1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Scheduler topology setup/handling methods
- */
- #include <trace/hooks/sched.h>
- DEFINE_MUTEX(sched_domains_mutex);
- #ifdef CONFIG_LOCKDEP
- EXPORT_SYMBOL_GPL(sched_domains_mutex);
- #endif
- /* Protected by sched_domains_mutex: */
- static cpumask_var_t sched_domains_tmpmask;
- static cpumask_var_t sched_domains_tmpmask2;
- #ifdef CONFIG_SCHED_DEBUG
- static int __init sched_debug_setup(char *str)
- {
- sched_debug_verbose = true;
- return 0;
- }
- early_param("sched_verbose", sched_debug_setup);
- static inline bool sched_debug(void)
- {
- return sched_debug_verbose;
- }
- #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
- const struct sd_flag_debug sd_flag_debug[] = {
- #include <linux/sched/sd_flags.h>
- };
- #undef SD_FLAG
- static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
- struct cpumask *groupmask)
- {
- struct sched_group *group = sd->groups;
- unsigned long flags = sd->flags;
- unsigned int idx;
- cpumask_clear(groupmask);
- printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
- printk(KERN_CONT "span=%*pbl level=%s\n",
- cpumask_pr_args(sched_domain_span(sd)), sd->name);
- if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
- printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
- }
- if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
- printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
- }
- for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
- unsigned int flag = BIT(idx);
- unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
- if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
- !(sd->child->flags & flag))
- printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
- sd_flag_debug[idx].name);
- if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
- !(sd->parent->flags & flag))
- printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
- sd_flag_debug[idx].name);
- }
- printk(KERN_DEBUG "%*s groups:", level + 1, "");
- do {
- if (!group) {
- printk("\n");
- printk(KERN_ERR "ERROR: group is NULL\n");
- break;
- }
- if (cpumask_empty(sched_group_span(group))) {
- printk(KERN_CONT "\n");
- printk(KERN_ERR "ERROR: empty group\n");
- break;
- }
- if (!(sd->flags & SD_OVERLAP) &&
- cpumask_intersects(groupmask, sched_group_span(group))) {
- printk(KERN_CONT "\n");
- printk(KERN_ERR "ERROR: repeated CPUs\n");
- break;
- }
- cpumask_or(groupmask, groupmask, sched_group_span(group));
- printk(KERN_CONT " %d:{ span=%*pbl",
- group->sgc->id,
- cpumask_pr_args(sched_group_span(group)));
- if ((sd->flags & SD_OVERLAP) &&
- !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
- printk(KERN_CONT " mask=%*pbl",
- cpumask_pr_args(group_balance_mask(group)));
- }
- if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
- printk(KERN_CONT " cap=%lu", group->sgc->capacity);
- if (group == sd->groups && sd->child &&
- !cpumask_equal(sched_domain_span(sd->child),
- sched_group_span(group))) {
- printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
- }
- printk(KERN_CONT " }");
- group = group->next;
- if (group != sd->groups)
- printk(KERN_CONT ",");
- } while (group != sd->groups);
- printk(KERN_CONT "\n");
- if (!cpumask_equal(sched_domain_span(sd), groupmask))
- printk(KERN_ERR "ERROR: groups don't span domain->span\n");
- if (sd->parent &&
- !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
- printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
- return 0;
- }
- static void sched_domain_debug(struct sched_domain *sd, int cpu)
- {
- int level = 0;
- if (!sched_debug_verbose)
- return;
- if (!sd) {
- printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
- return;
- }
- printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
- for (;;) {
- if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
- break;
- level++;
- sd = sd->parent;
- if (!sd)
- break;
- }
- }
- #else /* !CONFIG_SCHED_DEBUG */
- # define sched_debug_verbose 0
- # define sched_domain_debug(sd, cpu) do { } while (0)
- static inline bool sched_debug(void)
- {
- return false;
- }
- #endif /* CONFIG_SCHED_DEBUG */
- /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
- #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
- static const unsigned int SD_DEGENERATE_GROUPS_MASK =
- #include <linux/sched/sd_flags.h>
- 0;
- #undef SD_FLAG
- static int sd_degenerate(struct sched_domain *sd)
- {
- if (cpumask_weight(sched_domain_span(sd)) == 1)
- return 1;
- /* Following flags need at least 2 groups */
- if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
- (sd->groups != sd->groups->next))
- return 0;
- /* Following flags don't use groups */
- if (sd->flags & (SD_WAKE_AFFINE))
- return 0;
- return 1;
- }
- static int
- sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
- {
- unsigned long cflags = sd->flags, pflags = parent->flags;
- if (sd_degenerate(parent))
- return 1;
- if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
- return 0;
- /* Flags needing groups don't count if only 1 group in parent */
- if (parent->groups == parent->groups->next)
- pflags &= ~SD_DEGENERATE_GROUPS_MASK;
- if (~cflags & pflags)
- return 0;
- return 1;
- }
- #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
- DEFINE_STATIC_KEY_FALSE(sched_energy_present);
- static unsigned int sysctl_sched_energy_aware = 1;
- DEFINE_MUTEX(sched_energy_mutex);
- bool sched_energy_update;
- void rebuild_sched_domains_energy(void)
- {
- mutex_lock(&sched_energy_mutex);
- sched_energy_update = true;
- rebuild_sched_domains();
- sched_energy_update = false;
- mutex_unlock(&sched_energy_mutex);
- }
- #ifdef CONFIG_PROC_SYSCTL
- static int sched_energy_aware_handler(struct ctl_table *table, int write,
- void *buffer, size_t *lenp, loff_t *ppos)
- {
- int ret, state;
- if (write && !capable(CAP_SYS_ADMIN))
- return -EPERM;
- ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
- if (!ret && write) {
- state = static_branch_unlikely(&sched_energy_present);
- if (state != sysctl_sched_energy_aware)
- rebuild_sched_domains_energy();
- }
- return ret;
- }
- static struct ctl_table sched_energy_aware_sysctls[] = {
- {
- .procname = "sched_energy_aware",
- .data = &sysctl_sched_energy_aware,
- .maxlen = sizeof(unsigned int),
- .mode = 0644,
- .proc_handler = sched_energy_aware_handler,
- .extra1 = SYSCTL_ZERO,
- .extra2 = SYSCTL_ONE,
- },
- {}
- };
- static int __init sched_energy_aware_sysctl_init(void)
- {
- register_sysctl_init("kernel", sched_energy_aware_sysctls);
- return 0;
- }
- late_initcall(sched_energy_aware_sysctl_init);
- #endif
- static void free_pd(struct perf_domain *pd)
- {
- struct perf_domain *tmp;
- while (pd) {
- tmp = pd->next;
- kfree(pd);
- pd = tmp;
- }
- }
- static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
- {
- while (pd) {
- if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
- return pd;
- pd = pd->next;
- }
- return NULL;
- }
- static struct perf_domain *pd_init(int cpu)
- {
- struct em_perf_domain *obj = em_cpu_get(cpu);
- struct perf_domain *pd;
- if (!obj) {
- if (sched_debug())
- pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
- return NULL;
- }
- pd = kzalloc(sizeof(*pd), GFP_KERNEL);
- if (!pd)
- return NULL;
- pd->em_pd = obj;
- return pd;
- }
- static void perf_domain_debug(const struct cpumask *cpu_map,
- struct perf_domain *pd)
- {
- if (!sched_debug() || !pd)
- return;
- printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
- while (pd) {
- printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
- cpumask_first(perf_domain_span(pd)),
- cpumask_pr_args(perf_domain_span(pd)),
- em_pd_nr_perf_states(pd->em_pd));
- pd = pd->next;
- }
- printk(KERN_CONT "\n");
- }
- static void destroy_perf_domain_rcu(struct rcu_head *rp)
- {
- struct perf_domain *pd;
- pd = container_of(rp, struct perf_domain, rcu);
- free_pd(pd);
- }
- static void sched_energy_set(bool has_eas)
- {
- if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
- if (sched_debug())
- pr_info("%s: stopping EAS\n", __func__);
- static_branch_disable_cpuslocked(&sched_energy_present);
- } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
- if (sched_debug())
- pr_info("%s: starting EAS\n", __func__);
- static_branch_enable_cpuslocked(&sched_energy_present);
- }
- }
- /*
- * EAS can be used on a root domain if it meets all the following conditions:
- * 1. an Energy Model (EM) is available;
- * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
- * 3. no SMT is detected.
