12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Copyright (C) 2001 Jens Axboe <[email protected]>
- */
- #include <linux/mm.h>
- #include <linux/swap.h>
- #include <linux/bio.h>
- #include <linux/blkdev.h>
- #include <linux/uio.h>
- #include <linux/iocontext.h>
- #include <linux/slab.h>
- #include <linux/init.h>
- #include <linux/kernel.h>
- #include <linux/export.h>
- #include <linux/mempool.h>
- #include <linux/workqueue.h>
- #include <linux/cgroup.h>
- #include <linux/highmem.h>
- #include <linux/sched/sysctl.h>
- #include <linux/blk-crypto.h>
- #include <linux/xarray.h>
- #include <trace/events/block.h>
- #include "blk.h"
- #include "blk-rq-qos.h"
- #include "blk-cgroup.h"
- struct bio_alloc_cache {
- struct bio *free_list;
- unsigned int nr;
- };
- static struct biovec_slab {
- int nr_vecs;
- char *name;
- struct kmem_cache *slab;
- } bvec_slabs[] __read_mostly = {
- { .nr_vecs = 16, .name = "biovec-16" },
- { .nr_vecs = 64, .name = "biovec-64" },
- { .nr_vecs = 128, .name = "biovec-128" },
- { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
- };
- static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
- {
- switch (nr_vecs) {
- /* smaller bios use inline vecs */
- case 5 ... 16:
- return &bvec_slabs[0];
- case 17 ... 64:
- return &bvec_slabs[1];
- case 65 ... 128:
- return &bvec_slabs[2];
- case 129 ... BIO_MAX_VECS:
- return &bvec_slabs[3];
- default:
- BUG();
- return NULL;
- }
- }
- /*
- * fs_bio_set is the bio_set containing bio and iovec memory pools used by
- * IO code that does not need private memory pools.
- */
- struct bio_set fs_bio_set;
- EXPORT_SYMBOL(fs_bio_set);
- /*
- * Our slab pool management
- */
- struct bio_slab {
- struct kmem_cache *slab;
- unsigned int slab_ref;
- unsigned int slab_size;
- char name[8];
- };
- static DEFINE_MUTEX(bio_slab_lock);
- static DEFINE_XARRAY(bio_slabs);
- static struct bio_slab *create_bio_slab(unsigned int size)
- {
- struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
- if (!bslab)
- return NULL;
- snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
- bslab->slab = kmem_cache_create(bslab->name, size,
- ARCH_KMALLOC_MINALIGN,
- SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
- if (!bslab->slab)
- goto fail_alloc_slab;
- bslab->slab_ref = 1;
- bslab->slab_size = size;
- if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
- return bslab;
- kmem_cache_destroy(bslab->slab);
- fail_alloc_slab:
- kfree(bslab);
- return NULL;
- }
- static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
- {
- return bs->front_pad + sizeof(struct bio) + bs->back_pad;
- }
- static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
- {
- unsigned int size = bs_bio_slab_size(bs);
- struct bio_slab *bslab;
- mutex_lock(&bio_slab_lock);
- bslab = xa_load(&bio_slabs, size);
- if (bslab)
- bslab->slab_ref++;
- else
- bslab = create_bio_slab(size);
- mutex_unlock(&bio_slab_lock);
- if (bslab)
- return bslab->slab;
- return NULL;
- }
- static void bio_put_slab(struct bio_set *bs)
- {
- struct bio_slab *bslab = NULL;
- unsigned int slab_size = bs_bio_slab_size(bs);
- mutex_lock(&bio_slab_lock);
- bslab = xa_load(&bio_slabs, slab_size);
- if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
- goto out;
- WARN_ON_ONCE(bslab->slab != bs->bio_slab);
- WARN_ON(!bslab->slab_ref);
- if (--bslab->slab_ref)
- goto out;
- xa_erase(&bio_slabs, slab_size);
- kmem_cache_destroy(bslab->slab);
- kfree(bslab);
- out:
- mutex_unlock(&bio_slab_lock);
- }
- void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
- {
- BUG_ON(nr_vecs > BIO_MAX_VECS);
- if (nr_vecs == BIO_MAX_VECS)
- mempool_free(bv, pool);
- else if (nr_vecs > BIO_INLINE_VECS)
- kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
- }
- /*
- * Make the first allocation restricted and don't dump info on allocation
- * failures, since we'll fall back to the mempool in case of failure.
- */
- static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
- {
- return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
- __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
- }
- struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
- gfp_t gfp_mask)
- {
- struct biovec_slab *bvs = biovec_slab(*nr_vecs);
- if (WARN_ON_ONCE(!bvs))
- return NULL;
- /*
- * Upgrade the nr_vecs request to take full advantage of the allocation.
- * We also rely on this in the bvec_free path.
- */
- *nr_vecs = bvs->nr_vecs;
- /*
- * Try a slab allocation first for all smaller allocations. If that
- * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
- * The mempool is sized to handle up to BIO_MAX_VECS entries.
- */
- if (*nr_vecs < BIO_MAX_VECS) {
- struct bio_vec *bvl;
- bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
- if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
- return bvl;
- *nr_vecs = BIO_MAX_VECS;
- }
- return mempool_alloc(pool, gfp_mask);
- }
- void bio_uninit(struct bio *bio)
- {
- #ifdef CONFIG_BLK_CGROUP
- if (bio->bi_blkg) {
- blkg_put(bio->bi_blkg);
- bio->bi_blkg = NULL;
- }
- #endif
- if (bio_integrity(bio))
- bio_integrity_free(bio);
- bio_crypt_free_ctx(bio);
- }
- EXPORT_SYMBOL(bio_uninit);
- static void bio_free(struct bio *bio)
- {
- struct bio_set *bs = bio->bi_pool;
- void *p = bio;
- WARN_ON_ONCE(!bs);
- bio_uninit(bio);
- bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
- mempool_free(p - bs->front_pad, &bs->bio_pool);
- }
- /*
- * Users of this function have their own bio allocation. Subsequently,
- * they must remember to pair any call to bio_init() with bio_uninit()
- * when IO has completed, or when the bio is released.
