123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * Copyright 2021 Google LLC
- *
- * Authors: Elena Petrova <[email protected]>,
- * Eric Biggers <[email protected]>
- *
- * Self-tests of fips140.ko cryptographic functionality. These are run at
- * module load time to fulfill FIPS 140 and NIAP FPT_TST_EXT.1 requirements.
- *
- * The actual requirements for these self-tests are somewhat vague, but
- * section 9 ("Self-Tests") of the FIPS 140-2 Implementation Guidance document
- * (https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf)
- * is somewhat helpful. Basically, all implementations of all FIPS approved
- * algorithms (including modes of operation) must be tested. However:
- *
- * - There are provisions for skipping tests that are already sufficiently
- * covered by other tests. E.g., HMAC-SHA256 may cover SHA-256.
- *
- * - Only one test vector is required per algorithm, and it can be generated
- * by any known-good implementation or taken from any official document.
- *
- * - For ciphers, both encryption and decryption must be tested.
- *
- * - Only one key size per algorithm needs to be tested.
- *
- * There is some ambiguity about whether all implementations of each algorithm
- * must be tested, or whether it is sufficient to test just the highest priority
- * implementation. To be safe we test all implementations, except ones that can
- * be excluded by one of the rules above.
- *
- * See fips140_selftests[] for the list of tests we've selected. Currently, all
- * our test vectors except the AES-CBC-CTS and DRBG ones were generated by the
- * script tools/crypto/gen_fips140_testvecs.py, using the known-good
- * implementations in the Python packages hashlib, pycryptodome, and
- * cryptography.
- *
- * Note that we don't reuse the upstream crypto API's self-tests
- * (crypto/testmgr.{c,h}), for several reasons:
- *
- * - To meet FIPS requirements, the self-tests must be located within the FIPS
- * module boundary (fips140.ko). But testmgr is integrated into the crypto
- * API framework and can't be extracted into the module.
- *
- * - testmgr is much more heavyweight than required for FIPS and NIAP; it
- * tests more algorithms and does more tests per algorithm, as it's meant to
- * do proper testing and not just meet certification requirements. We need
- * tests that can run with minimal overhead on every boot-up.
- *
- * - Despite being more heavyweight in general, testmgr doesn't test the
- * SHA-256 and AES library APIs, despite that being needed here.
- */
- #include <crypto/aead.h>
- #include <crypto/aes.h>
- #include <crypto/drbg.h>
- #include <crypto/hash.h>
- #include <crypto/rng.h>
- #include <crypto/sha2.h>
- #include <crypto/skcipher.h>
- #include "fips140-module.h"
- /* Test vector for an AEAD algorithm */
- struct aead_testvec {
- const u8 *key;
- size_t key_size;
- const u8 *iv;
- size_t iv_size;
- const u8 *assoc;
- size_t assoc_size;
- const u8 *plaintext;
- size_t plaintext_size;
- const u8 *ciphertext;
- size_t ciphertext_size;
- };
- /* Test vector for a length-preserving encryption algorithm */
- struct skcipher_testvec {
- const u8 *key;
- size_t key_size;
- const u8 *iv;
- size_t iv_size;
- const u8 *plaintext;
- const u8 *ciphertext;
- size_t message_size;
- };
- /* Test vector for a hash algorithm */
- struct hash_testvec {
- const u8 *key;
- size_t key_size;
- const u8 *message;
- size_t message_size;
- const u8 *digest;
- size_t digest_size;
- };
- /* Test vector for a DRBG algorithm */
- struct drbg_testvec {
- const u8 *entropy;
- size_t entropy_size;
- const u8 *pers;
- size_t pers_size;
- const u8 *entpr_a;
- const u8 *entpr_b;
- size_t entpr_size;
- const u8 *add_a;
- const u8 *add_b;
- size_t add_size;
- const u8 *output;
- size_t out_size;
- };
- struct fips_test {
- /* The name of the algorithm, in crypto API syntax */
- const char *alg;
- /*
- * The optional list of implementations to test. @func will be called
- * once per implementation, or once with @alg if this list is empty.
- * The implementation names must be given in crypto API syntax, or in
- * the case of a library implementation should have "-lib" appended.
- */
- const char *impls[8];
- /*
- * The test function. It should execute a known-answer test on an
- * algorithm implementation, using the below test vector.