- * 4. the EM complexity is low enough to keep scheduling overheads low;
- * 5. frequency invariance support is present;
- *
- * The complexity of the Energy Model is defined as:
- *
- * C = nr_pd * (nr_cpus + nr_ps)
- *
- * with parameters defined as:
- * - nr_pd: the number of performance domains
- * - nr_cpus: the number of CPUs
- * - nr_ps: the sum of the number of performance states of all performance
- * domains (for example, on a system with 2 performance domains,
- * with 10 performance states each, nr_ps = 2 * 10 = 20).
- *
- * It is generally not a good idea to use such a model in the wake-up path on
- * very complex platforms because of the associated scheduling overheads. The
- * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
- * with per-CPU DVFS and less than 8 performance states each, for example.
- */
- #define EM_MAX_COMPLEXITY 2048
- static bool build_perf_domains(const struct cpumask *cpu_map)
- {
- int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
- struct perf_domain *pd = NULL, *tmp;
- int cpu = cpumask_first(cpu_map);
- struct root_domain *rd = cpu_rq(cpu)->rd;
- bool eas_check = false;
- if (!sysctl_sched_energy_aware)
- goto free;
- /*
- * EAS is enabled for asymmetric CPU capacity topologies.
- * Allow vendor to override if desired.
- */
- trace_android_rvh_build_perf_domains(&eas_check);
- if (!per_cpu(sd_asym_cpucapacity, cpu) && !eas_check) {
- if (sched_debug()) {
- pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
- cpumask_pr_args(cpu_map));
- }
- goto free;
- }
- /* EAS definitely does *not* handle SMT */
- if (sched_smt_active()) {
- pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
- cpumask_pr_args(cpu_map));
- goto free;
- }
- if (!arch_scale_freq_invariant()) {
- if (sched_debug()) {
- pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
- cpumask_pr_args(cpu_map));
- }
- goto free;
- }
- for_each_cpu(i, cpu_map) {
- /* Skip already covered CPUs. */
- if (find_pd(pd, i))
- continue;
- /* Create the new pd and add it to the local list. */
- tmp = pd_init(i);
- if (!tmp)
- goto free;
- tmp->next = pd;
- pd = tmp;
- /*
- * Count performance domains and performance states for the
- * complexity check.
- */
- nr_pd++;
- nr_ps += em_pd_nr_perf_states(pd->em_pd);
- }
- /* Bail out if the Energy Model complexity is too high. */
- if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
- WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
- cpumask_pr_args(cpu_map));
- goto free;
- }
- perf_domain_debug(cpu_map, pd);
- /* Attach the new list of performance domains to the root domain. */
- tmp = rd->pd;
- rcu_assign_pointer(rd->pd, pd);
- if (tmp)
- call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
- return !!pd;
- free:
- free_pd(pd);
- tmp = rd->pd;
- rcu_assign_pointer(rd->pd, NULL);
- if (tmp)
- call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
- return false;
- }
- #else
- static void free_pd(struct perf_domain *pd) { }
- #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
- static void free_rootdomain(struct rcu_head *rcu)
- {
- struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
- cpupri_cleanup(&rd->cpupri);
- cpudl_cleanup(&rd->cpudl);
- free_cpumask_var(rd->dlo_mask);
- free_cpumask_var(rd->rto_mask);
- free_cpumask_var(rd->online);
- free_cpumask_var(rd->span);
- free_pd(rd->pd);
- kfree(rd);
- }
- void rq_attach_root(struct rq *rq, struct root_domain *rd)
- {
- struct root_domain *old_rd = NULL;
- unsigned long flags;
- raw_spin_rq_lock_irqsave(rq, flags);
- if (rq->rd) {
- old_rd = rq->rd;
- if (cpumask_test_cpu(rq->cpu, old_rd->online))
- set_rq_offline(rq);
- cpumask_clear_cpu(rq->cpu, old_rd->span);
- /*
- * If we dont want to free the old_rd yet then
- * set old_rd to NULL to skip the freeing later
- * in this function:
- */
- if (!atomic_dec_and_test(&old_rd->refcount))
- old_rd = NULL;
- }
- atomic_inc(&rd->refcount);
- rq->rd = rd;
- cpumask_set_cpu(rq->cpu, rd->span);
- if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
- set_rq_online(rq);
- raw_spin_rq_unlock_irqrestore(rq, flags);
- if (old_rd)
- call_rcu(&old_rd->rcu, free_rootdomain);
- }
- void sched_get_rd(struct root_domain *rd)
- {
- atomic_inc(&rd->refcount);
- }
- void sched_put_rd(struct root_domain *rd)
- {
- if (!atomic_dec_and_test(&rd->refcount))
- return;
- call_rcu(&rd->rcu, free_rootdomain);
- }
- static int init_rootdomain(struct root_domain *rd)
- {
- if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
- goto out;
- if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
- goto free_span;
- if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
- goto free_online;
- if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
- goto free_dlo_mask;
- #ifdef HAVE_RT_PUSH_IPI
- rd->rto_cpu = -1;
- raw_spin_lock_init(&rd->rto_lock);
- rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
- #endif
- rd->visit_gen = 0;
- init_dl_bw(&rd->dl_bw);
- if (cpudl_init(&rd->cpudl) != 0)
- goto free_rto_mask;
- if (cpupri_init(&rd->cpupri) != 0)
- goto free_cpudl;
- return 0;
- free_cpudl:
- cpudl_cleanup(&rd->cpudl);
- free_rto_mask:
- free_cpumask_var(rd->rto_mask);
- free_dlo_mask:
- free_cpumask_var(rd->dlo_mask);
- free_online:
- free_cpumask_var(rd->online);
- free_span:
- free_cpumask_var(rd->span);
- out:
- return -ENOMEM;
- }
- /*
- * By default the system creates a single root-domain with all CPUs as
- * members (mimicking the global state we have today).
- */
- struct root_domain def_root_domain;
- void init_defrootdomain(void)
- {
- init_rootdomain(&def_root_domain);
- atomic_set(&def_root_domain.refcount, 1);
- }
- static struct root_domain *alloc_rootdomain(void)
- {
- struct root_domain *rd;
- rd = kzalloc(sizeof(*rd), GFP_KERNEL);
- if (!rd)
- return NULL;
- if (init_rootdomain(rd) != 0) {
- kfree(rd);
- return NULL;
- }
- return rd;
- }
- static void free_sched_groups(struct sched_group *sg, int free_sgc)
- {
- struct sched_group *tmp, *first;
- if (!sg)
- return;
- first = sg;
- do {
- tmp = sg->next;
- if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
- kfree(sg->sgc);
- if (atomic_dec_and_test(&sg->ref))
- kfree(sg);
- sg = tmp;
- } while (sg != first);
- }
- static void destroy_sched_domain(struct sched_domain *sd)
- {
- /*
- * A normal sched domain may have multiple group references, an
- * overlapping domain, having private groups, only one. Iterate,
- * dropping group/capacity references, freeing where none remain.
- */
- free_sched_groups(sd->groups, 1);
- if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
- kfree(sd->shared);
- kfree(sd);
- }
- static void destroy_sched_domains_rcu(struct rcu_head *rcu)
- {
- struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
- while (sd) {
- struct sched_domain *parent = sd->parent;
- destroy_sched_domain(sd);
- sd = parent;
- }
- }
- static void destroy_sched_domains(struct sched_domain *sd)
- {
- if (sd)
- call_rcu(&sd->rcu, destroy_sched_domains_rcu);
- }
- /*
- * Keep a special pointer to the highest sched_domain that has
- * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
- * allows us to avoid some pointer chasing select_idle_sibling().
- *
- * Also keep a unique ID per domain (we use the first CPU number in
- * the cpumask of the domain), this allows us to quickly tell if
- * two CPUs are in the same cache domain, see cpus_share_cache().
- */
- DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
- DEFINE_PER_CPU(int, sd_llc_size);
- DEFINE_PER_CPU(int, sd_llc_id);
- DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
- DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
- DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
- DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
- DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
- static void update_top_cache_domain(int cpu)
- {
- struct sched_domain_shared *sds = NULL;
- struct sched_domain *sd;
- int id = cpu;
- int size = 1;
- sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
- if (sd) {
- id = cpumask_first(sched_domain_span(sd));
- size = cpumask_weight(sched_domain_span(sd));
- sds = sd->shared;
- }
- rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
- per_cpu(sd_llc_size, cpu) = size;
- per_cpu(sd_llc_id, cpu) = id;
- rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
- sd = lowest_flag_domain(cpu, SD_NUMA);
- rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
- sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
- rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
- sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
- rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
- }
- /*
- * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
- * hold the hotplug lock.