- */
- void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
- unsigned short max_vecs, blk_opf_t opf)
- {
- bio->bi_next = NULL;
- bio->bi_bdev = bdev;
- bio->bi_opf = opf;
- bio->bi_flags = 0;
- bio->bi_ioprio = 0;
- bio->bi_status = 0;
- bio->bi_iter.bi_sector = 0;
- bio->bi_iter.bi_size = 0;
- bio->bi_iter.bi_idx = 0;
- bio->bi_iter.bi_bvec_done = 0;
- bio->bi_end_io = NULL;
- bio->bi_private = NULL;
- #ifdef CONFIG_BLK_CGROUP
- bio->bi_blkg = NULL;
- bio->bi_issue.value = 0;
- if (bdev)
- bio_associate_blkg(bio);
- #ifdef CONFIG_BLK_CGROUP_IOCOST
- bio->bi_iocost_cost = 0;
- #endif
- #endif
- #ifdef CONFIG_BLK_INLINE_ENCRYPTION
- bio->bi_crypt_context = NULL;
- #if IS_ENABLED(CONFIG_DM_DEFAULT_KEY)
- bio->bi_skip_dm_default_key = false;
- #endif
- #endif
- #ifdef CONFIG_BLK_DEV_INTEGRITY
- bio->bi_integrity = NULL;
- #endif
- bio->bi_vcnt = 0;
- atomic_set(&bio->__bi_remaining, 1);
- atomic_set(&bio->__bi_cnt, 1);
- bio->bi_cookie = BLK_QC_T_NONE;
- bio->bi_max_vecs = max_vecs;
- bio->bi_io_vec = table;
- bio->bi_pool = NULL;
- }
- EXPORT_SYMBOL(bio_init);
- /**
- * bio_reset - reinitialize a bio
- * @bio: bio to reset
- * @bdev: block device to use the bio for
- * @opf: operation and flags for bio
- *
- * Description:
- * After calling bio_reset(), @bio will be in the same state as a freshly
- * allocated bio returned bio bio_alloc_bioset() - the only fields that are
- * preserved are the ones that are initialized by bio_alloc_bioset(). See
- * comment in struct bio.
- */
- void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
- {
- bio_uninit(bio);
- memset(bio, 0, BIO_RESET_BYTES);
- atomic_set(&bio->__bi_remaining, 1);
- bio->bi_bdev = bdev;
- if (bio->bi_bdev)
- bio_associate_blkg(bio);
- bio->bi_opf = opf;
- }
- EXPORT_SYMBOL(bio_reset);
- static struct bio *__bio_chain_endio(struct bio *bio)
- {
- struct bio *parent = bio->bi_private;
- if (bio->bi_status && !parent->bi_status)
- parent->bi_status = bio->bi_status;
- bio_put(bio);
- return parent;
- }
- static void bio_chain_endio(struct bio *bio)
- {
- bio_endio(__bio_chain_endio(bio));
- }
- /**
- * bio_chain - chain bio completions
- * @bio: the target bio
- * @parent: the parent bio of @bio
- *
- * The caller won't have a bi_end_io called when @bio completes - instead,
- * @parent's bi_end_io won't be called until both @parent and @bio have
- * completed; the chained bio will also be freed when it completes.
- *
- * The caller must not set bi_private or bi_end_io in @bio.
- */
- void bio_chain(struct bio *bio, struct bio *parent)
- {
- BUG_ON(bio->bi_private || bio->bi_end_io);
- bio->bi_private = parent;
- bio->bi_end_io = bio_chain_endio;
- bio_inc_remaining(parent);
- }
- EXPORT_SYMBOL(bio_chain);
- struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
- unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
- {
- struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
- if (bio) {
- bio_chain(bio, new);
- submit_bio(bio);
- }
- return new;
- }
- EXPORT_SYMBOL_GPL(blk_next_bio);
- static void bio_alloc_rescue(struct work_struct *work)
- {
- struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
- struct bio *bio;
- while (1) {
- spin_lock(&bs->rescue_lock);
- bio = bio_list_pop(&bs->rescue_list);
- spin_unlock(&bs->rescue_lock);
- if (!bio)
- break;
- submit_bio_noacct(bio);
- }
- }
- static void punt_bios_to_rescuer(struct bio_set *bs)
- {
- struct bio_list punt, nopunt;
- struct bio *bio;
- if (WARN_ON_ONCE(!bs->rescue_workqueue))
- return;
- /*
- * In order to guarantee forward progress we must punt only bios that
- * were allocated from this bio_set; otherwise, if there was a bio on
- * there for a stacking driver higher up in the stack, processing it
- * could require allocating bios from this bio_set, and doing that from
- * our own rescuer would be bad.
- *
- * Since bio lists are singly linked, pop them all instead of trying to
- * remove from the middle of the list:
- */
- bio_list_init(&punt);
- bio_list_init(&nopunt);
- while ((bio = bio_list_pop(¤t->bio_list[0])))
- bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
- current->bio_list[0] = nopunt;
- bio_list_init(&nopunt);
- while ((bio = bio_list_pop(¤t->bio_list[1])))
- bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
- current->bio_list[1] = nopunt;
- spin_lock(&bs->rescue_lock);
- bio_list_merge(&bs->rescue_list, &punt);
- spin_unlock(&bs->rescue_lock);
- queue_work(bs->rescue_workqueue, &bs->rescue_work);
- }
- static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
- unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
- struct bio_set *bs)
- {
- struct bio_alloc_cache *cache;
- struct bio *bio;
- cache = per_cpu_ptr(bs->cache, get_cpu());
- if (!cache->free_list) {
- put_cpu();
- return NULL;
- }
- bio = cache->free_list;
- cache->free_list = bio->bi_next;
- cache->nr--;
- put_cpu();
- bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
- bio->bi_pool = bs;
- return bio;
- }
- /**
- * bio_alloc_bioset - allocate a bio for I/O
- * @bdev: block device to allocate the bio for (can be %NULL)
- * @nr_vecs: number of bvecs to pre-allocate
- * @opf: operation and flags for bio
- * @gfp_mask: the GFP_* mask given to the slab allocator
- * @bs: the bio_set to allocate from.
- *
- * Allocate a bio from the mempools in @bs.
- *
- * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
- * allocate a bio. This is due to the mempool guarantees. To make this work,
- * callers must never allocate more than 1 bio at a time from the general pool.
