fair.c 336 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  4. *
  5. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <[email protected]>
  6. *
  7. * Interactivity improvements by Mike Galbraith
  8. * (C) 2007 Mike Galbraith <[email protected]>
  9. *
  10. * Various enhancements by Dmitry Adamushko.
  11. * (C) 2007 Dmitry Adamushko <[email protected]>
  12. *
  13. * Group scheduling enhancements by Srivatsa Vaddagiri
  14. * Copyright IBM Corporation, 2007
  15. * Author: Srivatsa Vaddagiri <[email protected]>
  16. *
  17. * Scaled math optimizations by Thomas Gleixner
  18. * Copyright (C) 2007, Thomas Gleixner <[email protected]>
  19. *
  20. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  21. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  22. */
  23. #include <linux/energy_model.h>
  24. #include <linux/mmap_lock.h>
  25. #include <linux/hugetlb_inline.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/mm_api.h>
  28. #include <linux/highmem.h>
  29. #include <linux/spinlock_api.h>
  30. #include <linux/cpumask_api.h>
  31. #include <linux/lockdep_api.h>
  32. #include <linux/softirq.h>
  33. #include <linux/refcount_api.h>
  34. #include <linux/topology.h>
  35. #include <linux/sched/clock.h>
  36. #include <linux/sched/cond_resched.h>
  37. #include <linux/sched/cputime.h>
  38. #include <linux/sched/isolation.h>
  39. #include <linux/sched/nohz.h>
  40. #include <linux/cpuidle.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/memory-tiers.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/mutex_api.h>
  45. #include <linux/profile.h>
  46. #include <linux/psi.h>
  47. #include <linux/ratelimit.h>
  48. #include <linux/task_work.h>
  49. #include <asm/switch_to.h>
  50. #include <linux/sched/cond_resched.h>
  51. #include "sched.h"
  52. #include "stats.h"
  53. #include "autogroup.h"
  54. #include <trace/hooks/sched.h>
  55. EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_runtime);
  56. /*
  57. * Targeted preemption latency for CPU-bound tasks:
  58. *
  59. * NOTE: this latency value is not the same as the concept of
  60. * 'timeslice length' - timeslices in CFS are of variable length
  61. * and have no persistent notion like in traditional, time-slice
  62. * based scheduling concepts.
  63. *
  64. * (to see the precise effective timeslice length of your workload,
  65. * run vmstat and monitor the context-switches (cs) field)
  66. *
  67. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  68. */
  69. unsigned int sysctl_sched_latency = 6000000ULL;
  70. EXPORT_SYMBOL_GPL(sysctl_sched_latency);
  71. static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  72. /*
  73. * The initial- and re-scaling of tunables is configurable
  74. *
  75. * Options are:
  76. *
  77. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  78. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  79. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  80. *
  81. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  82. */
  83. unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
  84. /*
  85. * Minimal preemption granularity for CPU-bound tasks:
  86. *
  87. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  88. */
  89. unsigned int sysctl_sched_min_granularity = 750000ULL;
  90. EXPORT_SYMBOL_GPL(sysctl_sched_min_granularity);
  91. static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  92. /*
  93. * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
  94. * Applies only when SCHED_IDLE tasks compete with normal tasks.
  95. *
  96. * (default: 0.75 msec)
  97. */
  98. unsigned int sysctl_sched_idle_min_granularity = 750000ULL;
  99. EXPORT_SYMBOL_GPL(sysctl_sched_idle_min_granularity);
  100. /*
  101. * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
  102. */
  103. static unsigned int sched_nr_latency = 8;
  104. /*
  105. * After fork, child runs first. If set to 0 (default) then
  106. * parent will (try to) run first.
  107. */
  108. unsigned int sysctl_sched_child_runs_first __read_mostly;
  109. /*
  110. * SCHED_OTHER wake-up granularity.
  111. *
  112. * This option delays the preemption effects of decoupled workloads
  113. * and reduces their over-scheduling. Synchronous workloads will still
  114. * have immediate wakeup/sleep latencies.
  115. *
  116. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  117. */
  118. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  119. static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  120. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  121. int sched_thermal_decay_shift;
  122. static int __init setup_sched_thermal_decay_shift(char *str)
  123. {
  124. int _shift = 0;
  125. if (kstrtoint(str, 0, &_shift))
  126. pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
  127. sched_thermal_decay_shift = clamp(_shift, 0, 10);
  128. return 1;
  129. }
  130. __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
  131. #ifdef CONFIG_SMP
  132. /*
  133. * For asym packing, by default the lower numbered CPU has higher priority.
  134. */
  135. int __weak arch_asym_cpu_priority(int cpu)
  136. {
  137. return -cpu;
  138. }
  139. /*
  140. * The margin used when comparing utilization with CPU capacity.
  141. *
  142. * (default: ~20%)
  143. */
  144. #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
  145. /*
  146. * The margin used when comparing CPU capacities.
  147. * is 'cap1' noticeably greater than 'cap2'
  148. *
  149. * (default: ~5%)
  150. */
  151. #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
  152. #endif
  153. #ifdef CONFIG_CFS_BANDWIDTH
  154. /*
  155. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  156. * each time a cfs_rq requests quota.
  157. *
  158. * Note: in the case that the slice exceeds the runtime remaining (either due
  159. * to consumption or the quota being specified to be smaller than the slice)
  160. * we will always only issue the remaining available time.
  161. *
  162. * (default: 5 msec, units: microseconds)
  163. */
  164. static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  165. #endif
  166. #ifdef CONFIG_SYSCTL
  167. static struct ctl_table sched_fair_sysctls[] = {
  168. {
  169. .procname = "sched_child_runs_first",
  170. .data = &sysctl_sched_child_runs_first,
  171. .maxlen = sizeof(unsigned int),
  172. .mode = 0644,
  173. .proc_handler = proc_dointvec,
  174. },
  175. #ifdef CONFIG_CFS_BANDWIDTH
  176. {
  177. .procname = "sched_cfs_bandwidth_slice_us",
  178. .data = &sysctl_sched_cfs_bandwidth_slice,
  179. .maxlen = sizeof(unsigned int),
  180. .mode = 0644,
  181. .proc_handler = proc_dointvec_minmax,
  182. .extra1 = SYSCTL_ONE,
  183. },
  184. #endif
  185. {}
  186. };
  187. static int __init sched_fair_sysctl_init(void)
  188. {
  189. register_sysctl_init("kernel", sched_fair_sysctls);
  190. return 0;
  191. }
  192. late_initcall(sched_fair_sysctl_init);
  193. #endif
  194. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  195. {
  196. lw->weight += inc;
  197. lw->inv_weight = 0;
  198. }
  199. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  200. {
  201. lw->weight -= dec;
  202. lw->inv_weight = 0;
  203. }
  204. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  205. {
  206. lw->weight = w;
  207. lw->inv_weight = 0;
  208. }
  209. /*
  210. * Increase the granularity value when there are more CPUs,
  211. * because with more CPUs the 'effective latency' as visible
  212. * to users decreases. But the relationship is not linear,
  213. * so pick a second-best guess by going with the log2 of the
  214. * number of CPUs.
  215. *
  216. * This idea comes from the SD scheduler of Con Kolivas:
  217. */
  218. static unsigned int get_update_sysctl_factor(void)
  219. {
  220. unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
  221. unsigned int factor;
  222. switch (sysctl_sched_tunable_scaling) {
  223. case SCHED_TUNABLESCALING_NONE:
  224. factor = 1;
  225. break;
  226. case SCHED_TUNABLESCALING_LINEAR:
  227. factor = cpus;
  228. break;
  229. case SCHED_TUNABLESCALING_LOG:
  230. default:
  231. factor = 1 + ilog2(cpus);
  232. break;
  233. }
  234. return factor;
  235. }
  236. static void update_sysctl(void)
  237. {
  238. unsigned int factor = get_update_sysctl_factor();
  239. #define SET_SYSCTL(name) \
  240. (sysctl_##name = (factor) * normalized_sysctl_##name)
  241. SET_SYSCTL(sched_min_granularity);
  242. SET_SYSCTL(sched_latency);
  243. SET_SYSCTL(sched_wakeup_granularity);
  244. #undef SET_SYSCTL
  245. }
  246. void __init sched_init_granularity(void)
  247. {
  248. update_sysctl();
  249. }
  250. #define WMULT_CONST (~0U)
  251. #define WMULT_SHIFT 32
  252. static void __update_inv_weight(struct load_weight *lw)
  253. {
  254. unsigned long w;
  255. if (likely(lw->inv_weight))
  256. return;
  257. w = scale_load_down(lw->weight);
  258. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  259. lw->inv_weight = 1;
  260. else if (unlikely(!w))
  261. lw->inv_weight = WMULT_CONST;
  262. else
  263. lw->inv_weight = WMULT_CONST / w;
  264. }
  265. /*
  266. * delta_exec * weight / lw.weight
  267. * OR
  268. * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
  269. *
  270. * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
  271. * we're guaranteed shift stays positive because inv_weight is guaranteed to
  272. * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
  273. *
  274. * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
  275. * weight/lw.weight <= 1, and therefore our shift will also be positive.