- */
- static void
- cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- struct sched_domain *tmp;
- /* Remove the sched domains which do not contribute to scheduling. */
- for (tmp = sd; tmp; ) {
- struct sched_domain *parent = tmp->parent;
- if (!parent)
- break;
- if (sd_parent_degenerate(tmp, parent)) {
- tmp->parent = parent->parent;
- if (parent->parent)
- parent->parent->child = tmp;
- /*
- * Transfer SD_PREFER_SIBLING down in case of a
- * degenerate parent; the spans match for this
- * so the property transfers.
- */
- if (parent->flags & SD_PREFER_SIBLING)
- tmp->flags |= SD_PREFER_SIBLING;
- destroy_sched_domain(parent);
- } else
- tmp = tmp->parent;
- }
- if (sd && sd_degenerate(sd)) {
- tmp = sd;
- sd = sd->parent;
- destroy_sched_domain(tmp);
- if (sd) {
- struct sched_group *sg = sd->groups;
- /*
- * sched groups hold the flags of the child sched
- * domain for convenience. Clear such flags since
- * the child is being destroyed.
- */
- do {
- sg->flags = 0;
- } while (sg != sd->groups);
- sd->child = NULL;
- }
- }
- sched_domain_debug(sd, cpu);
- rq_attach_root(rq, rd);
- tmp = rq->sd;
- rcu_assign_pointer(rq->sd, sd);
- dirty_sched_domain_sysctl(cpu);
- destroy_sched_domains(tmp);
- update_top_cache_domain(cpu);
- }
- struct s_data {
- struct sched_domain * __percpu *sd;
- struct root_domain *rd;
- };
- enum s_alloc {
- sa_rootdomain,
- sa_sd,
- sa_sd_storage,
- sa_none,
- };
- /*
- * Return the canonical balance CPU for this group, this is the first CPU
- * of this group that's also in the balance mask.
- *
- * The balance mask are all those CPUs that could actually end up at this
- * group. See build_balance_mask().
- *
- * Also see should_we_balance().
- */
- int group_balance_cpu(struct sched_group *sg)
- {
- return cpumask_first(group_balance_mask(sg));
- }
- /*
- * NUMA topology (first read the regular topology blurb below)
- *
- * Given a node-distance table, for example:
- *
- * node 0 1 2 3
- * 0: 10 20 30 20
- * 1: 20 10 20 30
- * 2: 30 20 10 20
- * 3: 20 30 20 10
- *
- * which represents a 4 node ring topology like:
- *
- * 0 ----- 1
- * | |
- * | |
- * | |
- * 3 ----- 2
- *
- * We want to construct domains and groups to represent this. The way we go
- * about doing this is to build the domains on 'hops'. For each NUMA level we
- * construct the mask of all nodes reachable in @level hops.
- *
- * For the above NUMA topology that gives 3 levels:
- *
- * NUMA-2 0-3 0-3 0-3 0-3
- * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
- *
- * NUMA-1 0-1,3 0-2 1-3 0,2-3
- * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
- *
- * NUMA-0 0 1 2 3
- *
- *
- * As can be seen; things don't nicely line up as with the regular topology.
- * When we iterate a domain in child domain chunks some nodes can be
- * represented multiple times -- hence the "overlap" naming for this part of
- * the topology.
- *
- * In order to minimize this overlap, we only build enough groups to cover the
- * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
- *
- * Because:
- *
- * - the first group of each domain is its child domain; this
- * gets us the first 0-1,3
- * - the only uncovered node is 2, who's child domain is 1-3.
- *
- * However, because of the overlap, computing a unique CPU for each group is
- * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
- * groups include the CPUs of Node-0, while those CPUs would not in fact ever
- * end up at those groups (they would end up in group: 0-1,3).
- *
- * To correct this we have to introduce the group balance mask. This mask
- * will contain those CPUs in the group that can reach this group given the
- * (child) domain tree.
- *
- * With this we can once again compute balance_cpu and sched_group_capacity
- * relations.
- *
- * XXX include words on how balance_cpu is unique and therefore can be
- * used for sched_group_capacity links.
- *
- *
- * Another 'interesting' topology is:
- *
- * node 0 1 2 3
- * 0: 10 20 20 30
- * 1: 20 10 20 20
- * 2: 20 20 10 20
- * 3: 30 20 20 10
- *
- * Which looks a little like:
- *
- * 0 ----- 1
- * | / |
- * | / |
- * | / |
- * 2 ----- 3
- *
- * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
- * are not.
- *
- * This leads to a few particularly weird cases where the sched_domain's are
- * not of the same number for each CPU. Consider:
- *
- * NUMA-2 0-3 0-3
- * groups: {0-2},{1-3} {1-3},{0-2}
- *
- * NUMA-1 0-2 0-3 0-3 1-3
- *
- * NUMA-0 0 1 2 3
- *
- */
- /*
- * Build the balance mask; it contains only those CPUs that can arrive at this
- * group and should be considered to continue balancing.
- *
- * We do this during the group creation pass, therefore the group information
- * isn't complete yet, however since each group represents a (child) domain we
- * can fully construct this using the sched_domain bits (which are already
- * complete).
- */
- static void
- build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
- {
- const struct cpumask *sg_span = sched_group_span(sg);
- struct sd_data *sdd = sd->private;
- struct sched_domain *sibling;
- int i;
- cpumask_clear(mask);
- for_each_cpu(i, sg_span) {
- sibling = *per_cpu_ptr(sdd->sd, i);
- /*
- * Can happen in the asymmetric case, where these siblings are
- * unused. The mask will not be empty because those CPUs that
- * do have the top domain _should_ span the domain.
- */
- if (!sibling->child)
- continue;
- /* If we would not end up here, we can't continue from here */
- if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
- continue;
- cpumask_set_cpu(i, mask);
- }
- /* We must not have empty masks here */
- WARN_ON_ONCE(cpumask_empty(mask));
- }
- /*
- * XXX: This creates per-node group entries; since the load-balancer will
- * immediately access remote memory to construct this group's load-balance
- * statistics having the groups node local is of dubious benefit.
- */
- static struct sched_group *
- build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
- {
- struct sched_group *sg;
- struct cpumask *sg_span;
- sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(cpu));
- if (!sg)
- return NULL;
- sg_span = sched_group_span(sg);
- if (sd->child) {
- cpumask_copy(sg_span, sched_domain_span(sd->child));
- sg->flags = sd->child->flags;
- } else {
- cpumask_copy(sg_span, sched_domain_span(sd));
- }
- atomic_inc(&sg->ref);
- return sg;
- }
- static void init_overlap_sched_group(struct sched_domain *sd,
- struct sched_group *sg)
- {
- struct cpumask *mask = sched_domains_tmpmask2;
- struct sd_data *sdd = sd->private;
- struct cpumask *sg_span;
- int cpu;
- build_balance_mask(sd, sg, mask);
- cpu = cpumask_first(mask);
- sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
- if (atomic_inc_return(&sg->sgc->ref) == 1)
- cpumask_copy(group_balance_mask(sg), mask);
- else
- WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
- /*
- * Initialize sgc->capacity such that even if we mess up the
- * domains and no possible iteration will get us here, we won't
- * die on a /0 trap.
- */
- sg_span = sched_group_span(sg);
- sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
- sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
- sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
- }
- static struct sched_domain *
- find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
- {
- /*
- * The proper descendant would be the one whose child won't span out
- * of sd
- */
- while (sibling->child &&
- !cpumask_subset(sched_domain_span(sibling->child),
- sched_domain_span(sd)))
- sibling = sibling->child;
- /*
- * As we are referencing sgc across different topology level, we need
- * to go down to skip those sched_domains which don't contribute to
- * scheduling because they will be degenerated in cpu_attach_domain
- */
- while (sibling->child &&
- cpumask_equal(sched_domain_span(sibling->child),
- sched_domain_span(sibling)))
- sibling = sibling->child;
- return sibling;
- }
- static int
- build_overlap_sched_groups(struct sched_domain *sd, int cpu)
- {
- struct sched_group *first = NULL, *last = NULL, *sg;
- const struct cpumask *span = sched_domain_span(sd);
- struct cpumask *covered = sched_domains_tmpmask;
- struct sd_data *sdd = sd->private;
- struct sched_domain *sibling;
- int i;
- cpumask_clear(covered);
- for_each_cpu_wrap(i, span, cpu) {
- struct cpumask *sg_span;
- if (cpumask_test_cpu(i, covered))
- continue;
- sibling = *per_cpu_ptr(sdd->sd, i);
- /*
- * Asymmetric node setups can result in situations where the
- * domain tree is of unequal depth, make sure to skip domains
- * that already cover the entire range.
- *
- * In that case build_sched_domains() will have terminated the
- * iteration early and our sibling sd spans will be empty.
- * Domains should always include the CPU they're built on, so
- * check that.