- * Callers that need to allocate more than 1 bio must always submit the
- * previously allocated bio for IO before attempting to allocate a new one.
- * Failure to do so can cause deadlocks under memory pressure.
- *
- * Note that when running under submit_bio_noacct() (i.e. any block driver),
- * bios are not submitted until after you return - see the code in
- * submit_bio_noacct() that converts recursion into iteration, to prevent
- * stack overflows.
- *
- * This would normally mean allocating multiple bios under submit_bio_noacct()
- * would be susceptible to deadlocks, but we have
- * deadlock avoidance code that resubmits any blocked bios from a rescuer
- * thread.
- *
- * However, we do not guarantee forward progress for allocations from other
- * mempools. Doing multiple allocations from the same mempool under
- * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
- * for per bio allocations.
- *
- * If REQ_ALLOC_CACHE is set, the final put of the bio MUST be done from process
- * context, not hard/soft IRQ.
- *
- * Returns: Pointer to new bio on success, NULL on failure.
- */
- struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
- blk_opf_t opf, gfp_t gfp_mask,
- struct bio_set *bs)
- {
- gfp_t saved_gfp = gfp_mask;
- struct bio *bio;
- void *p;
- /* should not use nobvec bioset for nr_vecs > 0 */
- if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
- return NULL;
- if (opf & REQ_ALLOC_CACHE) {
- if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
- bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
- gfp_mask, bs);
- if (bio)
- return bio;
- /*
- * No cached bio available, bio returned below marked with
- * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
- */
- } else {
- opf &= ~REQ_ALLOC_CACHE;
- }
- }
- /*
- * submit_bio_noacct() converts recursion to iteration; this means if
- * we're running beneath it, any bios we allocate and submit will not be
- * submitted (and thus freed) until after we return.
- *
- * This exposes us to a potential deadlock if we allocate multiple bios
- * from the same bio_set() while running underneath submit_bio_noacct().
- * If we were to allocate multiple bios (say a stacking block driver
- * that was splitting bios), we would deadlock if we exhausted the
- * mempool's reserve.
- *
- * We solve this, and guarantee forward progress, with a rescuer
- * workqueue per bio_set. If we go to allocate and there are bios on
- * current->bio_list, we first try the allocation without
- * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
- * blocking to the rescuer workqueue before we retry with the original
- * gfp_flags.
- */
- if (current->bio_list &&
- (!bio_list_empty(¤t->bio_list[0]) ||
- !bio_list_empty(¤t->bio_list[1])) &&
- bs->rescue_workqueue)
- gfp_mask &= ~__GFP_DIRECT_RECLAIM;
- p = mempool_alloc(&bs->bio_pool, gfp_mask);
- if (!p && gfp_mask != saved_gfp) {
- punt_bios_to_rescuer(bs);
- gfp_mask = saved_gfp;
- p = mempool_alloc(&bs->bio_pool, gfp_mask);
- }
- if (unlikely(!p))
- return NULL;
- bio = p + bs->front_pad;
- if (nr_vecs > BIO_INLINE_VECS) {
- struct bio_vec *bvl = NULL;
- bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
- if (!bvl && gfp_mask != saved_gfp) {
- punt_bios_to_rescuer(bs);
- gfp_mask = saved_gfp;
- bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
- }
- if (unlikely(!bvl))
- goto err_free;
- bio_init(bio, bdev, bvl, nr_vecs, opf);
- } else if (nr_vecs) {
- bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
- } else {
- bio_init(bio, bdev, NULL, 0, opf);
- }
- bio->bi_pool = bs;
- return bio;
- err_free:
- mempool_free(p, &bs->bio_pool);
- return NULL;
- }
- EXPORT_SYMBOL(bio_alloc_bioset);
- /**
- * bio_kmalloc - kmalloc a bio
- * @nr_vecs: number of bio_vecs to allocate
- * @gfp_mask: the GFP_* mask given to the slab allocator
- *
- * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
- * using bio_init() before use. To free a bio returned from this function use
- * kfree() after calling bio_uninit(). A bio returned from this function can
- * be reused by calling bio_uninit() before calling bio_init() again.
- *
- * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
- * function are not backed by a mempool can fail. Do not use this function
- * for allocations in the file system I/O path.
- *
- * Returns: Pointer to new bio on success, NULL on failure.
- */
- struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
- {
- struct bio *bio;
- if (nr_vecs > UIO_MAXIOV)
- return NULL;
- return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
- }
- EXPORT_SYMBOL(bio_kmalloc);
- void zero_fill_bio(struct bio *bio)
- {
- struct bio_vec bv;
- struct bvec_iter iter;
- bio_for_each_segment(bv, bio, iter)
- memzero_bvec(&bv);
- }
- EXPORT_SYMBOL(zero_fill_bio);
- /**
- * bio_truncate - truncate the bio to small size of @new_size
- * @bio: the bio to be truncated
- * @new_size: new size for truncating the bio
- *
- * Description:
- * Truncate the bio to new size of @new_size. If bio_op(bio) is
- * REQ_OP_READ, zero the truncated part. This function should only
- * be used for handling corner cases, such as bio eod.
- */
- static void bio_truncate(struct bio *bio, unsigned new_size)
- {
- struct bio_vec bv;
- struct bvec_iter iter;
- unsigned int done = 0;
- bool truncated = false;
- if (new_size >= bio->bi_iter.bi_size)
- return;
- if (bio_op(bio) != REQ_OP_READ)
- goto exit;
- bio_for_each_segment(bv, bio, iter) {
- if (done + bv.bv_len > new_size) {
- unsigned offset;
- if (!truncated)
- offset = new_size - done;
- else
- offset = 0;
- zero_user(bv.bv_page, bv.bv_offset + offset,
- bv.bv_len - offset);
- truncated = true;
- }
- done += bv.bv_len;
- }
- exit:
- /*
- * Don't touch bvec table here and make it really immutable, since
- * fs bio user has to retrieve all pages via bio_for_each_segment_all
- * in its .end_bio() callback.
- *
- * It is enough to truncate bio by updating .bi_size since we can make
- * correct bvec with the updated .bi_size for drivers.