  276. */
  277. static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
  278. {
  279. u64 fact = scale_load_down(weight);
  280. u32 fact_hi = (u32)(fact >> 32);
  281. int shift = WMULT_SHIFT;
  282. int fs;
  283. __update_inv_weight(lw);
  284. if (unlikely(fact_hi)) {
  285. fs = fls(fact_hi);
  286. shift -= fs;
  287. fact >>= fs;
  288. }
  289. fact = mul_u32_u32(fact, lw->inv_weight);
  290. fact_hi = (u32)(fact >> 32);
  291. if (fact_hi) {
  292. fs = fls(fact_hi);
  293. shift -= fs;
  294. fact >>= fs;
  295. }
  296. return mul_u64_u32_shr(delta_exec, fact, shift);
  297. }
  298. const struct sched_class fair_sched_class;
  299. /**************************************************************
  300. * CFS operations on generic schedulable entities:
  301. */
  302. #ifdef CONFIG_FAIR_GROUP_SCHED
  303. /* Walk up scheduling entities hierarchy */
  304. #define for_each_sched_entity(se) \
  305. for (; se; se = se->parent)
  306. static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  307. {
  308. struct rq *rq = rq_of(cfs_rq);
  309. int cpu = cpu_of(rq);
  310. if (cfs_rq->on_list)
  311. return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
  312. cfs_rq->on_list = 1;
  313. /*
  314. * Ensure we either appear before our parent (if already
  315. * enqueued) or force our parent to appear after us when it is
  316. * enqueued. The fact that we always enqueue bottom-up
  317. * reduces this to two cases and a special case for the root
  318. * cfs_rq. Furthermore, it also means that we will always reset
  319. * tmp_alone_branch either when the branch is connected
  320. * to a tree or when we reach the top of the tree
  321. */
  322. if (cfs_rq->tg->parent &&
  323. cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
  324. /*
  325. * If parent is already on the list, we add the child
  326. * just before. Thanks to circular linked property of
  327. * the list, this means to put the child at the tail
  328. * of the list that starts by parent.
  329. */
  330. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  331. &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
  332. /*
  333. * The branch is now connected to its tree so we can
  334. * reset tmp_alone_branch to the beginning of the
  335. * list.
  336. */
  337. rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
  338. return true;
  339. }
  340. if (!cfs_rq->tg->parent) {
  341. /*
  342. * cfs rq without parent should be put
  343. * at the tail of the list.
  344. */
  345. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  346. &rq->leaf_cfs_rq_list);
  347. /*
  348. * We have reach the top of a tree so we can reset
  349. * tmp_alone_branch to the beginning of the list.
  350. */
  351. rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
  352. return true;
  353. }
  354. /*
  355. * The parent has not already been added so we want to
  356. * make sure that it will be put after us.
  357. * tmp_alone_branch points to the begin of the branch
  358. * where we will add parent.
  359. */
  360. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
  361. /*
  362. * update tmp_alone_branch to points to the new begin
  363. * of the branch
  364. */
  365. rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
  366. return false;
  367. }
  368. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  369. {
  370. if (cfs_rq->on_list) {
  371. struct rq *rq = rq_of(cfs_rq);
  372. /*
  373. * With cfs_rq being unthrottled/throttled during an enqueue,
  374. * it can happen the tmp_alone_branch points the a leaf that
  375. * we finally want to del. In this case, tmp_alone_branch moves
  376. * to the prev element but it will point to rq->leaf_cfs_rq_list
  377. * at the end of the enqueue.
  378. */
  379. if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
  380. rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
  381. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  382. cfs_rq->on_list = 0;
  383. }
  384. }
  385. static inline void assert_list_leaf_cfs_rq(struct rq *rq)
  386. {
  387. SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
  388. }
  389. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  390. #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
  391. list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
  392. leaf_cfs_rq_list)
  393. /* Do the two (enqueued) entities belong to the same group ? */
  394. static inline struct cfs_rq *
  395. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  396. {
  397. if (se->cfs_rq == pse->cfs_rq)
  398. return se->cfs_rq;
  399. return NULL;
  400. }
  401. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  402. {
  403. return se->parent;
  404. }
  405. static void
  406. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  407. {
  408. int se_depth, pse_depth;
  409. /*
  410. * preemption test can be made between sibling entities who are in the
  411. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  412. * both tasks until we find their ancestors who are siblings of common
  413. * parent.
  414. */
  415. /* First walk up until both entities are at same depth */
  416. se_depth = (*se)->depth;
  417. pse_depth = (*pse)->depth;
  418. while (se_depth > pse_depth) {
  419. se_depth--;
  420. *se = parent_entity(*se);
  421. }
  422. while (pse_depth > se_depth) {
  423. pse_depth--;
  424. *pse = parent_entity(*pse);
  425. }
  426. while (!is_same_group(*se, *pse)) {
  427. *se = parent_entity(*se);
  428. *pse = parent_entity(*pse);
  429. }
  430. }
  431. static int tg_is_idle(struct task_group *tg)
  432. {
  433. return tg->idle > 0;
  434. }
  435. static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
  436. {
  437. return cfs_rq->idle > 0;
  438. }
  439. static int se_is_idle(struct sched_entity *se)
  440. {
  441. if (entity_is_task(se))
  442. return task_has_idle_policy(task_of(se));
  443. return cfs_rq_is_idle(group_cfs_rq(se));
  444. }
  445. #else /* !CONFIG_FAIR_GROUP_SCHED */
  446. #define for_each_sched_entity(se) \
  447. for (; se; se = NULL)
  448. static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  449. {
  450. return true;
  451. }
  452. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  453. {
  454. }
  455. static inline void assert_list_leaf_cfs_rq(struct rq *rq)
  456. {
  457. }
  458. #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
  459. for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
  460. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  461. {
  462. return NULL;
  463. }
  464. static inline void
  465. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  466. {
  467. }
  468. static inline int tg_is_idle(struct task_group *tg)
  469. {
  470. return 0;
  471. }
  472. static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
  473. {
  474. return 0;
  475. }
  476. static int se_is_idle(struct sched_entity *se)
  477. {
  478. return 0;
  479. }
  480. #endif /* CONFIG_FAIR_GROUP_SCHED */
  481. static __always_inline
  482. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
  483. /**************************************************************
  484. * Scheduling class tree data structure manipulation methods:
  485. */
  486. static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
  487. {
  488. s64 delta = (s64)(vruntime - max_vruntime);
  489. if (delta > 0)
  490. max_vruntime = vruntime;
  491. return max_vruntime;
  492. }
  493. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  494. {
  495. s64 delta = (s64)(vruntime - min_vruntime);
  496. if (delta < 0)
  497. min_vruntime = vruntime;
  498. return min_vruntime;
  499. }
  500. static inline bool entity_before(struct sched_entity *a,
  501. struct sched_entity *b)
  502. {
  503. return (s64)(a->vruntime - b->vruntime) < 0;
  504. }
  505. #define __node_2_se(node) \
  506. rb_entry((node), struct sched_entity, run_node)
  507. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  508. {
  509. struct sched_entity *curr = cfs_rq->curr;
  510. struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
  511. u64 vruntime = cfs_rq->min_vruntime;
  512. if (curr) {
  513. if (curr->on_rq)
  514. vruntime = curr->vruntime;
  515. else
  516. curr = NULL;
  517. }
  518. if (leftmost) { /* non-empty tree */
  519. struct sched_entity *se = __node_2_se(leftmost);
  520. if (!curr)
  521. vruntime = se->vruntime;
  522. else
  523. vruntime = min_vruntime(vruntime, se->vruntime);
  524. }
  525. /* ensure we never gain time by being placed backwards. */
  526. u64_u32_store(cfs_rq->min_vruntime,
  527. max_vruntime(cfs_rq->min_vruntime, vruntime));
  528. }
  529. static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
  530. {
  531. return entity_before(__node_2_se(a), __node_2_se(b));
  532. }
  533. /*
  534. * Enqueue an entity into the rb-tree:
  535. */
  536. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  537. {
  538. trace_android_rvh_enqueue_entity(cfs_rq, se);
  539. rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
  540. }
  541. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  542. {
  543. trace_android_rvh_dequeue_entity(cfs_rq, se);
  544. rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
  545. }
  546. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  547. {
  548. struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
  549. if (!left)
  550. return NULL;
  551. return __node_2_se(left);
  552. }
  553. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  554. {
  555. struct rb_node *next = rb_next(&se->run_node);
  556. if (!next)
  557. return NULL;
  558. return __node_2_se(next);
  559. }
  560. #ifdef CONFIG_SCHED_DEBUG
  561. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  562. {
  563. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
  564. if (!last)
  565. return NULL;
  566. return __node_2_se(last);
  567. }
  568. /**************************************************************
  569. * Scheduling class statistics methods:
  570. */
  571. int sched_update_scaling(void)
  572. {
  573. unsigned int factor = get_update_sysctl_factor();
  574. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  575. sysctl_sched_min_granularity);
  576. #define WRT_SYSCTL(name) \
  577. (normalized_sysctl_##name = sysctl_##name / (factor))
  578. WRT_SYSCTL(sched_min_granularity);
  579. WRT_SYSCTL(sched_latency);
  580. WRT_SYSCTL(sched_wakeup_granularity);
  581. #undef WRT_SYSCTL
  582. return 0;
  583. }
  584. #endif
  585. /*
  586. * delta /= w
  587. */
  588. static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
  589. {
  590. if (unlikely(se->load.weight != NICE_0_LOAD))
  591. delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
  592. return delta;
  593. }
  594. /*
  595. * The idea is to set a period in which each task runs once.