- */
- if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
- continue;
- /*
- * Usually we build sched_group by sibling's child sched_domain
- * But for machines whose NUMA diameter are 3 or above, we move
- * to build sched_group by sibling's proper descendant's child
- * domain because sibling's child sched_domain will span out of
- * the sched_domain being built as below.
- *
- * Smallest diameter=3 topology is:
- *
- * node 0 1 2 3
- * 0: 10 20 30 40
- * 1: 20 10 20 30
- * 2: 30 20 10 20
- * 3: 40 30 20 10
- *
- * 0 --- 1 --- 2 --- 3
- *
- * NUMA-3 0-3 N/A N/A 0-3
- * groups: {0-2},{1-3} {1-3},{0-2}
- *
- * NUMA-2 0-2 0-3 0-3 1-3
- * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2}
- *
- * NUMA-1 0-1 0-2 1-3 2-3
- * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2}
- *
- * NUMA-0 0 1 2 3
- *
- * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
- * group span isn't a subset of the domain span.
- */
- if (sibling->child &&
- !cpumask_subset(sched_domain_span(sibling->child), span))
- sibling = find_descended_sibling(sd, sibling);
- sg = build_group_from_child_sched_domain(sibling, cpu);
- if (!sg)
- goto fail;
- sg_span = sched_group_span(sg);
- cpumask_or(covered, covered, sg_span);
- init_overlap_sched_group(sibling, sg);
- if (!first)
- first = sg;
- if (last)
- last->next = sg;
- last = sg;
- last->next = first;
- }
- sd->groups = first;
- return 0;
- fail:
- free_sched_groups(first, 0);
- return -ENOMEM;
- }
- /*
- * Package topology (also see the load-balance blurb in fair.c)
- *
- * The scheduler builds a tree structure to represent a number of important
- * topology features. By default (default_topology[]) these include:
- *
- * - Simultaneous multithreading (SMT)
- * - Multi-Core Cache (MC)
- * - Package (DIE)
- *
- * Where the last one more or less denotes everything up to a NUMA node.
- *
- * The tree consists of 3 primary data structures:
- *
- * sched_domain -> sched_group -> sched_group_capacity
- * ^ ^ ^ ^
- * `-' `-'
- *
- * The sched_domains are per-CPU and have a two way link (parent & child) and
- * denote the ever growing mask of CPUs belonging to that level of topology.
- *
- * Each sched_domain has a circular (double) linked list of sched_group's, each
- * denoting the domains of the level below (or individual CPUs in case of the
- * first domain level). The sched_group linked by a sched_domain includes the
- * CPU of that sched_domain [*].
- *
- * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
- *
- * CPU 0 1 2 3 4 5 6 7
- *
- * DIE [ ]
- * MC [ ] [ ]
- * SMT [ ] [ ] [ ] [ ]
- *
- * - or -
- *
- * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
- * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
- * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
- *
- * CPU 0 1 2 3 4 5 6 7
- *
- * One way to think about it is: sched_domain moves you up and down among these
- * topology levels, while sched_group moves you sideways through it, at child
- * domain granularity.
- *
- * sched_group_capacity ensures each unique sched_group has shared storage.
- *
- * There are two related construction problems, both require a CPU that
- * uniquely identify each group (for a given domain):
- *
- * - The first is the balance_cpu (see should_we_balance() and the
- * load-balance blub in fair.c); for each group we only want 1 CPU to
- * continue balancing at a higher domain.
- *
- * - The second is the sched_group_capacity; we want all identical groups
- * to share a single sched_group_capacity.
- *
- * Since these topologies are exclusive by construction. That is, its
- * impossible for an SMT thread to belong to multiple cores, and cores to
- * be part of multiple caches. There is a very clear and unique location
- * for each CPU in the hierarchy.
- *
- * Therefore computing a unique CPU for each group is trivial (the iteration
- * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
- * group), we can simply pick the first CPU in each group.
- *
- *
- * [*] in other words, the first group of each domain is its child domain.
- */
- static struct sched_group *get_group(int cpu, struct sd_data *sdd)
- {
- struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
- struct sched_domain *child = sd->child;
- struct sched_group *sg;
- bool already_visited;
- if (child)
- cpu = cpumask_first(sched_domain_span(child));
- sg = *per_cpu_ptr(sdd->sg, cpu);
- sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
- /* Increase refcounts for claim_allocations: */
- already_visited = atomic_inc_return(&sg->ref) > 1;
- /* sgc visits should follow a similar trend as sg */
- WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
- /* If we have already visited that group, it's already initialized. */
- if (already_visited)
- return sg;
- if (child) {
- cpumask_copy(sched_group_span(sg), sched_domain_span(child));
- cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
- sg->flags = child->flags;
- } else {
- cpumask_set_cpu(cpu, sched_group_span(sg));
- cpumask_set_cpu(cpu, group_balance_mask(sg));
- }
- sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
- sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
- sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
- return sg;
- }
- /*
- * build_sched_groups will build a circular linked list of the groups
- * covered by the given span, will set each group's ->cpumask correctly,
- * and will initialize their ->sgc.
- *
- * Assumes the sched_domain tree is fully constructed
- */
- static int
- build_sched_groups(struct sched_domain *sd, int cpu)
- {
- struct sched_group *first = NULL, *last = NULL;
- struct sd_data *sdd = sd->private;
- const struct cpumask *span = sched_domain_span(sd);
- struct cpumask *covered;
- int i;
- lockdep_assert_held(&sched_domains_mutex);
- covered = sched_domains_tmpmask;
- cpumask_clear(covered);
- for_each_cpu_wrap(i, span, cpu) {
- struct sched_group *sg;
- if (cpumask_test_cpu(i, covered))
- continue;
- sg = get_group(i, sdd);
- cpumask_or(covered, covered, sched_group_span(sg));
- if (!first)
- first = sg;
- if (last)
- last->next = sg;
- last = sg;
- }
- last->next = first;
- sd->groups = first;
- return 0;
- }
- /*
- * Initialize sched groups cpu_capacity.
- *
- * cpu_capacity indicates the capacity of sched group, which is used while
- * distributing the load between different sched groups in a sched domain.
- * Typically cpu_capacity for all the groups in a sched domain will be same
- * unless there are asymmetries in the topology. If there are asymmetries,
- * group having more cpu_capacity will pickup more load compared to the
- * group having less cpu_capacity.
- */
- static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
- {
- struct sched_group *sg = sd->groups;
- WARN_ON(!sg);
- do {
- int cpu, max_cpu = -1;
- sg->group_weight = cpumask_weight(sched_group_span(sg));
- if (!(sd->flags & SD_ASYM_PACKING))
- goto next;
- for_each_cpu(cpu, sched_group_span(sg)) {
- if (max_cpu < 0)
- max_cpu = cpu;
- else if (sched_asym_prefer(cpu, max_cpu))
- max_cpu = cpu;
- }
- sg->asym_prefer_cpu = max_cpu;
- next:
- sg = sg->next;
- } while (sg != sd->groups);
- if (cpu != group_balance_cpu(sg))
- return;
- update_group_capacity(sd, cpu);
- }
- /*
- * Asymmetric CPU capacity bits
- */
- struct asym_cap_data {
- struct list_head link;
- unsigned long capacity;
- unsigned long cpus[];
- };
- /*
- * Set of available CPUs grouped by their corresponding capacities
- * Each list entry contains a CPU mask reflecting CPUs that share the same
- * capacity.
- * The lifespan of data is unlimited.
- */
- static LIST_HEAD(asym_cap_list);
- #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
- /*
- * Verify whether there is any CPU capacity asymmetry in a given sched domain.
- * Provides sd_flags reflecting the asymmetry scope.
- */
- static inline int
- asym_cpu_capacity_classify(const struct cpumask *sd_span,
- const struct cpumask *cpu_map)
- {
- struct asym_cap_data *entry;
- int count = 0, miss = 0;
- /*
- * Count how many unique CPU capacities this domain spans across
- * (compare sched_domain CPUs mask with ones representing available
- * CPUs capacities). Take into account CPUs that might be offline:
- * skip those.
- */
- list_for_each_entry(entry, &asym_cap_list, link) {
- if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
- ++count;
- else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
- ++miss;
- }
- WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
- /* No asymmetry detected */
- if (count < 2)
- return 0;
- /* Some of the available CPU capacity values have not been detected */
- if (miss)
- return SD_ASYM_CPUCAPACITY;
- /* Full asymmetry */
- return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
- }
- static inline void asym_cpu_capacity_update_data(int cpu)
- {
- unsigned long capacity = arch_scale_cpu_capacity(cpu);
- struct asym_cap_data *entry = NULL;
- list_for_each_entry(entry, &asym_cap_list, link) {
- if (capacity == entry->capacity)
- goto done;
- }
- entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
- if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
- return;
- entry->capacity = capacity;
- list_add(&entry->link, &asym_cap_list);
- done:
- __cpumask_set_cpu(cpu, cpu_capacity_span(entry));
- }
- /*
- * Build-up/update list of CPUs grouped by their capacities
- * An update requires explicit request to rebuild sched domains
- * with state indicating CPU topology changes.