- */
- int __must_check (*func)(const struct fips_test *test,
- const char *impl);
- /* The test vector, with a format specific to the type of algorithm */
- union {
- struct aead_testvec aead;
- struct skcipher_testvec skcipher;
- struct hash_testvec hash;
- struct drbg_testvec drbg;
- };
- };
- /* Maximum IV size (in bytes) among any algorithm tested here */
- #define MAX_IV_SIZE 16
- static int __init __must_check
- fips_check_result(u8 *result, const u8 *expected_result, size_t result_size,
- const char *impl, const char *operation)
- {
- fips140_inject_selftest_failure(impl, result);
- if (memcmp(result, expected_result, result_size) != 0) {
- pr_err("wrong result from %s %s\n", impl, operation);
- return -EBADMSG;
- }
- return 0;
- }
- /*
- * None of the algorithms should be ASYNC, as the FIPS module doesn't register
- * any ASYNC algorithms. (The ASYNC flag is only declared by hardware
- * algorithms, which would need their own FIPS certification.)
- *
- * Ideally we would verify alg->cra_module == THIS_MODULE here as well, but that
- * doesn't work because the files are compiled as built-in code.
- */
- static int __init __must_check
- fips_validate_alg(const struct crypto_alg *alg)
- {
- if (alg->cra_flags & CRYPTO_ALG_ASYNC) {
- pr_err("unexpectedly got async implementation of %s (%s)\n",
- alg->cra_name, alg->cra_driver_name);
- return -EINVAL;
- }
- return 0;
- }
- static int __init __must_check
- fips_handle_alloc_tfm_error(const char *impl, int err)
- {
- if (err == -ENOENT) {
- /*
- * The requested implementation of the algorithm wasn't found.
- * This is expected if the CPU lacks a feature the
- * implementation needs, such as the ARMv8 Crypto Extensions.
- *
- * When this happens, the implementation isn't available for
- * use, so we can't test it, nor do we need to. So we just skip
- * the test.
- */
- pr_info("%s is unavailable (no CPU support?), skipping testing it\n",
- impl);
- return 0;
- }
- pr_err("failed to allocate %s tfm: %d\n", impl, err);
- return err;
- }
- static int __init __must_check
- fips_test_aes_library(const struct fips_test *test, const char *impl)
- {
- const struct skcipher_testvec *vec = &test->skcipher;
- struct crypto_aes_ctx ctx;
- u8 block[AES_BLOCK_SIZE];
- int err;
- if (WARN_ON(vec->message_size != AES_BLOCK_SIZE))
- return -EINVAL;
- err = aes_expandkey(&ctx, vec->key, vec->key_size);
- if (err) {
- pr_err("aes_expandkey() failed: %d\n", err);
- return err;
- }
- aes_encrypt(&ctx, block, vec->plaintext);
- err = fips_check_result(block, vec->ciphertext, AES_BLOCK_SIZE,
- impl, "encryption");
- if (err)
- return err;
- aes_decrypt(&ctx, block, block);
- return fips_check_result(block, vec->plaintext, AES_BLOCK_SIZE,
- impl, "decryption");
- }
- /* Test a length-preserving symmetric cipher using the crypto_skcipher API. */
- static int __init __must_check
- fips_test_skcipher(const struct fips_test *test, const char *impl)
- {
- const struct skcipher_testvec *vec = &test->skcipher;
- struct crypto_skcipher *tfm;
- struct skcipher_request *req = NULL;
- u8 *message = NULL;
- struct scatterlist sg;
- u8 iv[MAX_IV_SIZE];
- int err;
- if (WARN_ON(vec->iv_size > MAX_IV_SIZE))
- return -EINVAL;
- if (WARN_ON(vec->message_size <= 0))
- return -EINVAL;
- tfm = crypto_alloc_skcipher(impl, 0, 0);
- if (IS_ERR(tfm))
- return fips_handle_alloc_tfm_error(impl, PTR_ERR(tfm));
- err = fips_validate_alg(&crypto_skcipher_alg(tfm)->base);
- if (err)
- goto out;
- if (crypto_skcipher_ivsize(tfm) != vec->iv_size) {
- pr_err("%s has wrong IV size\n", impl);
- err = -EINVAL;
- goto out;
- }
- req = skcipher_request_alloc(tfm, GFP_KERNEL);
- message = kmemdup(vec->plaintext, vec->message_size, GFP_KERNEL);
- if (!req || !message) {
- err = -ENOMEM;
- goto out;
- }
- sg_init_one(&sg, message, vec->message_size);
- skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
- NULL, NULL);
- skcipher_request_set_crypt(req, &sg, &sg, vec->message_size, iv);