  596. *
  597. * When there are too many tasks (sched_nr_latency) we have to stretch
  598. * this period because otherwise the slices get too small.
  599. *
  600. * p = (nr <= nl) ? l : l*nr/nl
  601. */
  602. static u64 __sched_period(unsigned long nr_running)
  603. {
  604. if (unlikely(nr_running > sched_nr_latency))
  605. return nr_running * sysctl_sched_min_granularity;
  606. else
  607. return sysctl_sched_latency;
  608. }
  609. static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
  610. /*
  611. * We calculate the wall-time slice from the period by taking a part
  612. * proportional to the weight.
  613. *
  614. * s = p*P[w/rw]
  615. */
  616. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  617. {
  618. unsigned int nr_running = cfs_rq->nr_running;
  619. struct sched_entity *init_se = se;
  620. unsigned int min_gran;
  621. u64 slice;
  622. if (sched_feat(ALT_PERIOD))
  623. nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
  624. slice = __sched_period(nr_running + !se->on_rq);
  625. for_each_sched_entity(se) {
  626. struct load_weight *load;
  627. struct load_weight lw;
  628. struct cfs_rq *qcfs_rq;
  629. qcfs_rq = cfs_rq_of(se);
  630. load = &qcfs_rq->load;
  631. if (unlikely(!se->on_rq)) {
  632. lw = qcfs_rq->load;
  633. update_load_add(&lw, se->load.weight);
  634. load = &lw;
  635. }
  636. slice = __calc_delta(slice, se->load.weight, load);
  637. }
  638. if (sched_feat(BASE_SLICE)) {
  639. if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
  640. min_gran = sysctl_sched_idle_min_granularity;
  641. else
  642. min_gran = sysctl_sched_min_granularity;
  643. slice = max_t(u64, slice, min_gran);
  644. }
  645. return slice;
  646. }
  647. /*
  648. * We calculate the vruntime slice of a to-be-inserted task.
  649. *
  650. * vs = s/w
  651. */
  652. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  653. {
  654. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  655. }
  656. #include "pelt.h"
  657. #ifdef CONFIG_SMP
  658. static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
  659. static unsigned long task_h_load(struct task_struct *p);
  660. static unsigned long capacity_of(int cpu);
  661. /* Give new sched_entity start runnable values to heavy its load in infant time */
  662. void init_entity_runnable_average(struct sched_entity *se)
  663. {
  664. struct sched_avg *sa = &se->avg;
  665. memset(sa, 0, sizeof(*sa));
  666. /*
  667. * Tasks are initialized with full load to be seen as heavy tasks until
  668. * they get a chance to stabilize to their real load level.
  669. * Group entities are initialized with zero load to reflect the fact that
  670. * nothing has been attached to the task group yet.
  671. */
  672. if (entity_is_task(se))
  673. sa->load_avg = scale_load_down(se->load.weight);
  674. /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
  675. }
  676. /*
  677. * With new tasks being created, their initial util_avgs are extrapolated
  678. * based on the cfs_rq's current util_avg:
  679. *
  680. * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
  681. *
  682. * However, in many cases, the above util_avg does not give a desired
  683. * value. Moreover, the sum of the util_avgs may be divergent, such
  684. * as when the series is a harmonic series.
  685. *
  686. * To solve this problem, we also cap the util_avg of successive tasks to
  687. * only 1/2 of the left utilization budget:
  688. *
  689. * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
  690. *
  691. * where n denotes the nth task and cpu_scale the CPU capacity.
  692. *
  693. * For example, for a CPU with 1024 of capacity, a simplest series from
  694. * the beginning would be like:
  695. *
  696. * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
  697. * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
  698. *
  699. * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
  700. * if util_avg > util_avg_cap.
  701. */
  702. void post_init_entity_util_avg(struct task_struct *p)
  703. {
  704. struct sched_entity *se = &p->se;
  705. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  706. struct sched_avg *sa = &se->avg;
  707. long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
  708. long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
  709. if (p->sched_class != &fair_sched_class) {
  710. /*
  711. * For !fair tasks do:
  712. *
  713. update_cfs_rq_load_avg(now, cfs_rq);
  714. attach_entity_load_avg(cfs_rq, se);
  715. switched_from_fair(rq, p);
  716. *
  717. * such that the next switched_to_fair() has the
  718. * expected state.
  719. */
  720. se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
  721. return;
  722. }
  723. if (cap > 0) {
  724. if (cfs_rq->avg.util_avg != 0) {
  725. sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
  726. sa->util_avg /= (cfs_rq->avg.load_avg + 1);
  727. if (sa->util_avg > cap)
  728. sa->util_avg = cap;
  729. } else {
  730. sa->util_avg = cap;
  731. }
  732. }
  733. sa->runnable_avg = sa->util_avg;
  734. /* Hook before this se's util is attached to cfs_rq's util */
  735. trace_android_rvh_post_init_entity_util_avg(se);
  736. }
  737. #else /* !CONFIG_SMP */
  738. void init_entity_runnable_average(struct sched_entity *se)
  739. {
  740. }
  741. void post_init_entity_util_avg(struct task_struct *p)
  742. {
  743. }
  744. static void update_tg_load_avg(struct cfs_rq *cfs_rq)
  745. {
  746. }
  747. #endif /* CONFIG_SMP */
  748. /*
  749. * Update the current task's runtime statistics.
  750. */
  751. static void update_curr(struct cfs_rq *cfs_rq)
  752. {
  753. struct sched_entity *curr = cfs_rq->curr;
  754. u64 now = rq_clock_task(rq_of(cfs_rq));
  755. u64 delta_exec;
  756. if (unlikely(!curr))
  757. return;
  758. delta_exec = now - curr->exec_start;
  759. if (unlikely((s64)delta_exec <= 0))
  760. return;
  761. curr->exec_start = now;
  762. if (schedstat_enabled()) {
  763. struct sched_statistics *stats;
  764. stats = __schedstats_from_se(curr);
  765. __schedstat_set(stats->exec_max,
  766. max(delta_exec, stats->exec_max));
  767. }
  768. curr->sum_exec_runtime += delta_exec;
  769. schedstat_add(cfs_rq->exec_clock, delta_exec);
  770. curr->vruntime += calc_delta_fair(delta_exec, curr);
  771. update_min_vruntime(cfs_rq);
  772. if (entity_is_task(curr)) {
  773. struct task_struct *curtask = task_of(curr);
  774. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  775. cgroup_account_cputime(curtask, delta_exec);
  776. account_group_exec_runtime(curtask, delta_exec);
  777. }
  778. account_cfs_rq_runtime(cfs_rq, delta_exec);
  779. }
  780. static void update_curr_fair(struct rq *rq)
  781. {
  782. update_curr(cfs_rq_of(&rq->curr->se));
  783. }
  784. static inline void
  785. update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
  786. {
  787. struct sched_statistics *stats;
  788. struct task_struct *p = NULL;
  789. if (!schedstat_enabled())
  790. return;
  791. stats = __schedstats_from_se(se);
  792. if (entity_is_task(se))
  793. p = task_of(se);
  794. __update_stats_wait_start(rq_of(cfs_rq), p, stats);
  795. }
  796. static inline void
  797. update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
  798. {
  799. struct sched_statistics *stats;
  800. struct task_struct *p = NULL;
  801. if (!schedstat_enabled())
  802. return;
  803. stats = __schedstats_from_se(se);
  804. /*
  805. * When the sched_schedstat changes from 0 to 1, some sched se
  806. * maybe already in the runqueue, the se->statistics.wait_start
  807. * will be 0.So it will let the delta wrong. We need to avoid this
  808. * scenario.
  809. */
  810. if (unlikely(!schedstat_val(stats->wait_start)))
  811. return;
  812. if (entity_is_task(se))
  813. p = task_of(se);
  814. __update_stats_wait_end(rq_of(cfs_rq), p, stats);
  815. }
  816. static inline void
  817. update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
  818. {
  819. struct sched_statistics *stats;
  820. struct task_struct *tsk = NULL;
  821. if (!schedstat_enabled())
  822. return;
  823. stats = __schedstats_from_se(se);
  824. if (entity_is_task(se))
  825. tsk = task_of(se);
  826. __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
  827. }
  828. /*
  829. * Task is being enqueued - update stats:
  830. */
  831. static inline void
  832. update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  833. {
  834. if (!schedstat_enabled())
  835. return;
  836. /*
  837. * Are we enqueueing a waiting task? (for current tasks
  838. * a dequeue/enqueue event is a NOP)
  839. */
  840. if (se != cfs_rq->curr)
  841. update_stats_wait_start_fair(cfs_rq, se);
  842. if (flags & ENQUEUE_WAKEUP)
  843. update_stats_enqueue_sleeper_fair(cfs_rq, se);
  844. }
  845. static inline void
  846. update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  847. {
  848. if (!schedstat_enabled())
  849. return;
  850. /*
  851. * Mark the end of the wait period if dequeueing a
  852. * waiting task:
  853. */
  854. if (se != cfs_rq->curr)
  855. update_stats_wait_end_fair(cfs_rq, se);
  856. if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
  857. struct task_struct *tsk = task_of(se);
  858. unsigned int state;
  859. /* XXX racy against TTWU */
  860. state = READ_ONCE(tsk->__state);
  861. if (state & TASK_INTERRUPTIBLE)
  862. __schedstat_set(tsk->stats.sleep_start,
  863. rq_clock(rq_of(cfs_rq)));
  864. if (state & TASK_UNINTERRUPTIBLE)
  865. __schedstat_set(tsk->stats.block_start,
  866. rq_clock(rq_of(cfs_rq)));
  867. }
  868. }
  869. /*
  870. * We are picking a new current task - update its stats:
  871. */
  872. static inline void
  873. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  874. {
  875. /*
  876. * We are starting a new run period:
  877. */
  878. se->exec_start = rq_clock_task(rq_of(cfs_rq));
  879. }
  880. /**************************************************
  881. * Scheduling class queueing methods:
  882. */
  883. #ifdef CONFIG_NUMA
  884. #define NUMA_IMBALANCE_MIN 2
  885. static inline long
  886. adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
  887. {
  888. /*
  889. * Allow a NUMA imbalance if busy CPUs is less than the maximum
  890. * threshold. Above this threshold, individual tasks may be contending
  891. * for both memory bandwidth and any shared HT resources. This is an
  892. * approximation as the number of running tasks may not be related to
  893. * the number of busy CPUs due to sched_setaffinity.