- */
- bio->bi_iter.bi_size = new_size;
- }
- /**
- * guard_bio_eod - truncate a BIO to fit the block device
- * @bio: bio to truncate
- *
- * This allows us to do IO even on the odd last sectors of a device, even if the
- * block size is some multiple of the physical sector size.
- *
- * We'll just truncate the bio to the size of the device, and clear the end of
- * the buffer head manually. Truly out-of-range accesses will turn into actual
- * I/O errors, this only handles the "we need to be able to do I/O at the final
- * sector" case.
- */
- void guard_bio_eod(struct bio *bio)
- {
- sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
- if (!maxsector)
- return;
- /*
- * If the *whole* IO is past the end of the device,
- * let it through, and the IO layer will turn it into
- * an EIO.
- */
- if (unlikely(bio->bi_iter.bi_sector >= maxsector))
- return;
- maxsector -= bio->bi_iter.bi_sector;
- if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
- return;
- bio_truncate(bio, maxsector << 9);
- }
- #define ALLOC_CACHE_MAX 512
- #define ALLOC_CACHE_SLACK 64
- static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
- unsigned int nr)
- {
- unsigned int i = 0;
- struct bio *bio;
- while ((bio = cache->free_list) != NULL) {
- cache->free_list = bio->bi_next;
- cache->nr--;
- bio_free(bio);
- if (++i == nr)
- break;
- }
- }
- static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
- {
- struct bio_set *bs;
- bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
- if (bs->cache) {
- struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
- bio_alloc_cache_prune(cache, -1U);
- }
- return 0;
- }
- static void bio_alloc_cache_destroy(struct bio_set *bs)
- {
- int cpu;
- if (!bs->cache)
- return;
- cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
- for_each_possible_cpu(cpu) {
- struct bio_alloc_cache *cache;
- cache = per_cpu_ptr(bs->cache, cpu);
- bio_alloc_cache_prune(cache, -1U);
- }
- free_percpu(bs->cache);
- bs->cache = NULL;
- }
- /**
- * bio_put - release a reference to a bio
- * @bio: bio to release reference to
- *
- * Description:
- * Put a reference to a &struct bio, either one you have gotten with
- * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
- **/
- void bio_put(struct bio *bio)
- {
- if (unlikely(bio_flagged(bio, BIO_REFFED))) {
- BUG_ON(!atomic_read(&bio->__bi_cnt));
- if (!atomic_dec_and_test(&bio->__bi_cnt))
- return;
- }
- if ((bio->bi_opf & REQ_ALLOC_CACHE) && !WARN_ON_ONCE(in_interrupt())) {
- struct bio_alloc_cache *cache;
- bio_uninit(bio);
- cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
- bio->bi_next = cache->free_list;
- bio->bi_bdev = NULL;
- cache->free_list = bio;
- if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
- bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
- put_cpu();
- } else {
- bio_free(bio);
- }
- }
- EXPORT_SYMBOL(bio_put);
- static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
- {
- bio_set_flag(bio, BIO_CLONED);
- bio->bi_ioprio = bio_src->bi_ioprio;
- bio->bi_iter = bio_src->bi_iter;
- if (bio->bi_bdev) {
- if (bio->bi_bdev == bio_src->bi_bdev &&
- bio_flagged(bio_src, BIO_REMAPPED))
- bio_set_flag(bio, BIO_REMAPPED);
- bio_clone_blkg_association(bio, bio_src);
- }
- if (bio_crypt_clone(bio, bio_src, gfp) < 0)
- return -ENOMEM;
- if (bio_integrity(bio_src) &&
- bio_integrity_clone(bio, bio_src, gfp) < 0)
- return -ENOMEM;
- return 0;
- }
- /**
- * bio_alloc_clone - clone a bio that shares the original bio's biovec
- * @bdev: block_device to clone onto
- * @bio_src: bio to clone from
- * @gfp: allocation priority
- * @bs: bio_set to allocate from
- *
- * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
- * bio, but not the actual data it points to.
- *
- * The caller must ensure that the return bio is not freed before @bio_src.
- */
- struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
- gfp_t gfp, struct bio_set *bs)
- {
- struct bio *bio;
- bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
- if (!bio)
- return NULL;
- if (__bio_clone(bio, bio_src, gfp) < 0) {
- bio_put(bio);
- return NULL;
- }
- bio->bi_io_vec = bio_src->bi_io_vec;
- return bio;
- }
- EXPORT_SYMBOL(bio_alloc_clone);
- /**
- * bio_init_clone - clone a bio that shares the original bio's biovec
- * @bdev: block_device to clone onto
- * @bio: bio to clone into
- * @bio_src: bio to clone from
- * @gfp: allocation priority
- *
- * Initialize a new bio in caller provided memory that is a clone of @bio_src.
- * The caller owns the returned bio, but not the actual data it points to.
- *
- * The caller must ensure that @bio_src is not freed before @bio.
- */
- int bio_init_clone(struct block_device *bdev, struct bio *bio,
- struct bio *bio_src, gfp_t gfp)
- {
- int ret;
- bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
- ret = __bio_clone(bio, bio_src, gfp);
- if (ret)
- bio_uninit(bio);
- return ret;
- }
- EXPORT_SYMBOL(bio_init_clone);
- /**
- * bio_full - check if the bio is full
- * @bio: bio to check
- * @len: length of one segment to be added
- *
- * Return true if @bio is full and one segment with @len bytes can't be
- * added to the bio, otherwise return false
- */
- static inline bool bio_full(struct bio *bio, unsigned len)
- {
- if (bio->bi_vcnt >= bio->bi_max_vecs)
- return true;
- if (bio->bi_iter.bi_size > UINT_MAX - len)
- return true;
- return false;
- }
- static inline bool page_is_mergeable(const struct bio_vec *bv,
- struct page *page, unsigned int len, unsigned int off,
- bool *same_page)
- {
- size_t bv_end = bv->bv_offset + bv->bv_len;
- phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
- phys_addr_t page_addr = page_to_phys(page);
- if (vec_end_addr + 1 != page_addr + off)
- return false;
- if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
- return false;
- *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
- if (*same_page)
- return true;
- else if (IS_ENABLED(CONFIG_KMSAN))
- return false;
- return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
- }
- /**
- * __bio_try_merge_page - try appending data to an existing bvec.