- err = crypto_skcipher_setkey(tfm, vec->key, vec->key_size);
- if (err) {
- pr_err("failed to set %s key: %d\n", impl, err);
- goto out;
- }
- /* Encrypt the plaintext, then verify the resulting ciphertext. */
- memcpy(iv, vec->iv, vec->iv_size);
- err = crypto_skcipher_encrypt(req);
- if (err) {
- pr_err("%s encryption failed: %d\n", impl, err);
- goto out;
- }
- err = fips_check_result(message, vec->ciphertext, vec->message_size,
- impl, "encryption");
- if (err)
- goto out;
- /* Decrypt the ciphertext, then verify the resulting plaintext. */
- memcpy(iv, vec->iv, vec->iv_size);
- err = crypto_skcipher_decrypt(req);
- if (err) {
- pr_err("%s decryption failed: %d\n", impl, err);
- goto out;
- }
- err = fips_check_result(message, vec->plaintext, vec->message_size,
- impl, "decryption");
- out:
- kfree(message);
- skcipher_request_free(req);
- crypto_free_skcipher(tfm);
- return err;
- }
- /* Test an AEAD using the crypto_aead API. */
- static int __init __must_check
- fips_test_aead(const struct fips_test *test, const char *impl)
- {
- const struct aead_testvec *vec = &test->aead;
- const int tag_size = vec->ciphertext_size - vec->plaintext_size;
- struct crypto_aead *tfm;
- struct aead_request *req = NULL;
- u8 *assoc = NULL;
- u8 *message = NULL;
- struct scatterlist sg[2];
- int sg_idx = 0;
- u8 iv[MAX_IV_SIZE];
- int err;
- if (WARN_ON(vec->iv_size > MAX_IV_SIZE))
- return -EINVAL;
- if (WARN_ON(vec->ciphertext_size <= vec->plaintext_size))
- return -EINVAL;
- tfm = crypto_alloc_aead(impl, 0, 0);
- if (IS_ERR(tfm))
- return fips_handle_alloc_tfm_error(impl, PTR_ERR(tfm));
- err = fips_validate_alg(&crypto_aead_alg(tfm)->base);
- if (err)
- goto out;
- if (crypto_aead_ivsize(tfm) != vec->iv_size) {
- pr_err("%s has wrong IV size\n", impl);
- err = -EINVAL;
- goto out;
- }
- req = aead_request_alloc(tfm, GFP_KERNEL);
- assoc = kmemdup(vec->assoc, vec->assoc_size, GFP_KERNEL);
- message = kzalloc(vec->ciphertext_size, GFP_KERNEL);
- if (!req || !assoc || !message) {
- err = -ENOMEM;
- goto out;
- }
- memcpy(message, vec->plaintext, vec->plaintext_size);
- sg_init_table(sg, ARRAY_SIZE(sg));
- if (vec->assoc_size)
- sg_set_buf(&sg[sg_idx++], assoc, vec->assoc_size);
- sg_set_buf(&sg[sg_idx++], message, vec->ciphertext_size);
- aead_request_set_ad(req, vec->assoc_size);
- aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
- err = crypto_aead_setkey(tfm, vec->key, vec->key_size);
- if (err) {
- pr_err("failed to set %s key: %d\n", impl, err);
- goto out;
- }
- err = crypto_aead_setauthsize(tfm, tag_size);
- if (err) {
- pr_err("failed to set %s authentication tag size: %d\n",
- impl, err);
- goto out;
- }
- /*
- * Encrypt the plaintext, then verify the resulting ciphertext (which
- * includes the authentication tag).
- */
- memcpy(iv, vec->iv, vec->iv_size);
- aead_request_set_crypt(req, sg, sg, vec->plaintext_size, iv);
- err = crypto_aead_encrypt(req);
- if (err) {
- pr_err("%s encryption failed: %d\n", impl, err);
- goto out;
- }
- err = fips_check_result(message, vec->ciphertext, vec->ciphertext_size,
- impl, "encryption");
- if (err)
- goto out;
- /*
- * Decrypt the ciphertext (which includes the authentication tag), then
- * verify the resulting plaintext.
- */
- memcpy(iv, vec->iv, vec->iv_size);
- aead_request_set_crypt(req, sg, sg, vec->ciphertext_size, iv);
- err = crypto_aead_decrypt(req);
- if (err) {
- pr_err("%s decryption failed: %d\n", impl, err);
- goto out;
- }
- err = fips_check_result(message, vec->plaintext, vec->plaintext_size,
- impl, "decryption");
- out:
- kfree(message);
- kfree(assoc);
- aead_request_free(req);
- crypto_free_aead(tfm);
- return err;
- }
- /*
- * Test a hash algorithm using the crypto_shash API.
- *
- * Note that we don't need to test the crypto_ahash API too, since none of the
- * hash algorithms in the FIPS module have the ASYNC flag, and thus there will
- * be no hash algorithms that can be accessed only through crypto_ahash.