  894. */
  895. if (dst_running > imb_numa_nr)
  896. return imbalance;
  897. /*
  898. * Allow a small imbalance based on a simple pair of communicating
  899. * tasks that remain local when the destination is lightly loaded.
  900. */
  901. if (imbalance <= NUMA_IMBALANCE_MIN)
  902. return 0;
  903. return imbalance;
  904. }
  905. #endif /* CONFIG_NUMA */
  906. #ifdef CONFIG_NUMA_BALANCING
  907. /*
  908. * Approximate time to scan a full NUMA task in ms. The task scan period is
  909. * calculated based on the tasks virtual memory size and
  910. * numa_balancing_scan_size.
  911. */
  912. unsigned int sysctl_numa_balancing_scan_period_min = 1000;
  913. unsigned int sysctl_numa_balancing_scan_period_max = 60000;
  914. /* Portion of address space to scan in MB */
  915. unsigned int sysctl_numa_balancing_scan_size = 256;
  916. /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
  917. unsigned int sysctl_numa_balancing_scan_delay = 1000;
  918. /* The page with hint page fault latency < threshold in ms is considered hot */
  919. unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
  920. /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
  921. unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
  922. struct numa_group {
  923. refcount_t refcount;
  924. spinlock_t lock; /* nr_tasks, tasks */
  925. int nr_tasks;
  926. pid_t gid;
  927. int active_nodes;
  928. struct rcu_head rcu;
  929. unsigned long total_faults;
  930. unsigned long max_faults_cpu;
  931. /*
  932. * faults[] array is split into two regions: faults_mem and faults_cpu.
  933. *
  934. * Faults_cpu is used to decide whether memory should move
  935. * towards the CPU. As a consequence, these stats are weighted
  936. * more by CPU use than by memory faults.
  937. */
  938. unsigned long faults[];
  939. };
  940. /*
  941. * For functions that can be called in multiple contexts that permit reading
  942. * ->numa_group (see struct task_struct for locking rules).
  943. */
  944. static struct numa_group *deref_task_numa_group(struct task_struct *p)
  945. {
  946. return rcu_dereference_check(p->numa_group, p == current ||
  947. (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
  948. }
  949. static struct numa_group *deref_curr_numa_group(struct task_struct *p)
  950. {
  951. return rcu_dereference_protected(p->numa_group, p == current);
  952. }
  953. static inline unsigned long group_faults_priv(struct numa_group *ng);
  954. static inline unsigned long group_faults_shared(struct numa_group *ng);
  955. static unsigned int task_nr_scan_windows(struct task_struct *p)
  956. {
  957. unsigned long rss = 0;
  958. unsigned long nr_scan_pages;
  959. /*
  960. * Calculations based on RSS as non-present and empty pages are skipped
  961. * by the PTE scanner and NUMA hinting faults should be trapped based
  962. * on resident pages
  963. */
  964. nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
  965. rss = get_mm_rss(p->mm);
  966. if (!rss)
  967. rss = nr_scan_pages;
  968. rss = round_up(rss, nr_scan_pages);
  969. return rss / nr_scan_pages;
  970. }
  971. /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
  972. #define MAX_SCAN_WINDOW 2560
  973. static unsigned int task_scan_min(struct task_struct *p)
  974. {
  975. unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
  976. unsigned int scan, floor;
  977. unsigned int windows = 1;
  978. if (scan_size < MAX_SCAN_WINDOW)
  979. windows = MAX_SCAN_WINDOW / scan_size;
  980. floor = 1000 / windows;
  981. scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
  982. return max_t(unsigned int, floor, scan);
  983. }
  984. static unsigned int task_scan_start(struct task_struct *p)
  985. {
  986. unsigned long smin = task_scan_min(p);
  987. unsigned long period = smin;
  988. struct numa_group *ng;
  989. /* Scale the maximum scan period with the amount of shared memory. */
  990. rcu_read_lock();
  991. ng = rcu_dereference(p->numa_group);
  992. if (ng) {
  993. unsigned long shared = group_faults_shared(ng);
  994. unsigned long private = group_faults_priv(ng);
  995. period *= refcount_read(&ng->refcount);
  996. period *= shared + 1;
  997. period /= private + shared + 1;
  998. }
  999. rcu_read_unlock();
  1000. return max(smin, period);
  1001. }
  1002. static unsigned int task_scan_max(struct task_struct *p)
  1003. {
  1004. unsigned long smin = task_scan_min(p);
  1005. unsigned long smax;
  1006. struct numa_group *ng;
  1007. /* Watch for min being lower than max due to floor calculations */
  1008. smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
  1009. /* Scale the maximum scan period with the amount of shared memory. */
  1010. ng = deref_curr_numa_group(p);
  1011. if (ng) {
  1012. unsigned long shared = group_faults_shared(ng);
  1013. unsigned long private = group_faults_priv(ng);
  1014. unsigned long period = smax;
  1015. period *= refcount_read(&ng->refcount);
  1016. period *= shared + 1;
  1017. period /= private + shared + 1;
  1018. smax = max(smax, period);
  1019. }
  1020. return max(smin, smax);
  1021. }
  1022. static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  1023. {
  1024. rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
  1025. rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
  1026. }
  1027. static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  1028. {
  1029. rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
  1030. rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
  1031. }
  1032. /* Shared or private faults. */
  1033. #define NR_NUMA_HINT_FAULT_TYPES 2
  1034. /* Memory and CPU locality */
  1035. #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
  1036. /* Averaged statistics, and temporary buffers. */
  1037. #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
  1038. pid_t task_numa_group_id(struct task_struct *p)
  1039. {
  1040. struct numa_group *ng;
  1041. pid_t gid = 0;
  1042. rcu_read_lock();
  1043. ng = rcu_dereference(p->numa_group);
  1044. if (ng)
  1045. gid = ng->gid;
  1046. rcu_read_unlock();
  1047. return gid;
  1048. }
  1049. /*
  1050. * The averaged statistics, shared & private, memory & CPU,
  1051. * occupy the first half of the array. The second half of the
  1052. * array is for current counters, which are averaged into the
  1053. * first set by task_numa_placement.
  1054. */
  1055. static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
  1056. {
  1057. return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
  1058. }
  1059. static inline unsigned long task_faults(struct task_struct *p, int nid)
  1060. {
  1061. if (!p->numa_faults)
  1062. return 0;
  1063. return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
  1064. p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
  1065. }
  1066. static inline unsigned long group_faults(struct task_struct *p, int nid)
  1067. {
  1068. struct numa_group *ng = deref_task_numa_group(p);
  1069. if (!ng)
  1070. return 0;
  1071. return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
  1072. ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
  1073. }
  1074. static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
  1075. {
  1076. return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
  1077. group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
  1078. }
  1079. static inline unsigned long group_faults_priv(struct numa_group *ng)
  1080. {
  1081. unsigned long faults = 0;
  1082. int node;
  1083. for_each_online_node(node) {
  1084. faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
  1085. }
  1086. return faults;
  1087. }
  1088. static inline unsigned long group_faults_shared(struct numa_group *ng)
  1089. {
  1090. unsigned long faults = 0;
  1091. int node;
  1092. for_each_online_node(node) {
  1093. faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
  1094. }
  1095. return faults;
  1096. }
  1097. /*
  1098. * A node triggering more than 1/3 as many NUMA faults as the maximum is
  1099. * considered part of a numa group's pseudo-interleaving set. Migrations
  1100. * between these nodes are slowed down, to allow things to settle down.
  1101. */
  1102. #define ACTIVE_NODE_FRACTION 3
  1103. static bool numa_is_active_node(int nid, struct numa_group *ng)
  1104. {
  1105. return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
  1106. }
  1107. /* Handle placement on systems where not all nodes are directly connected. */
  1108. static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
  1109. int lim_dist, bool task)
  1110. {
  1111. unsigned long score = 0;
  1112. int node, max_dist;
  1113. /*
  1114. * All nodes are directly connected, and the same distance
  1115. * from each other. No need for fancy placement algorithms.