- */
- static void asym_cpu_capacity_scan(void)
- {
- struct asym_cap_data *entry, *next;
- int cpu;
- list_for_each_entry(entry, &asym_cap_list, link)
- cpumask_clear(cpu_capacity_span(entry));
- for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
- asym_cpu_capacity_update_data(cpu);
- list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
- if (cpumask_empty(cpu_capacity_span(entry))) {
- list_del(&entry->link);
- kfree(entry);
- }
- }
- /*
- * Only one capacity value has been detected i.e. this system is symmetric.
- * No need to keep this data around.
- */
- if (list_is_singular(&asym_cap_list)) {
- entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
- list_del(&entry->link);
- kfree(entry);
- }
- }
- /*
- * Initializers for schedule domains
- * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
- */
- static int default_relax_domain_level = -1;
- int sched_domain_level_max;
- static int __init setup_relax_domain_level(char *str)
- {
- if (kstrtoint(str, 0, &default_relax_domain_level))
- pr_warn("Unable to set relax_domain_level\n");
- return 1;
- }
- __setup("relax_domain_level=", setup_relax_domain_level);
- static void set_domain_attribute(struct sched_domain *sd,
- struct sched_domain_attr *attr)
- {
- int request;
- if (!attr || attr->relax_domain_level < 0) {
- if (default_relax_domain_level < 0)
- return;
- request = default_relax_domain_level;
- } else
- request = attr->relax_domain_level;
- if (sd->level > request) {
- /* Turn off idle balance on this domain: */
- sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
- }
- }
- static void __sdt_free(const struct cpumask *cpu_map);
- static int __sdt_alloc(const struct cpumask *cpu_map);
- static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
- const struct cpumask *cpu_map)
- {
- switch (what) {
- case sa_rootdomain:
- if (!atomic_read(&d->rd->refcount))
- free_rootdomain(&d->rd->rcu);
- fallthrough;
- case sa_sd:
- free_percpu(d->sd);
- fallthrough;
- case sa_sd_storage:
- __sdt_free(cpu_map);
- fallthrough;
- case sa_none:
- break;
- }
- }
- static enum s_alloc
- __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
- {
- memset(d, 0, sizeof(*d));
- if (__sdt_alloc(cpu_map))
- return sa_sd_storage;
- d->sd = alloc_percpu(struct sched_domain *);
- if (!d->sd)
- return sa_sd_storage;
- d->rd = alloc_rootdomain();
- if (!d->rd)
- return sa_sd;
- return sa_rootdomain;
- }
- /*
- * NULL the sd_data elements we've used to build the sched_domain and
- * sched_group structure so that the subsequent __free_domain_allocs()
- * will not free the data we're using.
- */
- static void claim_allocations(int cpu, struct sched_domain *sd)
- {
- struct sd_data *sdd = sd->private;
- WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
- *per_cpu_ptr(sdd->sd, cpu) = NULL;
- if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
- *per_cpu_ptr(sdd->sds, cpu) = NULL;
- if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
- *per_cpu_ptr(sdd->sg, cpu) = NULL;
- if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
- *per_cpu_ptr(sdd->sgc, cpu) = NULL;
- }
- #ifdef CONFIG_NUMA
- enum numa_topology_type sched_numa_topology_type;
- static int sched_domains_numa_levels;
- static int sched_domains_curr_level;
- int sched_max_numa_distance;
- static int *sched_domains_numa_distance;
- static struct cpumask ***sched_domains_numa_masks;
- #endif
- /*
- * SD_flags allowed in topology descriptions.
- *
- * These flags are purely descriptive of the topology and do not prescribe
- * behaviour. Behaviour is artificial and mapped in the below sd_init()
- * function:
- *
- * SD_SHARE_CPUCAPACITY - describes SMT topologies
- * SD_SHARE_PKG_RESOURCES - describes shared caches
- * SD_NUMA - describes NUMA topologies
- *
- * Odd one out, which beside describing the topology has a quirk also
- * prescribes the desired behaviour that goes along with it:
- *
- * SD_ASYM_PACKING - describes SMT quirks
- */
- #define TOPOLOGY_SD_FLAGS \
- (SD_SHARE_CPUCAPACITY | \
- SD_SHARE_PKG_RESOURCES | \
- SD_NUMA | \
- SD_ASYM_PACKING)
- static struct sched_domain *
- sd_init(struct sched_domain_topology_level *tl,
- const struct cpumask *cpu_map,
- struct sched_domain *child, int cpu)
- {
- struct sd_data *sdd = &tl->data;
- struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
- int sd_id, sd_weight, sd_flags = 0;
- struct cpumask *sd_span;
- #ifdef CONFIG_NUMA
- /*
- * Ugly hack to pass state to sd_numa_mask()...
- */
- sched_domains_curr_level = tl->numa_level;
- #endif
- sd_weight = cpumask_weight(tl->mask(cpu));
- if (tl->sd_flags)
- sd_flags = (*tl->sd_flags)();
- if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
- "wrong sd_flags in topology description\n"))
- sd_flags &= TOPOLOGY_SD_FLAGS;
- *sd = (struct sched_domain){
- .min_interval = sd_weight,
- .max_interval = 2*sd_weight,
- .busy_factor = 16,
- .imbalance_pct = 117,
- .cache_nice_tries = 0,
- .flags = 1*SD_BALANCE_NEWIDLE
- | 1*SD_BALANCE_EXEC
- | 1*SD_BALANCE_FORK
- | 0*SD_BALANCE_WAKE
- | 1*SD_WAKE_AFFINE
- | 0*SD_SHARE_CPUCAPACITY
- | 0*SD_SHARE_PKG_RESOURCES
- | 0*SD_SERIALIZE
- | 1*SD_PREFER_SIBLING
- | 0*SD_NUMA
- | sd_flags
- ,
- .last_balance = jiffies,
- .balance_interval = sd_weight,
- .max_newidle_lb_cost = 0,
- .last_decay_max_lb_cost = jiffies,
- .child = child,
- #ifdef CONFIG_SCHED_DEBUG
- .name = tl->name,
- #endif
- };
- sd_span = sched_domain_span(sd);
- cpumask_and(sd_span, cpu_map, tl->mask(cpu));
- sd_id = cpumask_first(sd_span);
- sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
- WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
- (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
- "CPU capacity asymmetry not supported on SMT\n");
- /*
- * Convert topological properties into behaviour.
- */
- /* Don't attempt to spread across CPUs of different capacities. */
- if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
- sd->child->flags &= ~SD_PREFER_SIBLING;
- if (sd->flags & SD_SHARE_CPUCAPACITY) {
- sd->imbalance_pct = 110;
- } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
- sd->imbalance_pct = 117;
- sd->cache_nice_tries = 1;
- #ifdef CONFIG_NUMA
- } else if (sd->flags & SD_NUMA) {
- sd->cache_nice_tries = 2;
- sd->flags &= ~SD_PREFER_SIBLING;
- sd->flags |= SD_SERIALIZE;
- if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
- sd->flags &= ~(SD_BALANCE_EXEC |
- SD_BALANCE_FORK |
- SD_WAKE_AFFINE);
- }
- #endif
- } else {
- sd->cache_nice_tries = 1;
- }
- /*
- * For all levels sharing cache; connect a sched_domain_shared
- * instance.
- */
- if (sd->flags & SD_SHARE_PKG_RESOURCES) {
- sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
- atomic_inc(&sd->shared->ref);
- atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
- }
- sd->private = sdd;
- return sd;
- }
- /*
- * Topology list, bottom-up.