- */
- static int __init __must_check
- fips_test_hash(const struct fips_test *test, const char *impl)
- {
- const struct hash_testvec *vec = &test->hash;
- struct crypto_shash *tfm;
- u8 digest[HASH_MAX_DIGESTSIZE];
- int err;
- if (WARN_ON(vec->digest_size > HASH_MAX_DIGESTSIZE))
- return -EINVAL;
- tfm = crypto_alloc_shash(impl, 0, 0);
- if (IS_ERR(tfm))
- return fips_handle_alloc_tfm_error(impl, PTR_ERR(tfm));
- err = fips_validate_alg(&crypto_shash_alg(tfm)->base);
- if (err)
- goto out;
- if (crypto_shash_digestsize(tfm) != vec->digest_size) {
- pr_err("%s has wrong digest size\n", impl);
- err = -EINVAL;
- goto out;
- }
- if (vec->key) {
- err = crypto_shash_setkey(tfm, vec->key, vec->key_size);
- if (err) {
- pr_err("failed to set %s key: %d\n", impl, err);
- goto out;
- }
- }
- err = crypto_shash_tfm_digest(tfm, vec->message, vec->message_size,
- digest);
- if (err) {
- pr_err("%s digest computation failed: %d\n", impl, err);
- goto out;
- }
- err = fips_check_result(digest, vec->digest, vec->digest_size,
- impl, "digest");
- out:
- crypto_free_shash(tfm);
- return err;
- }
- static int __init __must_check
- fips_test_sha256_library(const struct fips_test *test, const char *impl)
- {
- const struct hash_testvec *vec = &test->hash;
- u8 digest[SHA256_DIGEST_SIZE];
- if (WARN_ON(vec->digest_size != SHA256_DIGEST_SIZE))
- return -EINVAL;
- sha256(vec->message, vec->message_size, digest);
- return fips_check_result(digest, vec->digest, vec->digest_size,
- impl, "digest");
- }
- /* Test a DRBG using the crypto_rng API. */
- static int __init __must_check
- fips_test_drbg(const struct fips_test *test, const char *impl)
- {
- const struct drbg_testvec *vec = &test->drbg;
- struct crypto_rng *rng;
- u8 *output = NULL;
- struct drbg_test_data test_data;
- struct drbg_string addtl, pers, testentropy;
- int err;
- rng = crypto_alloc_rng(impl, 0, 0);
- if (IS_ERR(rng))
- return fips_handle_alloc_tfm_error(impl, PTR_ERR(rng));
- err = fips_validate_alg(&crypto_rng_alg(rng)->base);
- if (err)
- goto out;
- output = kzalloc(vec->out_size, GFP_KERNEL);
- if (!output) {
- err = -ENOMEM;
- goto out;
- }
- /*
- * Initialize the DRBG with the entropy and personalization string given
- * in the test vector.
- */
- test_data.testentropy = &testentropy;
- drbg_string_fill(&testentropy, vec->entropy, vec->entropy_size);
- drbg_string_fill(&pers, vec->pers, vec->pers_size);
- err = crypto_drbg_reset_test(rng, &pers, &test_data);
- if (err) {
- pr_err("failed to reset %s\n", impl);
- goto out;
- }
- /*
- * Generate some random bytes using the additional data string provided
- * in the test vector. Also use the additional entropy if provided
- * (relevant for the prediction-resistant DRBG variants only).
- */
- drbg_string_fill(&addtl, vec->add_a, vec->add_size);
- if (vec->entpr_size) {
- drbg_string_fill(&testentropy, vec->entpr_a, vec->entpr_size);
- err = crypto_drbg_get_bytes_addtl_test(rng, output,
- vec->out_size, &addtl,
- &test_data);
- } else {
- err = crypto_drbg_get_bytes_addtl(rng, output, vec->out_size,
- &addtl);
- }
- if (err) {
- pr_err("failed to get bytes from %s (try 1): %d\n",
- impl, err);
- goto out;
- }
- /*
- * Do the same again, using a second additional data string, and (when
- * applicable) a second additional entropy string.
- */
- drbg_string_fill(&addtl, vec->add_b, vec->add_size);
- if (test->drbg.entpr_size) {
- drbg_string_fill(&testentropy, vec->entpr_b, vec->entpr_size);
- err = crypto_drbg_get_bytes_addtl_test(rng, output,
- vec->out_size, &addtl,
- &test_data);
- } else {
- err = crypto_drbg_get_bytes_addtl(rng, output, vec->out_size,
- &addtl);
- }
- if (err) {
- pr_err("failed to get bytes from %s (try 2): %d\n",
- impl, err);
- goto out;
- }
- /* Check that the DRBG generated the expected output. */
- err = fips_check_result(output, vec->output, vec->out_size,
- impl, "get_bytes");
- out:
- kfree(output);
- crypto_free_rng(rng);
- return err;
- }
- /* Include the test vectors generated by the Python script. */
- #include "fips140-generated-testvecs.h"
- /*
- * List of all self-tests. Keep this in sync with fips140_algorithms[].