- * @bio: destination bio
- * @page: start page to add
- * @len: length of the data to add
- * @off: offset of the data relative to @page
- * @same_page: return if the segment has been merged inside the same page
- *
- * Try to add the data at @page + @off to the last bvec of @bio. This is a
- * useful optimisation for file systems with a block size smaller than the
- * page size.
- *
- * Warn if (@len, @off) crosses pages in case that @same_page is true.
- *
- * Return %true on success or %false on failure.
- */
- static bool __bio_try_merge_page(struct bio *bio, struct page *page,
- unsigned int len, unsigned int off, bool *same_page)
- {
- if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
- return false;
- if (bio->bi_vcnt > 0) {
- struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
- if (page_is_mergeable(bv, page, len, off, same_page)) {
- if (bio->bi_iter.bi_size > UINT_MAX - len) {
- *same_page = false;
- return false;
- }
- bv->bv_len += len;
- bio->bi_iter.bi_size += len;
- return true;
- }
- }
- return false;
- }
- /*
- * Try to merge a page into a segment, while obeying the hardware segment
- * size limit. This is not for normal read/write bios, but for passthrough
- * or Zone Append operations that we can't split.
- */
- static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
- struct page *page, unsigned len,
- unsigned offset, bool *same_page)
- {
- struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
- unsigned long mask = queue_segment_boundary(q);
- phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
- phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
- if ((addr1 | mask) != (addr2 | mask))
- return false;
- if (bv->bv_len + len > queue_max_segment_size(q))
- return false;
- return __bio_try_merge_page(bio, page, len, offset, same_page);
- }
- /**
- * bio_add_hw_page - attempt to add a page to a bio with hw constraints
- * @q: the target queue
- * @bio: destination bio
- * @page: page to add
- * @len: vec entry length
- * @offset: vec entry offset
- * @max_sectors: maximum number of sectors that can be added
- * @same_page: return if the segment has been merged inside the same page
- *
- * Add a page to a bio while respecting the hardware max_sectors, max_segment
- * and gap limitations.
- */
- int bio_add_hw_page(struct request_queue *q, struct bio *bio,
- struct page *page, unsigned int len, unsigned int offset,
- unsigned int max_sectors, bool *same_page)
- {
- struct bio_vec *bvec;
- if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
- return 0;
- if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
- return 0;
- if (bio->bi_vcnt > 0) {
- if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
- return len;
- /*
- * If the queue doesn't support SG gaps and adding this segment
- * would create a gap, disallow it.
- */
- bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
- if (bvec_gap_to_prev(&q->limits, bvec, offset))
- return 0;
- }
- if (bio_full(bio, len))
- return 0;
- if (bio->bi_vcnt >= queue_max_segments(q))
- return 0;
- bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset);
- bio->bi_vcnt++;
- bio->bi_iter.bi_size += len;
- return len;
- }
- /**
- * bio_add_pc_page - attempt to add page to passthrough bio
- * @q: the target queue
- * @bio: destination bio
- * @page: page to add
- * @len: vec entry length
- * @offset: vec entry offset
- *
- * Attempt to add a page to the bio_vec maplist. This can fail for a
- * number of reasons, such as the bio being full or target block device
- * limitations. The target block device must allow bio's up to PAGE_SIZE,
- * so it is always possible to add a single page to an empty bio.
- *
- * This should only be used by passthrough bios.
- */
- int bio_add_pc_page(struct request_queue *q, struct bio *bio,
- struct page *page, unsigned int len, unsigned int offset)
- {
- bool same_page = false;
- return bio_add_hw_page(q, bio, page, len, offset,
- queue_max_hw_sectors(q), &same_page);
- }
- EXPORT_SYMBOL(bio_add_pc_page);
- /**
- * bio_add_zone_append_page - attempt to add page to zone-append bio
- * @bio: destination bio
- * @page: page to add
- * @len: vec entry length
- * @offset: vec entry offset
- *
- * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
- * for a zone-append request. This can fail for a number of reasons, such as the
- * bio being full or the target block device is not a zoned block device or
- * other limitations of the target block device. The target block device must
- * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
- * to an empty bio.
- *
- * Returns: number of bytes added to the bio, or 0 in case of a failure.
- */
- int bio_add_zone_append_page(struct bio *bio, struct page *page,
- unsigned int len, unsigned int offset)
- {
- struct request_queue *q = bdev_get_queue(bio->bi_bdev);
- bool same_page = false;
- if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
- return 0;
- if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
- return 0;
- return bio_add_hw_page(q, bio, page, len, offset,
- queue_max_zone_append_sectors(q), &same_page);
- }
- EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
- /**
- * __bio_add_page - add page(s) to a bio in a new segment
- * @bio: destination bio
- * @page: start page to add
- * @len: length of the data to add, may cross pages
- * @off: offset of the data relative to @page, may cross pages
- *
- * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
- * that @bio has space for another bvec.
- */
- void __bio_add_page(struct bio *bio, struct page *page,
- unsigned int len, unsigned int off)
- {
- WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
- WARN_ON_ONCE(bio_full(bio, len));
- bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
- bio->bi_iter.bi_size += len;
- bio->bi_vcnt++;
- }
- EXPORT_SYMBOL_GPL(__bio_add_page);
- /**
- * bio_add_page - attempt to add page(s) to bio
- * @bio: destination bio
- * @page: start page to add
- * @len: vec entry length, may cross pages
- * @offset: vec entry offset relative to @page, may cross pages
- *
- * Attempt to add page(s) to the bio_vec maplist. This will only fail
- * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
- */
- int bio_add_page(struct bio *bio, struct page *page,
- unsigned int len, unsigned int offset)
- {
- bool same_page = false;
- if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
- if (bio_full(bio, len))
- return 0;
- __bio_add_page(bio, page, len, offset);
- }
- return len;
- }
- EXPORT_SYMBOL(bio_add_page);
- /**
- * bio_add_folio - Attempt to add part of a folio to a bio.
- * @bio: BIO to add to.
- * @folio: Folio to add.
- * @len: How many bytes from the folio to add.
- * @off: First byte in this folio to add.
