALG_NAME];
- u32 mask;
- int err;
- err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
- if (err)
- return err;
- cipher_name = crypto_attr_alg_name(tb[1]);
- if (IS_ERR(cipher_name))
- return PTR_ERR(cipher_name);
- inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
- if (!inst)
- return -ENOMEM;
- spawn = skcipher_instance_ctx(inst);
- err = crypto_grab_skcipher(spawn, skcipher_crypto_instance(inst),
- cipher_name, 0, mask);
- if (err == -ENOENT) {
- err = -ENAMETOOLONG;
- if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
- cipher_name) >= CRYPTO_MAX_ALG_NAME)
- goto err_free_inst;
- err = crypto_grab_skcipher(spawn,
- skcipher_crypto_instance(inst),
- ecb_name, 0, mask);
- }
- if (err)
- goto err_free_inst;
- alg = crypto_skcipher_spawn_alg(spawn);
- err = -EINVAL;
- if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
- goto err_free_inst;
- if (crypto_skcipher_alg_ivsize(alg))
- goto err_free_inst;
- err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
- &alg->base);
- if (err)
- goto err_free_inst;
- err = -EINVAL;
- cipher_name = alg->base.cra_name;
- /* Alas we screwed up the naming so we have to mangle the
- * cipher name.
- */
- if (!strncmp(cipher_name, "ecb(", 4)) {
- int len;
- len = strscpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
- if (len < 2)
- goto err_free_inst;
- if (ecb_name[len - 1] != ')')
- goto err_free_inst;
- ecb_name[len - 1] = 0;
- if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
- "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
- err = -ENAMETOOLONG;
- goto err_free_inst;
- }
- } else
- goto err_free_inst;
- inst->alg.base.cra_priority = alg->base.cra_priority;
- inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
- inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
- (__alignof__(be128) - 1);
- inst->alg.ivsize = LRW_BLOCK_SIZE;
- inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
- LRW_BLOCK_SIZE;
- inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
- LRW_BLOCK_SIZE;
- inst->alg.base.cra_ctxsize = sizeof(struct lrw_tfm_ctx);
- inst->alg.init = lrw_init_tfm;
- inst->alg.exit = lrw_exit_tfm;
- inst->alg.setkey = lrw_setkey;
- inst->alg.encrypt = lrw_encrypt;
- inst->alg.decrypt = lrw_decrypt;
- inst->free = lrw_free_instance;
- err = skcipher_register_instance(tmpl, inst);
- if (err) {
- err_free_inst:
- lrw_free_instance(inst);
- }
- return err;
- }
- static struct crypto_template lrw_tmpl = {
- .name = "lrw",
- .create = lrw_create,
- .module = THIS_MODULE,
- };
- static int __init lrw_module_init(void)
- {
- return crypto_register_template(&lrw_tmpl);
- }
- static void __exit lrw_module_exit(void)
- {
- crypto_unregister_template(&lrw_tmpl);
- }
- subsys_initcall(lrw_module_init);
- module_exit(lrw_module_exit);
- MODULE_LICENSE("GPL");
- MODULE_DESCRIPTION("LRW block cipher mode");
- MODULE_ALIAS_CRYPTO("lrw");
- MODULE_SOFTDEP("pre: ecb");
|