- *
- * When possible, we have followed the FIPS 140-2 Implementation Guidance (IG)
- * document when creating this list of tests. The result is intended to be a
- * list of tests that is near-minimal (and thus minimizes runtime overhead)
- * while complying with all requirements. For additional details, see the
- * comment at the beginning of this file.
- */
- static const struct fips_test fips140_selftests[] __initconst = {
- /*
- * Test for the AES library API.
- *
- * Since the AES library API may use its own AES implementation and the
- * module provides no support for composing it with a mode of operation
- * (it's just plain AES), we must test it directly.
- *
- * In contrast, we don't need to directly test the "aes" ciphers that
- * are accessible through the crypto_cipher API (e.g. "aes-ce"), as they
- * are covered indirectly by AES-CMAC and AES-ECB tests.
- */
- {
- .alg = "aes",
- .impls = {"aes-lib"},
- .func = fips_test_aes_library,
- .skcipher = {
- .key = fips_aes_key,
- .key_size = sizeof(fips_aes_key),
- .plaintext = fips_message,
- .ciphertext = fips_aes_ecb_ciphertext,
- .message_size = 16,
- }
- },
- /*
- * Tests for AES-CMAC, a.k.a. "cmac(aes)" in crypto API syntax.
- *
- * The IG requires that each underlying AES implementation be tested in
- * an authenticated mode, if implemented. Of such modes, this module
- * implements AES-GCM and AES-CMAC. However, AES-GCM doesn't "count"
- * because this module's implementations of AES-GCM won't actually be
- * FIPS-approved, due to a quirk in the FIPS requirements.
- *
- * Therefore, for us this requirement applies to AES-CMAC, so we must
- * test the "cmac" template composed with each "aes" implementation.
- *
- * Separately from the above, we also must test all standalone
- * implementations of "cmac(aes)" such as "cmac-aes-ce", as they don't
- * reuse another full AES implementation and thus can't be covered by
- * another test.
- */
- {
- .alg = "cmac(aes)",
- .impls = {
- /* "cmac" template with all "aes" implementations */
- "cmac(aes-generic)",
- "cmac(aes-arm64)",
- "cmac(aes-ce)",
- /* All standalone implementations of "cmac(aes)" */
- "cmac-aes-neon",
- "cmac-aes-ce",
- },
- .func = fips_test_hash,
- .hash = {
- .key = fips_aes_key,
- .key_size = sizeof(fips_aes_key),
- .message = fips_message,
- .message_size = sizeof(fips_message),
- .digest = fips_aes_cmac_digest,
- .digest_size = sizeof(fips_aes_cmac_digest),
- }
- },
- /*
- * Tests for AES-ECB, a.k.a. "ecb(aes)" in crypto API syntax.
- *
- * The IG requires that each underlying AES implementation be tested in
- * a mode that exercises the encryption direction of AES and in a mode
- * that exercises the decryption direction of AES. CMAC only covers the
- * encryption direction, so we choose ECB to test decryption. Thus, we
- * test the "ecb" template composed with each "aes" implementation.
- *
- * Separately from the above, we also must test all standalone
- * implementations of "ecb(aes)" such as "ecb-aes-ce", as they don't
- * reuse another full AES implementation and thus can't be covered by
- * another test.
- */
- {
- .alg = "ecb(aes)",
- .impls = {
- /* "ecb" template with all "aes" implementations */
- "ecb(aes-generic)",
- "ecb(aes-arm64)",
- "ecb(aes-ce)",
- /* All standalone implementations of "ecb(aes)" */
- "ecb-aes-neon",
- "ecb-aes-neonbs",
- "ecb-aes-ce",
- },
- .func = fips_test_skcipher,
- .skcipher = {
- .key = fips_aes_key,
- .key_size = sizeof(fips_aes_key),
- .plaintext = fips_message,
- .ciphertext = fips_aes_ecb_ciphertext,
- .message_size = sizeof(fips_message)
- }
- },
- /*
- * Tests for AES-CBC, AES-CBC-CTS, AES-CTR, AES-XTS, and AES-GCM.