- *
- * Filesystems that use folios can call this function instead of calling
- * bio_add_page() for each page in the folio. If @off is bigger than
- * PAGE_SIZE, this function can create a bio_vec that starts in a page
- * after the bv_page. BIOs do not support folios that are 4GiB or larger.
- *
- * Return: Whether the addition was successful.
- */
- bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
- size_t off)
- {
- if (len > UINT_MAX || off > UINT_MAX)
- return false;
- return bio_add_page(bio, &folio->page, len, off) > 0;
- }
- void __bio_release_pages(struct bio *bio, bool mark_dirty)
- {
- struct bvec_iter_all iter_all;
- struct bio_vec *bvec;
- bio_for_each_segment_all(bvec, bio, iter_all) {
- if (mark_dirty && !PageCompound(bvec->bv_page))
- set_page_dirty_lock(bvec->bv_page);
- put_page(bvec->bv_page);
- }
- }
- EXPORT_SYMBOL_GPL(__bio_release_pages);
- void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
- {
- size_t size = iov_iter_count(iter);
- WARN_ON_ONCE(bio->bi_max_vecs);
- if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
- struct request_queue *q = bdev_get_queue(bio->bi_bdev);
- size_t max_sectors = queue_max_zone_append_sectors(q);
- size = min(size, max_sectors << SECTOR_SHIFT);
- }
- bio->bi_vcnt = iter->nr_segs;
- bio->bi_io_vec = (struct bio_vec *)iter->bvec;
- bio->bi_iter.bi_bvec_done = iter->iov_offset;
- bio->bi_iter.bi_size = size;
- bio_set_flag(bio, BIO_NO_PAGE_REF);
- bio_set_flag(bio, BIO_CLONED);
- }
- static int bio_iov_add_page(struct bio *bio, struct page *page,
- unsigned int len, unsigned int offset)
- {
- bool same_page = false;
- if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
- __bio_add_page(bio, page, len, offset);
- return 0;
- }
- if (same_page)
- put_page(page);
- return 0;
- }
- static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
- unsigned int len, unsigned int offset)
- {
- struct request_queue *q = bdev_get_queue(bio->bi_bdev);
- bool same_page = false;
- if (bio_add_hw_page(q, bio, page, len, offset,
- queue_max_zone_append_sectors(q), &same_page) != len)
- return -EINVAL;
- if (same_page)
- put_page(page);
- return 0;
- }
- #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
- /**
- * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
- * @bio: bio to add pages to
- * @iter: iov iterator describing the region to be mapped
- *
- * Pins pages from *iter and appends them to @bio's bvec array. The
- * pages will have to be released using put_page() when done.
- * For multi-segment *iter, this function only adds pages from the
- * next non-empty segment of the iov iterator.
- */
- static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
- {
- unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
- unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
- struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
- struct page **pages = (struct page **)bv;
- ssize_t size, left;
- unsigned len, i = 0;
- size_t offset, trim;
- int ret = 0;
- /*
- * Move page array up in the allocated memory for the bio vecs as far as
- * possible so that we can start filling biovecs from the beginning
- * without overwriting the temporary page array.
- */
- BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
- pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
- /*
- * Each segment in the iov is required to be a block size multiple.
- * However, we may not be able to get the entire segment if it spans
- * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
- * result to ensure the bio's total size is correct. The remainder of
- * the iov data will be picked up in the next bio iteration.
- */
- size = iov_iter_get_pages2(iter, pages, UINT_MAX - bio->bi_iter.bi_size,
- nr_pages, &offset);
- if (unlikely(size <= 0))
- return size ? size : -EFAULT;
- nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
- trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
- iov_iter_revert(iter, trim);
- size -= trim;
- if (unlikely(!size)) {
- ret = -EFAULT;
- goto out;
- }
- for (left = size, i = 0; left > 0; left -= len, i++) {
- struct page *page = pages[i];
- len = min_t(size_t, PAGE_SIZE - offset, left);
- if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
- ret = bio_iov_add_zone_append_page(bio, page, len,
- offset);
- if (ret)
- break;
- } else
- bio_iov_add_page(bio, page, len, offset);
- offset = 0;
- }
- iov_iter_revert(iter, left);
- out:
- while (i < nr_pages)
- put_page(pages[i++]);
- return ret;
- }
- /**
- * bio_iov_iter_get_pages - add user or kernel pages to a bio
- * @bio: bio to add pages to
- * @iter: iov iterator describing the region to be added
- *
- * This takes either an iterator pointing to user memory, or one pointing to
- * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
- * map them into the kernel. On IO completion, the caller should put those
- * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
- * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
- * to ensure the bvecs and pages stay referenced until the submitted I/O is
- * completed by a call to ->ki_complete() or returns with an error other than
- * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
- * on IO completion. If it isn't, then pages should be released.
- *
- * The function tries, but does not guarantee, to pin as many pages as
- * fit into the bio, or are requested in @iter, whatever is smaller. If
- * MM encounters an error pinning the requested pages, it stops. Error
- * is returned only if 0 pages could be pinned.
- */
- int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
- {
- int ret = 0;
- if (iov_iter_is_bvec(iter)) {
- bio_iov_bvec_set(bio, iter);
- iov_iter_advance(iter, bio->bi_iter.bi_size);
- return 0;
- }
- do {
- ret = __bio_iov_iter_get_pages(bio, iter);
- } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
- return bio->bi_vcnt ? 0 : ret;
- }
- EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
- static void submit_bio_wait_endio(struct bio *bio)
- {
- complete(bio->bi_private);
- }
- /**
- * submit_bio_wait - submit a bio, and wait until it completes
- * @bio: The &struct bio which describes the I/O
- *
- * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
- * bio_endio() on failure.
- *
- * WARNING: Unlike to how submit_bio() is usually used, this function does not
- * result in bio reference to be consumed. The caller must drop the reference
- * on his own.