  1116. */
  1117. if (sched_numa_topology_type == NUMA_DIRECT)
  1118. return 0;
  1119. /* sched_max_numa_distance may be changed in parallel. */
  1120. max_dist = READ_ONCE(sched_max_numa_distance);
  1121. /*
  1122. * This code is called for each node, introducing N^2 complexity,
  1123. * which should be ok given the number of nodes rarely exceeds 8.
  1124. */
  1125. for_each_online_node(node) {
  1126. unsigned long faults;
  1127. int dist = node_distance(nid, node);
  1128. /*
  1129. * The furthest away nodes in the system are not interesting
  1130. * for placement; nid was already counted.
  1131. */
  1132. if (dist >= max_dist || node == nid)
  1133. continue;
  1134. /*
  1135. * On systems with a backplane NUMA topology, compare groups
  1136. * of nodes, and move tasks towards the group with the most
  1137. * memory accesses. When comparing two nodes at distance
  1138. * "hoplimit", only nodes closer by than "hoplimit" are part
  1139. * of each group. Skip other nodes.
  1140. */
  1141. if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
  1142. continue;
  1143. /* Add up the faults from nearby nodes. */
  1144. if (task)
  1145. faults = task_faults(p, node);
  1146. else
  1147. faults = group_faults(p, node);
  1148. /*
  1149. * On systems with a glueless mesh NUMA topology, there are
  1150. * no fixed "groups of nodes". Instead, nodes that are not
  1151. * directly connected bounce traffic through intermediate
  1152. * nodes; a numa_group can occupy any set of nodes.
  1153. * The further away a node is, the less the faults count.
  1154. * This seems to result in good task placement.
  1155. */
  1156. if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
  1157. faults *= (max_dist - dist);
  1158. faults /= (max_dist - LOCAL_DISTANCE);
  1159. }
  1160. score += faults;
  1161. }
  1162. return score;
  1163. }
  1164. /*
  1165. * These return the fraction of accesses done by a particular task, or
  1166. * task group, on a particular numa node. The group weight is given a
  1167. * larger multiplier, in order to group tasks together that are almost
  1168. * evenly spread out between numa nodes.
  1169. */
  1170. static inline unsigned long task_weight(struct task_struct *p, int nid,
  1171. int dist)
  1172. {
  1173. unsigned long faults, total_faults;
  1174. if (!p->numa_faults)
  1175. return 0;
  1176. total_faults = p->total_numa_faults;
  1177. if (!total_faults)
  1178. return 0;
  1179. faults = task_faults(p, nid);
  1180. faults += score_nearby_nodes(p, nid, dist, true);
  1181. return 1000 * faults / total_faults;
  1182. }
  1183. static inline unsigned long group_weight(struct task_struct *p, int nid,
  1184. int dist)
  1185. {
  1186. struct numa_group *ng = deref_task_numa_group(p);
  1187. unsigned long faults, total_faults;
  1188. if (!ng)
  1189. return 0;
  1190. total_faults = ng->total_faults;
  1191. if (!total_faults)
  1192. return 0;
  1193. faults = group_faults(p, nid);
  1194. faults += score_nearby_nodes(p, nid, dist, false);
  1195. return 1000 * faults / total_faults;
  1196. }
  1197. /*
  1198. * If memory tiering mode is enabled, cpupid of slow memory page is
  1199. * used to record scan time instead of CPU and PID. When tiering mode
  1200. * is disabled at run time, the scan time (in cpupid) will be
  1201. * interpreted as CPU and PID. So CPU needs to be checked to avoid to
  1202. * access out of array bound.
  1203. */
  1204. static inline bool cpupid_valid(int cpupid)
  1205. {
  1206. return cpupid_to_cpu(cpupid) < nr_cpu_ids;
  1207. }
  1208. /*
  1209. * For memory tiering mode, if there are enough free pages (more than
  1210. * enough watermark defined here) in fast memory node, to take full
  1211. * advantage of fast memory capacity, all recently accessed slow
  1212. * memory pages will be migrated to fast memory node without
  1213. * considering hot threshold.
  1214. */
  1215. static bool pgdat_free_space_enough(struct pglist_data *pgdat)
  1216. {
  1217. int z;
  1218. unsigned long enough_wmark;
  1219. enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
  1220. pgdat->node_present_pages >> 4);
  1221. for (z = pgdat->nr_zones - 1; z >= 0; z--) {
  1222. struct zone *zone = pgdat->node_zones + z;
  1223. if (!populated_zone(zone))
  1224. continue;
  1225. if (zone_watermark_ok(zone, 0,
  1226. wmark_pages(zone, WMARK_PROMO) + enough_wmark,
  1227. ZONE_MOVABLE, 0))
  1228. return true;
  1229. }
  1230. return false;
  1231. }
  1232. /*
  1233. * For memory tiering mode, when page tables are scanned, the scan
  1234. * time will be recorded in struct page in addition to make page
  1235. * PROT_NONE for slow memory page. So when the page is accessed, in
  1236. * hint page fault handler, the hint page fault latency is calculated
  1237. * via,
  1238. *
  1239. * hint page fault latency = hint page fault time - scan time
  1240. *
  1241. * The smaller the hint page fault latency, the higher the possibility
  1242. * for the page to be hot.
  1243. */
  1244. static int numa_hint_fault_latency(struct page *page)
  1245. {
  1246. int last_time, time;
  1247. time = jiffies_to_msecs(jiffies);
  1248. last_time = xchg_page_access_time(page, time);
  1249. return (time - last_time) & PAGE_ACCESS_TIME_MASK;
  1250. }
  1251. /*
  1252. * For memory tiering mode, too high promotion/demotion throughput may
  1253. * hurt application latency. So we provide a mechanism to rate limit
  1254. * the number of pages that are tried to be promoted.
  1255. */
  1256. static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
  1257. unsigned long rate_limit, int nr)
  1258. {
  1259. unsigned long nr_cand;
  1260. unsigned int now, start;
  1261. now = jiffies_to_msecs(jiffies);
  1262. mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
  1263. nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
  1264. start = pgdat->nbp_rl_start;
  1265. if (now - start > MSEC_PER_SEC &&
  1266. cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
  1267. pgdat->nbp_rl_nr_cand = nr_cand;
  1268. if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
  1269. return true;
  1270. return false;
  1271. }
  1272. #define NUMA_MIGRATION_ADJUST_STEPS 16
  1273. static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
  1274. unsigned long rate_limit,
  1275. unsigned int ref_th)
  1276. {
  1277. unsigned int now, start, th_period, unit_th, th;
  1278. unsigned long nr_cand, ref_cand, diff_cand;
  1279. now = jiffies_to_msecs(jiffies);
  1280. th_period = sysctl_numa_balancing_scan_period_max;
  1281. start = pgdat->nbp_th_start;
  1282. if (now - start > th_period &&
  1283. cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
  1284. ref_cand = rate_limit *
  1285. sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
  1286. nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
  1287. diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
  1288. unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
  1289. th = pgdat->nbp_threshold ? : ref_th;
  1290. if (diff_cand > ref_cand * 11 / 10)
  1291. th = max(th - unit_th, unit_th);
  1292. else if (diff_cand < ref_cand * 9 / 10)
  1293. th = min(th + unit_th, ref_th * 2);
  1294. pgdat->nbp_th_nr_cand = nr_cand;
  1295. pgdat->nbp_threshold = th;
  1296. }
  1297. }
  1298. bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
  1299. int src_nid, int dst_cpu)
  1300. {
  1301. struct numa_group *ng = deref_curr_numa_group(p);
  1302. int dst_nid = cpu_to_node(dst_cpu);
  1303. int last_cpupid, this_cpupid;
  1304. /*
  1305. * The pages in slow memory node should be migrated according
  1306. * to hot/cold instead of private/shared.
  1307. */
  1308. if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
  1309. !node_is_toptier(src_nid)) {
  1310. struct pglist_data *pgdat;
  1311. unsigned long rate_limit;
  1312. unsigned int latency, th, def_th;
  1313. pgdat = NODE_DATA(dst_nid);
  1314. if (pgdat_free_space_enough(pgdat)) {
  1315. /* workload changed, reset hot threshold */
  1316. pgdat->nbp_threshold = 0;
  1317. return true;
  1318. }
  1319. def_th = sysctl_numa_balancing_hot_threshold;
  1320. rate_limit = sysctl_numa_balancing_promote_rate_limit << \
  1321. (20 - PAGE_SHIFT);
  1322. numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
  1323. th = pgdat->nbp_threshold ? : def_th;
  1324. latency = numa_hint_fault_latency(page);
  1325. if (latency >= th)
  1326. return false;
  1327. return !numa_promotion_rate_limit(pgdat, rate_limit,
  1328. thp_nr_pages(page));
  1329. }
  1330. this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
  1331. last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
  1332. if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
  1333. !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
  1334. return false;
  1335. /*
  1336. * Allow first faults or private faults to migrate immediately early in
  1337. * the lifetime of a task. The magic number 4 is based on waiting for
  1338. * two full passes of the "multi-stage node selection" test that is
  1339. * executed below.