- *
- * According to the IG, an AES mode of operation doesn't need to have
- * its own test, provided that (a) both the encryption and decryption
- * directions of the underlying AES implementation are already tested
- * via other mode(s), and (b) in the case of an authenticated mode, at
- * least one other authenticated mode is already tested. The tests of
- * the "cmac" and "ecb" templates fulfill these conditions; therefore,
- * we don't need to test any other AES mode templates.
- *
- * This does *not* apply to standalone implementations of these modes
- * such as "cbc-aes-ce", as such implementations don't reuse another
- * full AES implementation and thus can't be covered by another test.
- * We must test all such standalone implementations.
- *
- * The AES-GCM test isn't actually required, as it's expected that this
- * module's AES-GCM implementation won't actually be able to be
- * FIPS-approved. This is unfortunate; it's caused by the FIPS
- * requirements for GCM being incompatible with GCM implementations that
- * don't generate their own IVs. We choose to still include the AES-GCM
- * test to keep it on par with the other FIPS-approved algorithms, in
- * case it turns out that AES-GCM can be approved after all.
- */
- {
- .alg = "cbc(aes)",
- .impls = {
- /* All standalone implementations of "cbc(aes)" */
- "cbc-aes-neon",
- "cbc-aes-neonbs",
- "cbc-aes-ce",
- },
- .func = fips_test_skcipher,
- .skcipher = {
- .key = fips_aes_key,
- .key_size = sizeof(fips_aes_key),
- .iv = fips_aes_iv,
- .iv_size = sizeof(fips_aes_iv),
- .plaintext = fips_message,
- .ciphertext = fips_aes_cbc_ciphertext,
- .message_size = sizeof(fips_message),
- }
- }, {
- .alg = "cts(cbc(aes))",
- .impls = {
- /* All standalone implementations of "cts(cbc(aes))" */
- "cts-cbc-aes-neon",
- "cts-cbc-aes-ce",
- },
- .func = fips_test_skcipher,
- /* Test vector taken from RFC 3962 */
- .skcipher = {
- .key = "\x63\x68\x69\x63\x6b\x65\x6e\x20"
- "\x74\x65\x72\x69\x79\x61\x6b\x69",
- .key_size = 16,
- .iv = "\x00\x00\x00\x00\x00\x00\x00\x00"
- "\x00\x00\x00\x00\x00\x00\x00\x00",
- .iv_size = 16,
- .plaintext = "\x49\x20\x77\x6f\x75\x6c\x64\x20"
- "\x6c\x69\x6b\x65\x20\x74\x68\x65"
- "\x20\x47\x65\x6e\x65\x72\x61\x6c"
- "\x20\x47\x61\x75\x27\x73\x20",
- .ciphertext = "\xfc\x00\x78\x3e\x0e\xfd\xb2\xc1"
- "\xd4\x45\xd4\xc8\xef\xf7\xed\x22"
- "\x97\x68\x72\x68\xd6\xec\xcc\xc0"
- "\xc0\x7b\x25\xe2\x5e\xcf\xe5",
- .message_size = 31,
- }
- }, {
- .alg = "ctr(aes)",
- .impls = {
- /* All standalone implementations of "ctr(aes)" */
- "ctr-aes-neon",
- "ctr-aes-neonbs",
- "ctr-aes-ce",
- },
- .func = fips_test_skcipher,
- .skcipher = {
- .key = fips_aes_key,
- .key_size = sizeof(fips_aes_key),
- .iv = fips_aes_iv,
- .iv_size = sizeof(fips_aes_iv),
- .plaintext = fips_message,
- .ciphertext = fips_aes_ctr_ciphertext,
- .message_size = sizeof(fips_message),
- }
- }, {
- .alg = "xts(aes)",
- .impls = {
- /* All standalone implementations of "xts(aes)" */
- "xts-aes-neon",
- "xts-aes-neonbs",
- "xts-aes-ce",
- },
- .func = fips_test_skcipher,
- .skcipher = {
- .key = fips_aes_xts_key,
- .key_size = sizeof(fips_aes_xts_key),
- .iv = fips_aes_iv,
- .iv_size = sizeof(fips_aes_iv),
- .plaintext = fips_message,
- .ciphertext = fips_aes_xts_ciphertext,
- .message_size = sizeof(fips_message),
- }
- }, {
- .alg = "gcm(aes)",
- .impls = {
- /* All standalone implementations of "gcm(aes)" */
- "gcm-aes-ce",
- },
- .func = fips_test_aead,
- .aead = {
- .key = fips_aes_key,
- .key_size = sizeof(fips_aes_key),
- .iv = fips_aes_iv,
- /* The GCM implementations assume an IV size of 12. */
- .iv_size = 12,
- .assoc = fips_aes_gcm_assoc,
- .assoc_size = sizeof(fips_aes_gcm_assoc),
- .plaintext = fips_message,
- .plaintext_size = sizeof(fips_message),
- .ciphertext = fips_aes_gcm_ciphertext,
- .ciphertext_size = sizeof(fips_aes_gcm_ciphertext),
- }
- },
- /* Tests for SHA-1 */
- {
- .alg = "sha1",
- .impls = {
- /* All implementations of "sha1" */
- "sha1-generic",
- "sha1-ce"
- },
- .func = fips_test_hash,
- .hash = {
- .message = fips_message,
- .message_size = sizeof(fips_message),
- .digest = fips_sha1_digest,
- .digest_size = sizeof(fips_sha1_digest)
- }
- },
- /*
- * Tests for all SHA-256 implementations other than the sha256() library
- * function. As per the IG, these tests also fulfill the tests for the
- * corresponding SHA-224 implementations.