- */
- static struct sched_domain_topology_level default_topology[] = {
- #ifdef CONFIG_SCHED_SMT
- { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
- #endif
- #ifdef CONFIG_SCHED_CLUSTER
- { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
- #endif
- #ifdef CONFIG_SCHED_MC
- { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
- #endif
- { cpu_cpu_mask, SD_INIT_NAME(DIE) },
- { NULL, },
- };
- static struct sched_domain_topology_level *sched_domain_topology =
- default_topology;
- static struct sched_domain_topology_level *sched_domain_topology_saved;
- #define for_each_sd_topology(tl) \
- for (tl = sched_domain_topology; tl->mask; tl++)
- void set_sched_topology(struct sched_domain_topology_level *tl)
- {
- if (WARN_ON_ONCE(sched_smp_initialized))
- return;
- sched_domain_topology = tl;
- sched_domain_topology_saved = NULL;
- }
- #ifdef CONFIG_NUMA
- static const struct cpumask *sd_numa_mask(int cpu)
- {
- return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
- }
- static void sched_numa_warn(const char *str)
- {
- static int done = false;
- int i,j;
- if (done)
- return;
- done = true;
- printk(KERN_WARNING "ERROR: %s\n\n", str);
- for (i = 0; i < nr_node_ids; i++) {
- printk(KERN_WARNING " ");
- for (j = 0; j < nr_node_ids; j++) {
- if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
- printk(KERN_CONT "(%02d) ", node_distance(i,j));
- else
- printk(KERN_CONT " %02d ", node_distance(i,j));
- }
- printk(KERN_CONT "\n");
- }
- printk(KERN_WARNING "\n");
- }
- bool find_numa_distance(int distance)
- {
- bool found = false;
- int i, *distances;
- if (distance == node_distance(0, 0))
- return true;
- rcu_read_lock();
- distances = rcu_dereference(sched_domains_numa_distance);
- if (!distances)
- goto unlock;
- for (i = 0; i < sched_domains_numa_levels; i++) {
- if (distances[i] == distance) {
- found = true;
- break;
- }
- }
- unlock:
- rcu_read_unlock();
- return found;
- }
- #define for_each_cpu_node_but(n, nbut) \
- for_each_node_state(n, N_CPU) \
- if (n == nbut) \
- continue; \
- else
- /*
- * A system can have three types of NUMA topology:
- * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
- * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
- * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
- *
- * The difference between a glueless mesh topology and a backplane
- * topology lies in whether communication between not directly
- * connected nodes goes through intermediary nodes (where programs
- * could run), or through backplane controllers. This affects
- * placement of programs.
- *
- * The type of topology can be discerned with the following tests:
- * - If the maximum distance between any nodes is 1 hop, the system
- * is directly connected.
- * - If for two nodes A and B, located N > 1 hops away from each other,
- * there is an intermediary node C, which is < N hops away from both
- * nodes A and B, the system is a glueless mesh.
- */
- static void init_numa_topology_type(int offline_node)
- {
- int a, b, c, n;
- n = sched_max_numa_distance;
- if (sched_domains_numa_levels <= 2) {
- sched_numa_topology_type = NUMA_DIRECT;
- return;
- }
- for_each_cpu_node_but(a, offline_node) {
- for_each_cpu_node_but(b, offline_node) {
- /* Find two nodes furthest removed from each other. */
- if (node_distance(a, b) < n)
- continue;
- /* Is there an intermediary node between a and b? */
- for_each_cpu_node_but(c, offline_node) {
- if (node_distance(a, c) < n &&
- node_distance(b, c) < n) {
- sched_numa_topology_type =
- NUMA_GLUELESS_MESH;
- return;
- }
- }
- sched_numa_topology_type = NUMA_BACKPLANE;
- return;
- }
- }
- pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
- sched_numa_topology_type = NUMA_DIRECT;
- }
- #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
- void sched_init_numa(int offline_node)
- {
- struct sched_domain_topology_level *tl;
- unsigned long *distance_map;
- int nr_levels = 0;
- int i, j;
- int *distances;
- struct cpumask ***masks;
- /*
- * O(nr_nodes^2) deduplicating selection sort -- in order to find the
- * unique distances in the node_distance() table.
- */
- distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
- if (!distance_map)
- return;
- bitmap_zero(distance_map, NR_DISTANCE_VALUES);
- for_each_cpu_node_but(i, offline_node) {
- for_each_cpu_node_but(j, offline_node) {
- int distance = node_distance(i, j);
- if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
- sched_numa_warn("Invalid distance value range");
- bitmap_free(distance_map);
- return;
- }
- bitmap_set(distance_map, distance, 1);
- }
- }
- /*
- * We can now figure out how many unique distance values there are and
- * allocate memory accordingly.
- */
- nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
- distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
- if (!distances) {
- bitmap_free(distance_map);
- return;
- }
- for (i = 0, j = 0; i < nr_levels; i++, j++) {
- j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
- distances[i] = j;
- }
- rcu_assign_pointer(sched_domains_numa_distance, distances);
- bitmap_free(distance_map);
- /*
- * 'nr_levels' contains the number of unique distances
- *
- * The sched_domains_numa_distance[] array includes the actual distance
- * numbers.
- */
- /*
- * Here, we should temporarily reset sched_domains_numa_levels to 0.
- * If it fails to allocate memory for array sched_domains_numa_masks[][],
- * the array will contain less then 'nr_levels' members. This could be
- * dangerous when we use it to iterate array sched_domains_numa_masks[][]
- * in other functions.
- *
- * We reset it to 'nr_levels' at the end of this function.
- */
- sched_domains_numa_levels = 0;
- masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
- if (!masks)
- return;
- /*
- * Now for each level, construct a mask per node which contains all
- * CPUs of nodes that are that many hops away from us.
- */
- for (i = 0; i < nr_levels; i++) {
- masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
- if (!masks[i])
- return;
- for_each_cpu_node_but(j, offline_node) {
- struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
- int k;
- if (!mask)
- return;
- masks[i][j] = mask;
- for_each_cpu_node_but(k, offline_node) {
- if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
- sched_numa_warn("Node-distance not symmetric");
- if (node_distance(j, k) > sched_domains_numa_distance[i])
- continue;
- cpumask_or(mask, mask, cpumask_of_node(k));
- }
- }
- }
- rcu_assign_pointer(sched_domains_numa_masks, masks);
- /* Compute default topology size */
- for (i = 0; sched_domain_topology[i].mask; i++);
- tl = kzalloc((i + nr_levels + 1) *
- sizeof(struct sched_domain_topology_level), GFP_KERNEL);
- if (!tl)
- return;
- /*
- * Copy the default topology bits..
- */
- for (i = 0; sched_domain_topology[i].mask; i++)
- tl[i] = sched_domain_topology[i];
- /*
- * Add the NUMA identity distance, aka single NODE.
- */
- tl[i++] = (struct sched_domain_topology_level){
- .mask = sd_numa_mask,
- .numa_level = 0,
- SD_INIT_NAME(NODE)
- };
- /*
- * .. and append 'j' levels of NUMA goodness.
- */
- for (j = 1; j < nr_levels; i++, j++) {
- tl[i] = (struct sched_domain_topology_level){
- .mask = sd_numa_mask,
- .sd_flags = cpu_numa_flags,
- .flags = SDTL_OVERLAP,
- .numa_level = j,
- SD_INIT_NAME(NUMA)
- };
- }
- sched_domain_topology_saved = sched_domain_topology;
- sched_domain_topology = tl;
- sched_domains_numa_levels = nr_levels;
- WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
- init_numa_topology_type(offline_node);
- }
- static void sched_reset_numa(void)
- {
- int nr_levels, *distances;
- struct cpumask ***masks;
- nr_levels = sched_domains_numa_levels;
- sched_domains_numa_levels = 0;
- sched_max_numa_distance = 0;
- sched_numa_topology_type = NUMA_DIRECT;
- distances = sched_domains_numa_distance;
- rcu_assign_pointer(sched_domains_numa_distance, NULL);
- masks = sched_domains_numa_masks;
- rcu_assign_pointer(sched_domains_numa_masks, NULL);
- if (distances || masks) {
- int i, j;
- synchronize_rcu();
- kfree(distances);
- for (i = 0; i < nr_levels && masks; i++) {
- if (!masks[i])
- continue;
- for_each_node(j)
- kfree(masks[i][j]);
- kfree(masks[i]);
- }
- kfree(masks);
- }
- if (sched_domain_topology_saved) {
- kfree(sched_domain_topology);
- sched_domain_topology = sched_domain_topology_saved;
- sched_domain_topology_saved = NULL;
- }
- }
- /*
- * Call with hotplug lock held
- */
- void sched_update_numa(int cpu, bool online)
- {
- int node;
- node = cpu_to_node(cpu);
- /*
- * Scheduler NUMA topology is updated when the first CPU of a
- * node is onlined or the last CPU of a node is offlined.