- */
- int submit_bio_wait(struct bio *bio)
- {
- DECLARE_COMPLETION_ONSTACK_MAP(done,
- bio->bi_bdev->bd_disk->lockdep_map);
- unsigned long hang_check;
- bio->bi_private = &done;
- bio->bi_end_io = submit_bio_wait_endio;
- bio->bi_opf |= REQ_SYNC;
- submit_bio(bio);
- /* Prevent hang_check timer from firing at us during very long I/O */
- hang_check = sysctl_hung_task_timeout_secs;
- if (hang_check)
- while (!wait_for_completion_io_timeout(&done,
- hang_check * (HZ/2)))
- ;
- else
- wait_for_completion_io(&done);
- return blk_status_to_errno(bio->bi_status);
- }
- EXPORT_SYMBOL(submit_bio_wait);
- void __bio_advance(struct bio *bio, unsigned bytes)
- {
- if (bio_integrity(bio))
- bio_integrity_advance(bio, bytes);
- bio_crypt_advance(bio, bytes);
- bio_advance_iter(bio, &bio->bi_iter, bytes);
- }
- EXPORT_SYMBOL(__bio_advance);
- void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
- struct bio *src, struct bvec_iter *src_iter)
- {
- while (src_iter->bi_size && dst_iter->bi_size) {
- struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
- struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
- unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
- void *src_buf = bvec_kmap_local(&src_bv);
- void *dst_buf = bvec_kmap_local(&dst_bv);
- memcpy(dst_buf, src_buf, bytes);
- kunmap_local(dst_buf);
- kunmap_local(src_buf);
- bio_advance_iter_single(src, src_iter, bytes);
- bio_advance_iter_single(dst, dst_iter, bytes);
- }
- }
- EXPORT_SYMBOL(bio_copy_data_iter);
- /**
- * bio_copy_data - copy contents of data buffers from one bio to another
- * @src: source bio
- * @dst: destination bio
- *
- * Stops when it reaches the end of either @src or @dst - that is, copies
- * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
- */
- void bio_copy_data(struct bio *dst, struct bio *src)
- {
- struct bvec_iter src_iter = src->bi_iter;
- struct bvec_iter dst_iter = dst->bi_iter;
- bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
- }
- EXPORT_SYMBOL(bio_copy_data);
- void bio_free_pages(struct bio *bio)
- {
- struct bio_vec *bvec;
- struct bvec_iter_all iter_all;
- bio_for_each_segment_all(bvec, bio, iter_all)
- __free_page(bvec->bv_page);
- }
- EXPORT_SYMBOL(bio_free_pages);
- /*
- * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
- * for performing direct-IO in BIOs.
- *
- * The problem is that we cannot run set_page_dirty() from interrupt context
- * because the required locks are not interrupt-safe. So what we can do is to
- * mark the pages dirty _before_ performing IO. And in interrupt context,
- * check that the pages are still dirty. If so, fine. If not, redirty them
- * in process context.
- *
- * We special-case compound pages here: normally this means reads into hugetlb
- * pages. The logic in here doesn't really work right for compound pages
- * because the VM does not uniformly chase down the head page in all cases.
- * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
- * handle them at all. So we skip compound pages here at an early stage.
- *
- * Note that this code is very hard to test under normal circumstances because
- * direct-io pins the pages with get_user_pages(). This makes
- * is_page_cache_freeable return false, and the VM will not clean the pages.
- * But other code (eg, flusher threads) could clean the pages if they are mapped
- * pagecache.
- *
- * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
- * deferred bio dirtying paths.
- */
- /*
- * bio_set_pages_dirty() will mark all the bio's pages as dirty.
- */
- void bio_set_pages_dirty(struct bio *bio)
- {
- struct bio_vec *bvec;
- struct bvec_iter_all iter_all;
- bio_for_each_segment_all(bvec, bio, iter_all) {
- if (!PageCompound(bvec->bv_page))
- set_page_dirty_lock(bvec->bv_page);
- }
- }
- /*
- * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
- * If they are, then fine. If, however, some pages are clean then they must
- * have been written out during the direct-IO read. So we take another ref on
- * the BIO and re-dirty the pages in process context.
- *
- * It is expected that bio_check_pages_dirty() will wholly own the BIO from
- * here on. It will run one put_page() against each page and will run one
- * bio_put() against the BIO.
- */
- static void bio_dirty_fn(struct work_struct *work);
- static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
- static DEFINE_SPINLOCK(bio_dirty_lock);
- static struct bio *bio_dirty_list;
- /*
- * This runs in process context
- */
- static void bio_dirty_fn(struct work_struct *work)
- {
- struct bio *bio, *next;
- spin_lock_irq(&bio_dirty_lock);
- next = bio_dirty_list;
- bio_dirty_list = NULL;
- spin_unlock_irq(&bio_dirty_lock);
- while ((bio = next) != NULL) {
- next = bio->bi_private;
- bio_release_pages(bio, true);
- bio_put(bio);
- }
- }
- void bio_check_pages_dirty(struct bio *bio)
- {
- struct bio_vec *bvec;
- unsigned long flags;
- struct bvec_iter_all iter_all;
- bio_for_each_segment_all(bvec, bio, iter_all) {
- if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
- goto defer;
- }
- bio_release_pages(bio, false);
- bio_put(bio);
- return;
- defer:
- spin_lock_irqsave(&bio_dirty_lock, flags);
- bio->bi_private = bio_dirty_list;
- bio_dirty_list = bio;
- spin_unlock_irqrestore(&bio_dirty_lock, flags);
- schedule_work(&bio_dirty_work);
- }
- static inline bool bio_remaining_done(struct bio *bio)
- {
- /*
- * If we're not chaining, then ->__bi_remaining is always 1 and
- * we always end io on the first invocation.
- */
- if (!bio_flagged(bio, BIO_CHAIN))
- return true;
- BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
- if (atomic_dec_and_test(&bio->__bi_remaining)) {
- bio_clear_flag(bio, BIO_CHAIN);
- return true;
- }
- return false;
- }
- /**
- * bio_endio - end I/O on a bio
- * @bio: bio
- *
- * Description:
- * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
- * way to end I/O on a bio. No one should call bi_end_io() directly on a
- * bio unless they own it and thus know that it has an end_io function.
- *
- * bio_endio() can be called several times on a bio that has been chained
- * using bio_chain(). The ->bi_end_io() function will only be called the
- * last time.