- */
- {
- .alg = "sha256",
- .impls = {
- /* All implementations of "sha256" */
- "sha256-generic",
- "sha256-arm64",
- "sha256-ce",
- },
- .func = fips_test_hash,
- .hash = {
- .message = fips_message,
- .message_size = sizeof(fips_message),
- .digest = fips_sha256_digest,
- .digest_size = sizeof(fips_sha256_digest)
- }
- },
- /*
- * Test for the sha256() library function. This must be tested
- * separately because it may use its own SHA-256 implementation.
- */
- {
- .alg = "sha256",
- .impls = {"sha256-lib"},
- .func = fips_test_sha256_library,
- .hash = {
- .message = fips_message,
- .message_size = sizeof(fips_message),
- .digest = fips_sha256_digest,
- .digest_size = sizeof(fips_sha256_digest)
- }
- },
- /*
- * Tests for all SHA-512 implementations. As per the IG, these tests
- * also fulfill the tests for the corresponding SHA-384 implementations.
- */
- {
- .alg = "sha512",
- .impls = {
- /* All implementations of "sha512" */
- "sha512-generic",
- "sha512-arm64",
- "sha512-ce",
- },
- .func = fips_test_hash,
- .hash = {
- .message = fips_message,
- .message_size = sizeof(fips_message),
- .digest = fips_sha512_digest,
- .digest_size = sizeof(fips_sha512_digest)
- }
- },
- /*
- * Test for HMAC. As per the IG, only one HMAC test is required,
- * provided that the same HMAC code is shared by all HMAC-SHA*. This is
- * true in our case. We choose HMAC-SHA256 for the test.
- *
- * Note that as per the IG, this can fulfill the test for the underlying
- * SHA. However, we don't currently rely on this.
- */
- {
- .alg = "hmac(sha256)",
- .func = fips_test_hash,
- .hash = {
- .key = fips_hmac_key,
- .key_size = sizeof(fips_hmac_key),
- .message = fips_message,
- .message_size = sizeof(fips_message),
- .digest = fips_hmac_sha256_digest,
- .digest_size = sizeof(fips_hmac_sha256_digest)
- }
- },
- /*
- * Known-answer tests for the SP800-90A DRBG algorithms.
- *
- * These test vectors were manually extracted from
- * https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/drbg/drbgtestvectors.zip.
- *
- * The selection of these tests follows the FIPS 140-2 IG as well as
- * Section 11 of SP800-90A:
- *
- * - We must test all DRBG types (HMAC, Hash, and CTR) that the module
- * implements. However, currently the module only implements
- * HMAC_DRBG (since CONFIG_CRYPTO_DRBG_CTR and CONFIG_CRYPTO_DRBG_HASH
- * aren't enabled). Therefore, we only need to test HMAC_DRBG.
- *
- * - We only need to test one HMAC variant.
- *
- * - We must test all DRBG operations: Instantiate(), Reseed(), and
- * Generate(). However, a single test sequence with a single output
- * comparison may cover all three operations, and this is what we do.
- * Note that Reseed() happens implicitly via the use of the additional
- * input and also via the use of prediction resistance when enabled.
- *
- * - The personalization string, additional input, and prediction
- * resistance support must be tested. Therefore we have chosen test
- * vectors that have a nonempty personalization string and nonempty
- * additional input, and we test the prediction-resistant variant.
- * Testing the non-prediction-resistant variant is not required.