- */
- if (cpumask_weight(cpumask_of_node(node)) != 1)
- return;
- sched_reset_numa();
- sched_init_numa(online ? NUMA_NO_NODE : node);
- }
- void sched_domains_numa_masks_set(unsigned int cpu)
- {
- int node = cpu_to_node(cpu);
- int i, j;
- for (i = 0; i < sched_domains_numa_levels; i++) {
- for (j = 0; j < nr_node_ids; j++) {
- if (!node_state(j, N_CPU))
- continue;
- /* Set ourselves in the remote node's masks */
- if (node_distance(j, node) <= sched_domains_numa_distance[i])
- cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
- }
- }
- }
- void sched_domains_numa_masks_clear(unsigned int cpu)
- {
- int i, j;
- for (i = 0; i < sched_domains_numa_levels; i++) {
- for (j = 0; j < nr_node_ids; j++) {
- if (sched_domains_numa_masks[i][j])
- cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
- }
- }
- }
- /*
- * sched_numa_find_closest() - given the NUMA topology, find the cpu
- * closest to @cpu from @cpumask.
- * cpumask: cpumask to find a cpu from
- * cpu: cpu to be close to
- *
- * returns: cpu, or nr_cpu_ids when nothing found.
- */
- int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
- {
- int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
- struct cpumask ***masks;
- rcu_read_lock();
- masks = rcu_dereference(sched_domains_numa_masks);
- if (!masks)
- goto unlock;
- for (i = 0; i < sched_domains_numa_levels; i++) {
- if (!masks[i][j])
- break;
- cpu = cpumask_any_and(cpus, masks[i][j]);
- if (cpu < nr_cpu_ids) {
- found = cpu;
- break;
- }
- }
- unlock:
- rcu_read_unlock();
- return found;
- }
- #endif /* CONFIG_NUMA */
- static int __sdt_alloc(const struct cpumask *cpu_map)
- {
- struct sched_domain_topology_level *tl;
- int j;
- for_each_sd_topology(tl) {
- struct sd_data *sdd = &tl->data;
- sdd->sd = alloc_percpu(struct sched_domain *);
- if (!sdd->sd)
- return -ENOMEM;
- sdd->sds = alloc_percpu(struct sched_domain_shared *);
- if (!sdd->sds)
- return -ENOMEM;
- sdd->sg = alloc_percpu(struct sched_group *);
- if (!sdd->sg)
- return -ENOMEM;
- sdd->sgc = alloc_percpu(struct sched_group_capacity *);
- if (!sdd->sgc)
- return -ENOMEM;
- for_each_cpu(j, cpu_map) {
- struct sched_domain *sd;
- struct sched_domain_shared *sds;
- struct sched_group *sg;
- struct sched_group_capacity *sgc;
- sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(j));
- if (!sd)
- return -ENOMEM;
- *per_cpu_ptr(sdd->sd, j) = sd;
- sds = kzalloc_node(sizeof(struct sched_domain_shared),
- GFP_KERNEL, cpu_to_node(j));
- if (!sds)
- return -ENOMEM;
- *per_cpu_ptr(sdd->sds, j) = sds;
- sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(j));
- if (!sg)
- return -ENOMEM;
- sg->next = sg;
- *per_cpu_ptr(sdd->sg, j) = sg;
- sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(j));
- if (!sgc)
- return -ENOMEM;
- #ifdef CONFIG_SCHED_DEBUG
- sgc->id = j;
- #endif
- *per_cpu_ptr(sdd->sgc, j) = sgc;
- }
- }
- return 0;
- }
- static void __sdt_free(const struct cpumask *cpu_map)
- {
- struct sched_domain_topology_level *tl;
- int j;
- for_each_sd_topology(tl) {
- struct sd_data *sdd = &tl->data;
- for_each_cpu(j, cpu_map) {
- struct sched_domain *sd;
- if (sdd->sd) {
- sd = *per_cpu_ptr(sdd->sd, j);
- if (sd && (sd->flags & SD_OVERLAP))
- free_sched_groups(sd->groups, 0);
- kfree(*per_cpu_ptr(sdd->sd, j));
- }
- if (sdd->sds)
- kfree(*per_cpu_ptr(sdd->sds, j));
- if (sdd->sg)
- kfree(*per_cpu_ptr(sdd->sg, j));
- if (sdd->sgc)
- kfree(*per_cpu_ptr(sdd->sgc, j));
- }
- free_percpu(sdd->sd);
- sdd->sd = NULL;
- free_percpu(sdd->sds);
- sdd->sds = NULL;
- free_percpu(sdd->sg);
- sdd->sg = NULL;
- free_percpu(sdd->sgc);
- sdd->sgc = NULL;
- }
- }
- static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
- const struct cpumask *cpu_map, struct sched_domain_attr *attr,
- struct sched_domain *child, int cpu)
- {
- struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
- if (child) {
- sd->level = child->level + 1;
- sched_domain_level_max = max(sched_domain_level_max, sd->level);
- child->parent = sd;
- if (!cpumask_subset(sched_domain_span(child),
- sched_domain_span(sd))) {
- pr_err("BUG: arch topology borken\n");
- #ifdef CONFIG_SCHED_DEBUG
- pr_err(" the %s domain not a subset of the %s domain\n",
- child->name, sd->name);
- #endif
- /* Fixup, ensure @sd has at least @child CPUs. */
- cpumask_or(sched_domain_span(sd),
- sched_domain_span(sd),
- sched_domain_span(child));
- }
- }
- set_domain_attribute(sd, attr);
- return sd;
- }
- /*
- * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
- * any two given CPUs at this (non-NUMA) topology level.
- */
- static bool topology_span_sane(struct sched_domain_topology_level *tl,
- const struct cpumask *cpu_map, int cpu)
- {
- int i;
- /* NUMA levels are allowed to overlap */
- if (tl->flags & SDTL_OVERLAP)
- return true;
- /*
- * Non-NUMA levels cannot partially overlap - they must be either
- * completely equal or completely disjoint. Otherwise we can end up
- * breaking the sched_group lists - i.e. a later get_group() pass
- * breaks the linking done for an earlier span.
- */
- for_each_cpu(i, cpu_map) {
- if (i == cpu)
- continue;
- /*
- * We should 'and' all those masks with 'cpu_map' to exactly
- * match the topology we're about to build, but that can only
- * remove CPUs, which only lessens our ability to detect
- * overlaps
- */
- if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
- cpumask_intersects(tl->mask(cpu), tl->mask(i)))
- return false;
- }
- return true;
- }
- /*
- * Build sched domains for a given set of CPUs and attach the sched domains
- * to the individual CPUs
- */
- static int
- build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
- {
- enum s_alloc alloc_state = sa_none;
- struct sched_domain *sd;
- struct s_data d;
- struct rq *rq = NULL;
- int i, ret = -ENOMEM;
- bool has_asym = false;
- if (WARN_ON(cpumask_empty(cpu_map)))
- goto error;
- alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
- if (alloc_state != sa_rootdomain)
- goto error;
- /* Set up domains for CPUs specified by the cpu_map: */
- for_each_cpu(i, cpu_map) {
- struct sched_domain_topology_level *tl;
- sd = NULL;
- for_each_sd_topology(tl) {
- if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
- goto error;
- sd = build_sched_domain(tl, cpu_map, attr, sd, i);
- has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
- if (tl == sched_domain_topology)
- *per_cpu_ptr(d.sd, i) = sd;
- if (tl->flags & SDTL_OVERLAP)
- sd->flags |= SD_OVERLAP;
- if (cpumask_equal(cpu_map, sched_domain_span(sd)))
- break;
- }
- }
- /* Build the groups for the domains */
- for_each_cpu(i, cpu_map) {
- for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
- sd->span_weight = cpumask_weight(sched_domain_span(sd));
- if (sd->flags & SD_OVERLAP) {
- if (build_overlap_sched_groups(sd, i))
- goto error;
- } else {
- if (build_sched_groups(sd, i))
- goto error;
- }
- }
- }
- /*
- * Calculate an allowed NUMA imbalance such that LLCs do not get
- * imbalanced.
- */
- for_each_cpu(i, cpu_map) {
- unsigned int imb = 0;
- unsigned int imb_span = 1;
- for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
- struct sched_domain *child = sd->child;
- if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
- (child->flags & SD_SHARE_PKG_RESOURCES)) {
- struct sched_domain __rcu *top_p;
- unsigned int nr_llcs;
- /*
- * For a single LLC per node, allow an
- * imbalance up to 12.5% of the node. This is
- * arbitrary cutoff based two factors -- SMT and
- * memory channels. For SMT-2, the intent is to
- * avoid premature sharing of HT resources but
- * SMT-4 or SMT-8 *may* benefit from a different
- * cutoff. For memory channels, this is a very
- * rough estimate of how many channels may be
- * active and is based on recent CPUs with
- * many cores.
- *
- * For multiple LLCs, allow an imbalance
- * until multiple tasks would share an LLC
- * on one node while LLCs on another node
- * remain idle. This assumes that there are
- * enough logical CPUs per LLC to avoid SMT
- * factors and that there is a correlation
- * between LLCs and memory channels.