  1340. */
  1341. if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
  1342. (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
  1343. return true;
  1344. /*
  1345. * Multi-stage node selection is used in conjunction with a periodic
  1346. * migration fault to build a temporal task<->page relation. By using
  1347. * a two-stage filter we remove short/unlikely relations.
  1348. *
  1349. * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
  1350. * a task's usage of a particular page (n_p) per total usage of this
  1351. * page (n_t) (in a given time-span) to a probability.
  1352. *
  1353. * Our periodic faults will sample this probability and getting the
  1354. * same result twice in a row, given these samples are fully
  1355. * independent, is then given by P(n)^2, provided our sample period
  1356. * is sufficiently short compared to the usage pattern.
  1357. *
  1358. * This quadric squishes small probabilities, making it less likely we
  1359. * act on an unlikely task<->page relation.
  1360. */
  1361. if (!cpupid_pid_unset(last_cpupid) &&
  1362. cpupid_to_nid(last_cpupid) != dst_nid)
  1363. return false;
  1364. /* Always allow migrate on private faults */
  1365. if (cpupid_match_pid(p, last_cpupid))
  1366. return true;
  1367. /* A shared fault, but p->numa_group has not been set up yet. */
  1368. if (!ng)
  1369. return true;
  1370. /*
  1371. * Destination node is much more heavily used than the source
  1372. * node? Allow migration.
  1373. */
  1374. if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
  1375. ACTIVE_NODE_FRACTION)
  1376. return true;
  1377. /*
  1378. * Distribute memory according to CPU & memory use on each node,
  1379. * with 3/4 hysteresis to avoid unnecessary memory migrations:
  1380. *
  1381. * faults_cpu(dst) 3 faults_cpu(src)
  1382. * --------------- * - > ---------------
  1383. * faults_mem(dst) 4 faults_mem(src)
  1384. */
  1385. return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
  1386. group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
  1387. }
  1388. /*
  1389. * 'numa_type' describes the node at the moment of load balancing.
  1390. */
  1391. enum numa_type {
  1392. /* The node has spare capacity that can be used to run more tasks. */
  1393. node_has_spare = 0,
  1394. /*
  1395. * The node is fully used and the tasks don't compete for more CPU
  1396. * cycles. Nevertheless, some tasks might wait before running.
  1397. */
  1398. node_fully_busy,
  1399. /*
  1400. * The node is overloaded and can't provide expected CPU cycles to all
  1401. * tasks.
  1402. */
  1403. node_overloaded
  1404. };
  1405. /* Cached statistics for all CPUs within a node */
  1406. struct numa_stats {
  1407. unsigned long load;
  1408. unsigned long runnable;
  1409. unsigned long util;
  1410. /* Total compute capacity of CPUs on a node */
  1411. unsigned long compute_capacity;
  1412. unsigned int nr_running;
  1413. unsigned int weight;
  1414. enum numa_type node_type;
  1415. int idle_cpu;
  1416. };
  1417. static inline bool is_core_idle(int cpu)
  1418. {
  1419. #ifdef CONFIG_SCHED_SMT
  1420. int sibling;
  1421. for_each_cpu(sibling, cpu_smt_mask(cpu)) {
  1422. if (cpu == sibling)
  1423. continue;
  1424. if (!idle_cpu(sibling))
  1425. return false;
  1426. }
  1427. #endif
  1428. return true;
  1429. }
  1430. struct task_numa_env {
  1431. struct task_struct *p;
  1432. int src_cpu, src_nid;
  1433. int dst_cpu, dst_nid;
  1434. int imb_numa_nr;
  1435. struct numa_stats src_stats, dst_stats;
  1436. int imbalance_pct;
  1437. int dist;
  1438. struct task_struct *best_task;
  1439. long best_imp;
  1440. int best_cpu;
  1441. };
  1442. static unsigned long cpu_load(struct rq *rq);
  1443. static unsigned long cpu_runnable(struct rq *rq);
  1444. static inline enum
  1445. numa_type numa_classify(unsigned int imbalance_pct,
  1446. struct numa_stats *ns)
  1447. {
  1448. if ((ns->nr_running > ns->weight) &&
  1449. (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
  1450. ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
  1451. return node_overloaded;
  1452. if ((ns->nr_running < ns->weight) ||
  1453. (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
  1454. ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
  1455. return node_has_spare;
  1456. return node_fully_busy;
  1457. }
  1458. #ifdef CONFIG_SCHED_SMT
  1459. /* Forward declarations of select_idle_sibling helpers */
  1460. static inline bool test_idle_cores(int cpu);
  1461. static inline int numa_idle_core(int idle_core, int cpu)
  1462. {
  1463. if (!static_branch_likely(&sched_smt_present) ||
  1464. idle_core >= 0 || !test_idle_cores(cpu))
  1465. return idle_core;
  1466. /*
  1467. * Prefer cores instead of packing HT siblings
  1468. * and triggering future load balancing.
  1469. */
  1470. if (is_core_idle(cpu))
  1471. idle_core = cpu;
  1472. return idle_core;
  1473. }
  1474. #else
  1475. static inline int numa_idle_core(int idle_core, int cpu)
  1476. {
  1477. return idle_core;
  1478. }
  1479. #endif
  1480. /*
  1481. * Gather all necessary information to make NUMA balancing placement
  1482. * decisions that are compatible with standard load balancer. This
  1483. * borrows code and logic from update_sg_lb_stats but sharing a
  1484. * common implementation is impractical.
  1485. */
  1486. static void update_numa_stats(struct task_numa_env *env,
  1487. struct numa_stats *ns, int nid,
  1488. bool find_idle)
  1489. {
  1490. int cpu, idle_core = -1;
  1491. memset(ns, 0, sizeof(*ns));
  1492. ns->idle_cpu = -1;
  1493. rcu_read_lock();
  1494. for_each_cpu(cpu, cpumask_of_node(nid)) {
  1495. struct rq *rq = cpu_rq(cpu);
  1496. ns->load += cpu_load(rq);
  1497. ns->runnable += cpu_runnable(rq);
  1498. ns->util += cpu_util_cfs(cpu);
  1499. ns->nr_running += rq->cfs.h_nr_running;
  1500. ns->compute_capacity += capacity_of(cpu);
  1501. if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
  1502. if (READ_ONCE(rq->numa_migrate_on) ||
  1503. !cpumask_test_cpu(cpu, env->p->cpus_ptr))
  1504. continue;
  1505. if (ns->idle_cpu == -1)
  1506. ns->idle_cpu = cpu;
  1507. idle_core = numa_idle_core(idle_core, cpu);
  1508. }
  1509. }
  1510. rcu_read_unlock();
  1511. ns->weight = cpumask_weight(cpumask_of_node(nid));
  1512. ns->node_type = numa_classify(env->imbalance_pct, ns);
  1513. if (idle_core >= 0)
  1514. ns->idle_cpu = idle_core;
  1515. }
  1516. static void task_numa_assign(struct task_numa_env *env,
  1517. struct task_struct *p, long imp)
  1518. {
  1519. struct rq *rq = cpu_rq(env->dst_cpu);
  1520. /* Check if run-queue part of active NUMA balance. */
  1521. if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
  1522. int cpu;
  1523. int start = env->dst_cpu;
  1524. /* Find alternative idle CPU. */
  1525. for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
  1526. if (cpu == env->best_cpu || !idle_cpu(cpu) ||
  1527. !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
  1528. continue;
  1529. }
  1530. env->dst_cpu = cpu;
  1531. rq = cpu_rq(env->dst_cpu);
  1532. if (!xchg(&rq->numa_migrate_on, 1))
  1533. goto assign;
  1534. }
  1535. /* Failed to find an alternative idle CPU */
  1536. return;
  1537. }
  1538. assign:
  1539. /*
  1540. * Clear previous best_cpu/rq numa-migrate flag, since task now
  1541. * found a better CPU to move/swap.
  1542. */
  1543. if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
  1544. rq = cpu_rq(env->best_cpu);
  1545. WRITE_ONCE(rq->numa_migrate_on, 0);
  1546. }
  1547. if (env->best_task)
  1548. put_task_struct(env->best_task);
  1549. if (p)
  1550. get_task_struct(p);
  1551. env->best_task = p;
  1552. env->best_imp = imp;
  1553. env->best_cpu = env->dst_cpu;
  1554. }
  1555. static bool load_too_imbalanced(long src_load, long dst_load,
  1556. struct task_numa_env *env)
  1557. {
  1558. long imb, old_imb;
  1559. long orig_src_load, orig_dst_load;
  1560. long src_capacity, dst_capacity;
  1561. /*
  1562. * The load is corrected for the CPU capacity available on each node.
  1563. *
  1564. * src_load dst_load
  1565. * ------------ vs ---------
  1566. * src_capacity dst_capacity
  1567. */
  1568. src_capacity = env->src_stats.compute_capacity;
  1569. dst_capacity = env->dst_stats.compute_capacity;
  1570. imb = abs(dst_load * src_capacity - src_load * dst_capacity);
  1571. orig_src_load = env->src_stats.load;
  1572. orig_dst_load = env->dst_stats.load;
  1573. old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
  1574. /* Would this change make things worse? */
  1575. return (imb > old_imb);
  1576. }
  1577. /*
  1578. * Maximum NUMA importance can be 1998 (2*999);
  1579. * SMALLIMP @ 30 would be close to 1998/64.