- */
- {
- .alg = "drbg_pr_hmac_sha256",
- .func = fips_test_drbg,
- .drbg = {
- .entropy =
- "\xc7\xcc\xbc\x67\x7e\x21\x66\x1e\x27\x2b\x63\xdd"
- "\x3a\x78\xdc\xdf\x66\x6d\x3f\x24\xae\xcf\x37\x01"
- "\xa9\x0d\x89\x8a\xa7\xdc\x81\x58\xae\xb2\x10\x15"
- "\x7e\x18\x44\x6d\x13\xea\xdf\x37\x85\xfe\x81\xfb",
- .entropy_size = 48,
- .entpr_a =
- "\x7b\xa1\x91\x5b\x3c\x04\xc4\x1b\x1d\x19\x2f\x1a"
- "\x18\x81\x60\x3c\x6c\x62\x91\xb7\xe9\xf5\xcb\x96"
- "\xbb\x81\x6a\xcc\xb5\xae\x55\xb6",
- .entpr_b =
- "\x99\x2c\xc7\x78\x7e\x3b\x88\x12\xef\xbe\xd3\xd2"
- "\x7d\x2a\xa5\x86\xda\x8d\x58\x73\x4a\x0a\xb2\x2e"
- "\xbb\x4c\x7e\xe3\x9a\xb6\x81\xc1",
- .entpr_size = 32,
- .output =
- "\x95\x6f\x95\xfc\x3b\xb7\xfe\x3e\xd0\x4e\x1a\x14"
- "\x6c\x34\x7f\x7b\x1d\x0d\x63\x5e\x48\x9c\x69\xe6"
- "\x46\x07\xd2\x87\xf3\x86\x52\x3d\x98\x27\x5e\xd7"
- "\x54\xe7\x75\x50\x4f\xfb\x4d\xfd\xac\x2f\x4b\x77"
- "\xcf\x9e\x8e\xcc\x16\xa2\x24\xcd\x53\xde\x3e\xc5"
- "\x55\x5d\xd5\x26\x3f\x89\xdf\xca\x8b\x4e\x1e\xb6"
- "\x88\x78\x63\x5c\xa2\x63\x98\x4e\x6f\x25\x59\xb1"
- "\x5f\x2b\x23\xb0\x4b\xa5\x18\x5d\xc2\x15\x74\x40"
- "\x59\x4c\xb4\x1e\xcf\x9a\x36\xfd\x43\xe2\x03\xb8"
- "\x59\x91\x30\x89\x2a\xc8\x5a\x43\x23\x7c\x73\x72"
- "\xda\x3f\xad\x2b\xba\x00\x6b\xd1",
- .out_size = 128,
- .add_a =
- "\x18\xe8\x17\xff\xef\x39\xc7\x41\x5c\x73\x03\x03"
- "\xf6\x3d\xe8\x5f\xc8\xab\xe4\xab\x0f\xad\xe8\xd6"
- "\x86\x88\x55\x28\xc1\x69\xdd\x76",
- .add_b =
- "\xac\x07\xfc\xbe\x87\x0e\xd3\xea\x1f\x7e\xb8\xe7"
- "\x9d\xec\xe8\xe7\xbc\xf3\x18\x25\x77\x35\x4a\xaa"
- "\x00\x99\x2a\xdd\x0a\x00\x50\x82",
- .add_size = 32,
- .pers =
- "\xbc\x55\xab\x3c\xf6\x52\xb0\x11\x3d\x7b\x90\xb8"
- "\x24\xc9\x26\x4e\x5a\x1e\x77\x0d\x3d\x58\x4a\xda"
- "\xd1\x81\xe9\xf8\xeb\x30\x8f\x6f",
- .pers_size = 32,
- }
- }
- };
- static int __init __must_check
- fips_run_test(const struct fips_test *test)
- {
- int i;
- int err;
- /*
- * If no implementations were specified, then just test the default one.
- * Otherwise, test the specified list of implementations.
- */
- if (test->impls[0] == NULL) {
- err = test->func(test, test->alg);
- if (err)
- pr_emerg("self-tests failed for algorithm %s: %d\n",
- test->alg, err);
- return err;
- }
- for (i = 0; i < ARRAY_SIZE(test->impls) && test->impls[i] != NULL;
- i++) {
- err = test->func(test, test->impls[i]);
- if (err) {
- pr_emerg("self-tests failed for algorithm %s, implementation %s: %d\n",
- test->alg, test->impls[i], err);
- return err;
- }
- }
- return 0;
- }
- bool __init fips140_run_selftests(void)
- {
- int i;
- pr_info("running self-tests\n");
- for (i = 0; i < ARRAY_SIZE(fips140_selftests); i++) {
- if (fips_run_test(&fips140_selftests[i]) != 0) {
- /* The caller is responsible for calling panic(). */
- return false;
- }
- }
- pr_info("all self-tests passed\n");
- return true;
- }
|