- */
- nr_llcs = sd->span_weight / child->span_weight;
- if (nr_llcs == 1)
- imb = sd->span_weight >> 3;
- else
- imb = nr_llcs;
- imb = max(1U, imb);
- sd->imb_numa_nr = imb;
- /* Set span based on the first NUMA domain. */
- top_p = sd->parent;
- while (top_p && !(top_p->flags & SD_NUMA)) {
- top_p = top_p->parent;
- }
- imb_span = top_p ? top_p->span_weight : sd->span_weight;
- } else {
- int factor = max(1U, (sd->span_weight / imb_span));
- sd->imb_numa_nr = imb * factor;
- }
- }
- }
- /* Calculate CPU capacity for physical packages and nodes */
- for (i = nr_cpumask_bits-1; i >= 0; i--) {
- if (!cpumask_test_cpu(i, cpu_map))
- continue;
- for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
- claim_allocations(i, sd);
- init_sched_groups_capacity(i, sd);
- }
- }
- /* Attach the domains */
- rcu_read_lock();
- for_each_cpu(i, cpu_map) {
- rq = cpu_rq(i);
- sd = *per_cpu_ptr(d.sd, i);
- /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
- if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
- WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
- cpu_attach_domain(sd, d.rd, i);
- }
- rcu_read_unlock();
- if (has_asym)
- static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
- if (rq && sched_debug_verbose) {
- pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
- cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
- }
- trace_android_vh_build_sched_domains(has_asym);
- ret = 0;
- error:
- __free_domain_allocs(&d, alloc_state, cpu_map);
- return ret;
- }
- /* Current sched domains: */
- static cpumask_var_t *doms_cur;
- /* Number of sched domains in 'doms_cur': */
- static int ndoms_cur;
- /* Attributes of custom domains in 'doms_cur' */
- static struct sched_domain_attr *dattr_cur;
- /*
- * Special case: If a kmalloc() of a doms_cur partition (array of
- * cpumask) fails, then fallback to a single sched domain,
- * as determined by the single cpumask fallback_doms.
- */
- static cpumask_var_t fallback_doms;
- /*
- * arch_update_cpu_topology lets virtualized architectures update the
- * CPU core maps. It is supposed to return 1 if the topology changed
- * or 0 if it stayed the same.
- */
- int __weak arch_update_cpu_topology(void)
- {
- return 0;
- }
- cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
- {
- int i;
- cpumask_var_t *doms;
- doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
- if (!doms)
- return NULL;
- for (i = 0; i < ndoms; i++) {
- if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
- free_sched_domains(doms, i);
- return NULL;
- }
- }
- return doms;
- }
- void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
- {
- unsigned int i;
- for (i = 0; i < ndoms; i++)
- free_cpumask_var(doms[i]);
- kfree(doms);
- }
- /*
- * Set up scheduler domains and groups. For now this just excludes isolated
- * CPUs, but could be used to exclude other special cases in the future.
- */
- int sched_init_domains(const struct cpumask *cpu_map)
- {
- int err;
- zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
- zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
- zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
- arch_update_cpu_topology();
- asym_cpu_capacity_scan();
- ndoms_cur = 1;
- doms_cur = alloc_sched_domains(ndoms_cur);
- if (!doms_cur)
- doms_cur = &fallback_doms;
- cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
- err = build_sched_domains(doms_cur[0], NULL);
- return err;
- }
- /*
- * Detach sched domains from a group of CPUs specified in cpu_map
- * These CPUs will now be attached to the NULL domain
- */
- static void detach_destroy_domains(const struct cpumask *cpu_map)
- {
- unsigned int cpu = cpumask_any(cpu_map);
- int i;
- if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
- static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
- rcu_read_lock();
- for_each_cpu(i, cpu_map)
- cpu_attach_domain(NULL, &def_root_domain, i);
- rcu_read_unlock();
- }
- /* handle null as "default" */
- static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
- struct sched_domain_attr *new, int idx_new)
- {
- struct sched_domain_attr tmp;
- /* Fast path: */
- if (!new && !cur)
- return 1;
- tmp = SD_ATTR_INIT;
- return !memcmp(cur ? (cur + idx_cur) : &tmp,
- new ? (new + idx_new) : &tmp,
- sizeof(struct sched_domain_attr));
- }
- /*
- * Partition sched domains as specified by the 'ndoms_new'
- * cpumasks in the array doms_new[] of cpumasks. This compares
- * doms_new[] to the current sched domain partitioning, doms_cur[].
- * It destroys each deleted domain and builds each new domain.
- *
- * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
- * The masks don't intersect (don't overlap.) We should setup one
- * sched domain for each mask. CPUs not in any of the cpumasks will
- * not be load balanced. If the same cpumask appears both in the
- * current 'doms_cur' domains and in the new 'doms_new', we can leave
- * it as it is.
- *
- * The passed in 'doms_new' should be allocated using
- * alloc_sched_domains. This routine takes ownership of it and will
- * free_sched_domains it when done with it. If the caller failed the
- * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
- * and partition_sched_domains() will fallback to the single partition
- * 'fallback_doms', it also forces the domains to be rebuilt.
- *
- * If doms_new == NULL it will be replaced with cpu_online_mask.
- * ndoms_new == 0 is a special case for destroying existing domains,
- * and it will not create the default domain.
- *
- * Call with hotplug lock and sched_domains_mutex held
- */
- void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
- struct sched_domain_attr *dattr_new)
- {
- bool __maybe_unused has_eas = false;
- int i, j, n;
- int new_topology;
- lockdep_assert_held(&sched_domains_mutex);
- /* Let the architecture update CPU core mappings: */
- new_topology = arch_update_cpu_topology();
- /* Trigger rebuilding CPU capacity asymmetry data */
- if (new_topology)
- asym_cpu_capacity_scan();
- if (!doms_new) {
- WARN_ON_ONCE(dattr_new);
- n = 0;
- doms_new = alloc_sched_domains(1);
- if (doms_new) {
- n = 1;
- cpumask_and(doms_new[0], cpu_active_mask,
- housekeeping_cpumask(HK_TYPE_DOMAIN));
- }
- } else {
- n = ndoms_new;
- }
- /* Destroy deleted domains: */
- for (i = 0; i < ndoms_cur; i++) {
- for (j = 0; j < n && !new_topology; j++) {
- if (cpumask_equal(doms_cur[i], doms_new[j]) &&
- dattrs_equal(dattr_cur, i, dattr_new, j)) {
- struct root_domain *rd;
- /*
- * This domain won't be destroyed and as such
- * its dl_bw->total_bw needs to be cleared. It
- * will be recomputed in function
- * update_tasks_root_domain().
- */
- rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
- dl_clear_root_domain(rd);
- goto match1;
- }
- }
- /* No match - a current sched domain not in new doms_new[] */
- detach_destroy_domains(doms_cur[i]);
- match1:
- ;
- }
- n = ndoms_cur;
- if (!doms_new) {
- n = 0;
- doms_new = &fallback_doms;
- cpumask_and(doms_new[0], cpu_active_mask,
- housekeeping_cpumask(HK_TYPE_DOMAIN));
- }
- /* Build new domains: */
- for (i = 0; i < ndoms_new; i++) {
- for (j = 0; j < n && !new_topology; j++) {
- if (cpumask_equal(doms_new[i], doms_cur[j]) &&
- dattrs_equal(dattr_new, i, dattr_cur, j))
- goto match2;
- }
- /* No match - add a new doms_new */
- build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
- match2:
- ;
- }
- #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
- /* Build perf. domains: */
- for (i = 0; i < ndoms_new; i++) {
- for (j = 0; j < n && !sched_energy_update; j++) {
- if (cpumask_equal(doms_new[i], doms_cur[j]) &&
- cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
- has_eas = true;
- goto match3;
- }
- }
- /* No match - add perf. domains for a new rd */
- has_eas |= build_perf_domains(doms_new[i]);
- match3:
- ;
- }
- sched_energy_set(has_eas);
- #endif
- /* Remember the new sched domains: */
- if (doms_cur != &fallback_doms)
- free_sched_domains(doms_cur, ndoms_cur);
- kfree(dattr_cur);
- doms_cur = doms_new;
- dattr_cur = dattr_new;
- ndoms_cur = ndoms_new;
- update_sched_domain_debugfs();
- }
- /*
- * Call with hotplug lock held
- */
- void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
- struct sched_domain_attr *dattr_new)
- {
- mutex_lock(&sched_domains_mutex);
- partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
- mutex_unlock(&sched_domains_mutex);
- }
|