- **/
- void bio_endio(struct bio *bio)
- {
- again:
- if (!bio_remaining_done(bio))
- return;
- if (!bio_integrity_endio(bio))
- return;
- rq_qos_done_bio(bio);
- if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
- trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
- bio_clear_flag(bio, BIO_TRACE_COMPLETION);
- }
- /*
- * Need to have a real endio function for chained bios, otherwise
- * various corner cases will break (like stacking block devices that
- * save/restore bi_end_io) - however, we want to avoid unbounded
- * recursion and blowing the stack. Tail call optimization would
- * handle this, but compiling with frame pointers also disables
- * gcc's sibling call optimization.
- */
- if (bio->bi_end_io == bio_chain_endio) {
- bio = __bio_chain_endio(bio);
- goto again;
- }
- blk_throtl_bio_endio(bio);
- /* release cgroup info */
- bio_uninit(bio);
- if (bio->bi_end_io)
- bio->bi_end_io(bio);
- }
- EXPORT_SYMBOL(bio_endio);
- /**
- * bio_split - split a bio
- * @bio: bio to split
- * @sectors: number of sectors to split from the front of @bio
- * @gfp: gfp mask
- * @bs: bio set to allocate from
- *
- * Allocates and returns a new bio which represents @sectors from the start of
- * @bio, and updates @bio to represent the remaining sectors.
- *
- * Unless this is a discard request the newly allocated bio will point
- * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
- * neither @bio nor @bs are freed before the split bio.
- */
- struct bio *bio_split(struct bio *bio, int sectors,
- gfp_t gfp, struct bio_set *bs)
- {
- struct bio *split;
- BUG_ON(sectors <= 0);
- BUG_ON(sectors >= bio_sectors(bio));
- /* Zone append commands cannot be split */
- if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
- return NULL;
- split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
- if (!split)
- return NULL;
- split->bi_iter.bi_size = sectors << 9;
- if (bio_integrity(split))
- bio_integrity_trim(split);
- bio_advance(bio, split->bi_iter.bi_size);
- if (bio_flagged(bio, BIO_TRACE_COMPLETION))
- bio_set_flag(split, BIO_TRACE_COMPLETION);
- return split;
- }
- EXPORT_SYMBOL(bio_split);
- /**
- * bio_trim - trim a bio
- * @bio: bio to trim
- * @offset: number of sectors to trim from the front of @bio
- * @size: size we want to trim @bio to, in sectors
- *
- * This function is typically used for bios that are cloned and submitted
- * to the underlying device in parts.
- */
- void bio_trim(struct bio *bio, sector_t offset, sector_t size)
- {
- if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
- offset + size > bio_sectors(bio)))
- return;
- size <<= 9;
- if (offset == 0 && size == bio->bi_iter.bi_size)
- return;
- bio_advance(bio, offset << 9);
- bio->bi_iter.bi_size = size;
- if (bio_integrity(bio))
- bio_integrity_trim(bio);
- }
- EXPORT_SYMBOL_GPL(bio_trim);
- /*
- * create memory pools for biovec's in a bio_set.
- * use the global biovec slabs created for general use.
- */
- int biovec_init_pool(mempool_t *pool, int pool_entries)
- {
- struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
- return mempool_init_slab_pool(pool, pool_entries, bp->slab);
- }
- /*
- * bioset_exit - exit a bioset initialized with bioset_init()
- *
- * May be called on a zeroed but uninitialized bioset (i.e. allocated with
- * kzalloc()).
- */
- void bioset_exit(struct bio_set *bs)
- {
- bio_alloc_cache_destroy(bs);
- if (bs->rescue_workqueue)
- destroy_workqueue(bs->rescue_workqueue);
- bs->rescue_workqueue = NULL;
- mempool_exit(&bs->bio_pool);
- mempool_exit(&bs->bvec_pool);
- bioset_integrity_free(bs);
- if (bs->bio_slab)
- bio_put_slab(bs);
- bs->bio_slab = NULL;
- }
- EXPORT_SYMBOL(bioset_exit);
- /**
- * bioset_init - Initialize a bio_set
- * @bs: pool to initialize
- * @pool_size: Number of bio and bio_vecs to cache in the mempool
- * @front_pad: Number of bytes to allocate in front of the returned bio
- * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
- * and %BIOSET_NEED_RESCUER
- *
- * Description:
- * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
- * to ask for a number of bytes to be allocated in front of the bio.
- * Front pad allocation is useful for embedding the bio inside
- * another structure, to avoid allocating extra data to go with the bio.
- * Note that the bio must be embedded at the END of that structure always,
- * or things will break badly.
- * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
- * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
- * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
- * to dispatch queued requests when the mempool runs out of space.
- *
- */
- int bioset_init(struct bio_set *bs,
- unsigned int pool_size,
- unsigned int front_pad,
- int flags)
- {
- bs->front_pad = front_pad;
- if (flags & BIOSET_NEED_BVECS)
- bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
- else
- bs->back_pad = 0;
- spin_lock_init(&bs->rescue_lock);
- bio_list_init(&bs->rescue_list);
- INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
- bs->bio_slab = bio_find_or_create_slab(bs);
- if (!bs->bio_slab)
- return -ENOMEM;
- if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
- goto bad;
- if ((flags & BIOSET_NEED_BVECS) &&
- biovec_init_pool(&bs->bvec_pool, pool_size))
- goto bad;
- if (flags & BIOSET_NEED_RESCUER) {
- bs->rescue_workqueue = alloc_workqueue("bioset",
- WQ_MEM_RECLAIM, 0);
- if (!bs->rescue_workqueue)
- goto bad;
- }
- if (flags & BIOSET_PERCPU_CACHE) {
- bs->cache = alloc_percpu(struct bio_alloc_cache);
- if (!bs->cache)
- goto bad;
- cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
- }
- return 0;
- bad:
- bioset_exit(bs);
- return -ENOMEM;
- }
- EXPORT_SYMBOL(bioset_init);
- static int __init init_bio(void)
- {
- int i;
- bio_integrity_init();
- for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
- struct biovec_slab *bvs = bvec_slabs + i;
- bvs->slab = kmem_cache_create(bvs->name,
- bvs->nr_vecs * sizeof(struct bio_vec), 0,
- SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
- }
- cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
- bio_cpu_dead);
- if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
- BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
- panic("bio: can't allocate bios\n");
- if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
- panic("bio: can't create integrity pool\n");
- return 0;
- }
- subsys_initcall(init_bio);
|