  1580. * Used to deter task migration.
  1581. */
  1582. #define SMALLIMP 30
  1583. /*
  1584. * This checks if the overall compute and NUMA accesses of the system would
  1585. * be improved if the source tasks was migrated to the target dst_cpu taking
  1586. * into account that it might be best if task running on the dst_cpu should
  1587. * be exchanged with the source task
  1588. */
  1589. static bool task_numa_compare(struct task_numa_env *env,
  1590. long taskimp, long groupimp, bool maymove)
  1591. {
  1592. struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
  1593. struct rq *dst_rq = cpu_rq(env->dst_cpu);
  1594. long imp = p_ng ? groupimp : taskimp;
  1595. struct task_struct *cur;
  1596. long src_load, dst_load;
  1597. int dist = env->dist;
  1598. long moveimp = imp;
  1599. long load;
  1600. bool stopsearch = false;
  1601. if (READ_ONCE(dst_rq->numa_migrate_on))
  1602. return false;
  1603. rcu_read_lock();
  1604. cur = rcu_dereference(dst_rq->curr);
  1605. if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
  1606. cur = NULL;
  1607. /*
  1608. * Because we have preemption enabled we can get migrated around and
  1609. * end try selecting ourselves (current == env->p) as a swap candidate.
  1610. */
  1611. if (cur == env->p) {
  1612. stopsearch = true;
  1613. goto unlock;
  1614. }
  1615. if (!cur) {
  1616. if (maymove && moveimp >= env->best_imp)
  1617. goto assign;
  1618. else
  1619. goto unlock;
  1620. }
  1621. /* Skip this swap candidate if cannot move to the source cpu. */
  1622. if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
  1623. goto unlock;
  1624. /*
  1625. * Skip this swap candidate if it is not moving to its preferred
  1626. * node and the best task is.
  1627. */
  1628. if (env->best_task &&
  1629. env->best_task->numa_preferred_nid == env->src_nid &&
  1630. cur->numa_preferred_nid != env->src_nid) {
  1631. goto unlock;
  1632. }
  1633. /*
  1634. * "imp" is the fault differential for the source task between the
  1635. * source and destination node. Calculate the total differential for
  1636. * the source task and potential destination task. The more negative
  1637. * the value is, the more remote accesses that would be expected to
  1638. * be incurred if the tasks were swapped.
  1639. *
  1640. * If dst and source tasks are in the same NUMA group, or not
  1641. * in any group then look only at task weights.
  1642. */
  1643. cur_ng = rcu_dereference(cur->numa_group);
  1644. if (cur_ng == p_ng) {
  1645. /*
  1646. * Do not swap within a group or between tasks that have
  1647. * no group if there is spare capacity. Swapping does
  1648. * not address the load imbalance and helps one task at
  1649. * the cost of punishing another.
  1650. */
  1651. if (env->dst_stats.node_type == node_has_spare)
  1652. goto unlock;
  1653. imp = taskimp + task_weight(cur, env->src_nid, dist) -
  1654. task_weight(cur, env->dst_nid, dist);
  1655. /*
  1656. * Add some hysteresis to prevent swapping the
  1657. * tasks within a group over tiny differences.
  1658. */
  1659. if (cur_ng)
  1660. imp -= imp / 16;
  1661. } else {
  1662. /*
  1663. * Compare the group weights. If a task is all by itself
  1664. * (not part of a group), use the task weight instead.
  1665. */
  1666. if (cur_ng && p_ng)
  1667. imp += group_weight(cur, env->src_nid, dist) -
  1668. group_weight(cur, env->dst_nid, dist);
  1669. else
  1670. imp += task_weight(cur, env->src_nid, dist) -
  1671. task_weight(cur, env->dst_nid, dist);
  1672. }
  1673. /* Discourage picking a task already on its preferred node */
  1674. if (cur->numa_preferred_nid == env->dst_nid)
  1675. imp -= imp / 16;
  1676. /*
  1677. * Encourage picking a task that moves to its preferred node.
  1678. * This potentially makes imp larger than it's maximum of
  1679. * 1998 (see SMALLIMP and task_weight for why) but in this
  1680. * case, it does not matter.
  1681. */
  1682. if (cur->numa_preferred_nid == env->src_nid)
  1683. imp += imp / 8;
  1684. if (maymove && moveimp > imp && moveimp > env->best_imp) {
  1685. imp = moveimp;
  1686. cur = NULL;
  1687. goto assign;
  1688. }
  1689. /*
  1690. * Prefer swapping with a task moving to its preferred node over a
  1691. * task that is not.
  1692. */
  1693. if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
  1694. env->best_task->numa_preferred_nid != env->src_nid) {
  1695. goto assign;
  1696. }
  1697. /*
  1698. * If the NUMA importance is less than SMALLIMP,
  1699. * task migration might only result in ping pong
  1700. * of tasks and also hurt performance due to cache
  1701. * misses.
  1702. */
  1703. if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
  1704. goto unlock;
  1705. /*
  1706. * In the overloaded case, try and keep the load balanced.
  1707. */
  1708. load = task_h_load(env->p) - task_h_load(cur);
  1709. if (!load)
  1710. goto assign;
  1711. dst_load = env->dst_stats.load + load;
  1712. src_load = env->src_stats.load - load;
  1713. if (load_too_imbalanced(src_load, dst_load, env))
  1714. goto unlock;
  1715. assign:
  1716. /* Evaluate an idle CPU for a task numa move. */
  1717. if (!cur) {
  1718. int cpu = env->dst_stats.idle_cpu;
  1719. /* Nothing cached so current CPU went idle since the search. */
  1720. if (cpu < 0)
  1721. cpu = env->dst_cpu;
  1722. /*
  1723. * If the CPU is no longer truly idle and the previous best CPU
  1724. * is, keep using it.
  1725. */
  1726. if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
  1727. idle_cpu(env->best_cpu)) {
  1728. cpu = env->best_cpu;
  1729. }
  1730. env->dst_cpu = cpu;
  1731. }
  1732. task_numa_assign(env, cur, imp);
  1733. /*
  1734. * If a move to idle is allowed because there is capacity or load
  1735. * balance improves then stop the search. While a better swap
  1736. * candidate may exist, a search is not free.
  1737. */
  1738. if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
  1739. stopsearch = true;
  1740. /*
  1741. * If a swap candidate must be identified and the current best task
  1742. * moves its preferred node then stop the search.
  1743. */
  1744. if (!maymove && env->best_task &&
  1745. env->best_task->numa_preferred_nid == env->src_nid) {
  1746. stopsearch = true;
  1747. }
  1748. unlock:
  1749. rcu_read_unlock();
  1750. return stopsearch;
  1751. }
  1752. static void task_numa_find_cpu(struct task_numa_env *env,
  1753. long taskimp, long groupimp)
  1754. {
  1755. bool maymove = false;
  1756. int cpu;
  1757. /*
  1758. * If dst node has spare capacity, then check if there is an
  1759. * imbalance that would be overruled by the load balancer.
  1760. */
  1761. if (env->dst_stats.node_type == node_has_spare) {
  1762. unsigned int imbalance;
  1763. int src_running, dst_running;
  1764. /*
  1765. * Would movement cause an imbalance? Note that if src has
  1766. * more running tasks that the imbalance is ignored as the
  1767. * move improves the imbalance from the perspective of the
  1768. * CPU load balancer.
  1769. * */
  1770. src_running = env->src_stats.nr_running - 1;
  1771. dst_running = env->dst_stats.nr_running + 1;
  1772. imbalance = max(0, dst_running - src_running);
  1773. imbalance = adjust_numa_imbalance(imbalance, dst_running,
  1774. env->imb_numa_nr);
  1775. /* Use idle CPU if there is no imbalance */
  1776. if (!imbalance) {
  1777. maymove = true;
  1778. if (env->dst_stats.idle_cpu >= 0) {
  1779. env->dst_cpu = env->dst_stats.idle_cpu;
  1780. task_numa_assign(env, NULL, 0);
  1781. return;
  1782. }
  1783. }
  1784. } else {
  1785. long src_load, dst_load, load;
  1786. /*
  1787. * If the improvement from just moving env->p direction is better
  1788. * than swapping tasks around, check if a move is possible.
  1789. */
  1790. load = task_h_load(env->p);
  1791. dst_load = env->dst_stats.load + load;
  1792. src_load = env->src_stats.load - load;
  1793. maymove = !load_too_imbalanced(src_load, dst_load, env);
  1794. }
  1795. for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
  1796. /* Skip this CPU if the source task cannot migrate */
  1797. if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
  1798. continue;
  1799. env->dst_cpu = cpu;
  1800. if (task_numa_compare(env, taskimp, groupimp, maymove))
  1801. break;
  1802. }
  1803. }
  1804. static int task_numa_migrate(struct task_struct *p)
  1805. {
  1806. struct task_numa_env env = {
  1807. .p = p,
  1808. .src_cpu = task_cpu(p),
  1809. .src_nid = task_node(p),
  1810. .imbalance_pct = 112,
  1811. .best_task = NULL,
  1812. .best_imp = 0,
  1813. .best_cpu = -1,
  1814. };
  1815. unsigned long taskweight, groupweight;
  1816. struct sched_domain *sd;
  1817. long taskimp, groupimp;
  1818. struct numa_group *ng;
  1819. struct rq *best_rq;
  1820. int nid, ret, dist;
  1821. /*
  1822. * Pick the lowest SD_NUMA domain, as that would have the smallest
  1823. * imbalance and would be the first to start moving tasks about.
  1824. *
  1825. * And we want to avoid any moving of tasks about, as that would create
  1826. * random movement of tasks -- counter the numa conditions we're trying
  1827. * to satisfy here.
  1828. */
  1829. rcu_read_lock();
  1830. sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
  1831. if (sd) {
  1832. env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
  1833. env.imb_numa_nr = sd->imb_numa_nr;
  1834. }
  1835. rcu_read_unlock();
  1836. /*
  1837. * Cpusets can break the scheduler domain tree into smaller
  1838. * balance domains, some of which do not cross NUMA boundaries.
  1839. * Tasks that are "trapped" in such domains cannot be migrated
  1840. * elsewhere, so there is no point in (re)trying.
  1841. */
  1842. if (unlikely(!sd)) {
  1843. sched_setnuma(p, task_node(p));
  1844. return -EINVAL;
  1845. }
  1846. env.dst_nid = p->numa_preferred_nid;
  1847. dist = env.dist = node_distance(env.src_nid, env.dst_nid);
  1848. taskweight = task_weight(p, env.src_nid, dist);
  1849. groupweight = group_weight(p, env.src_nid, dist);
  1850. update_numa_stats(&env, &env.src_stats, env.src_nid, false);
  1851. taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
  1852. groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
  1853. update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
  1854. /* Try to find a spot on the preferred nid. */
  1855. task_numa_find_cpu(&env, taskimp, groupimp);
  1856. /*
  1857. * Look at other nodes in these cases:
  1858. * - there is no space available on the preferred_nid
  1859. * - the task is part of a numa_group that is interleaved across
  1860. * multiple NUMA nodes; in order to better consolidate the group,
  1861. * we need to check other locations.
  1862. */
  1863. ng = deref_curr_numa_group(p);
  1864. if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
  1865. for_each_node_state(nid, N_CPU) {
  1866. if (nid == env.src_nid || nid == p->numa_preferred_nid)
  1867. continue;
  1868. dist = node_distance(env.src_nid, env.dst_nid);
  1869. if (sched_numa_topology_type == NUMA_BACKPLANE &&
  1870. dist != env.dist) {
  1871. taskweight = task_weight(p, env.src_nid, dist);
  1872. groupweight = group_weight(p, env.src_nid, dist);
  1873. }
  1874. /* Only consider nodes where both task and groups benefit */
  1875. taskimp = task_weight(p, nid, dist) - taskweight;
  1876. groupimp = group_weight(p, nid, dist) - groupweight;
  1877. if (taskimp < 0 && groupimp < 0)
  1878. continue;
  1879. env.dist = dist;
  1880. env.dst_nid = nid;
  1881. update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
  1882. task_numa_find_cpu(&env, taskimp, groupimp);
  1883. }
  1884. }
  1885. /*
  1886. * If the task is part of a workload that spans multiple NUMA nodes,
  1887. * and is migrating into one of the workload's active nodes, remember
  1888. * this node as the task's preferred numa node, so the workload can
  1889. * settle down.
  1890. * A task that migrated to a second choice node will be better off
  1891. * trying for a better one later. Do not set the preferred node here.
  1892. */
  1893. if (ng) {
  1894. if (env.best_cpu == -1)
  1895. nid = env.src_nid;
  1896. else
  1897. nid = cpu_to_node(env.best_cpu);
  1898. if (nid != p->numa_preferred_nid)
  1899. sched_setnuma(p, nid);
  1900. }
  1901. /* No better CPU than the current one was found. */
  1902. if (env.best_cpu == -1) {
  1903. trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
  1904. return -EAGAIN;
  1905. }
  1906. best_rq = cpu_rq(env.best_cpu);
  1907. if (env.best_task == NULL) {
  1908. ret = migrate_task_to(p, env.best_cpu);
  1909. WRITE_ONCE(best_rq->numa_migrate_on, 0);
  1910. if (ret != 0)
  1911. trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
  1912. return ret;
  1913. }
  1914. ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
  1915. WRITE_ONCE(best_rq->numa_migrate_on, 0);
  1916. if (ret != 0)
  1917. trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
  1918. put_task_struct(env.best_task);
  1919. return ret;
  1920. }
  1921. /* Attempt to migrate a task to a CPU on the preferred node. */
  1922. static void numa_migrate_preferred(struct task_struct *p)
  1923. {
  1924. unsigned long interval = HZ;
  1925. /* This task has no NUMA fault statistics yet */
  1926. if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
  1927. return;
  1928. /* Periodically retry migrating the task to the preferred node */
  1929. interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
  1930. p->numa_migrate_retry = jiffies + interval;
  1931. /* Success if task is already running on preferred CPU */
  1932. if (task_node(p) == p->numa_preferred_nid)
  1933. return;
  1934. /* Otherwise, try migrate to a CPU on the preferred node */
  1935. task_numa_migrate(p);
  1936. }
  1937. /*
  1938. * Find out how many nodes the workload is actively running on. Do this by
  1939. * tracking the nodes from which NUMA hinting faults are triggered. This can
  1940. * be different from the set of nodes where the workload's memory is currently
  1941. * located.
  1942. */
  1943. static void numa_group_count_active_nodes(struct numa_group *numa_group)
  1944. {
  1945. unsigned long faults, max_faults = 0;
  1946. int nid, active_nodes = 0;
  1947. for_each_node_state(nid, N_CPU) {
  1948. faults = group_faults_cpu(numa_group, nid);
  1949. if (faults > max_faults)
  1950. max_faults = faults;
  1951. }
  1952. for_each_node_state(nid, N_CPU) {
  1953. faults = group_faults_cpu(numa_group, nid);
  1954. if (faults * ACTIVE_NODE_FRACTION > max_faults)
  1955. active_nodes++;
  1956. }
  1957. numa_group->max_faults_cpu = max_faults;
  1958. numa_group->active_nodes = active_nodes;
  1959. }
  1960. /*
  1961. * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
  1962. * increments. The more local the fault statistics are, the higher the scan
  1963. * period will be for the next scan window. If local/(local+remote) ratio is
  1964. * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
  1965. * the scan period will decrease. Aim for 70% local accesses.
  1966. */
  1967. #define NUMA_PERIOD_SLOTS 10
  1968. #define NUMA_PERIOD_THRESHOLD 7
  1969. /*
  1970. * Increase the scan period (slow down scanning) if the majority of
  1971. * our memory is already on our local node, or if the majority of
  1972. * the page accesses are shared with other processes.
  1973. * Otherwise, decrease the scan period.
  1974. */
  1975. static void update_task_scan_period(struct task_struct *p,
  1976. unsigned long shared, unsigned long private)
  1977. {
  1978. unsigned int period_slot;
  1979. int lr_ratio, ps_ratio;
  1980. int diff;
  1981. unsigned long remote = p->numa_faults_locality[0];
  1982. unsigned long local = p->numa_faults_locality[1];
  1983. /*
  1984. * If there were no record hinting faults then either the task is
  1985. * completely idle or all activity is in areas that are not of interest
  1986. * to automatic numa balancing. Related to that, if there were failed
  1987. * migration then it implies we are migrating too quickly or the local
  1988. * node is overloaded. In either case, scan slower
  1989. */
  1990. if (local + shared == 0 || p->numa_faults_locality[2]) {
  1991. p->numa_scan_period = min(p->numa_scan_period_max,
  1992. p->numa_scan_period << 1);
  1993. p->mm->numa_next_scan = jiffies +
  1994. msecs_to_jiffies(p->numa_scan_period);
  1995. return;
  1996. }
  1997. /*
  1998. * Prepare to scale scan period relative to the current period.
  1999. * == NUMA_PERIOD_THRESHOLD scan period stays the same
  2000. * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
  2001. * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
  2002. */
  2003. period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
  2004. lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
  2005. ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
  2006. if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
  2007. /*
  2008. * Most memory accesses are local. There is no need to
  2009. * do fast NUMA scanning, since memory is already local.
  2010. */
  2011. int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
  2012. if (!slot)
  2013. slot = 1;
  2014. diff = slot * period_slot;
  2015. } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
  2016. /*
  2017. * Most memory accesses are shared with other tasks.
  2018. * There is no point in continuing fast NUMA scanning,
  2019. * since other tasks may just move the memory elsewhere.
  2020. */
  2021. int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
  2022. if (!slot)
  2023. slot = 1;
  2024. diff = slot * period_slot;
  2025. } else {
  2026. /*
  2027. * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
  2028. * yet they are not on the local NUMA node. Speed up
  2029. * NUMA scanning to get the memory moved over.
  2030. */
  2031. int ratio = max(lr_ratio, ps_ratio);
  2032. diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
  2033. }
  2034. p->numa_scan_period = clamp(p->numa_scan_period + diff,
  2035. task_scan_min(p), task_scan_max(p));
  2036. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  2037. }
  2038. /*
  2039. * Get the fraction of time the task has been running since the last
  2040. * NUMA placement cycle. The scheduler keeps similar statistics, but
  2041. * decays those on a 32ms period, which is orders of magnitude off
  2042. * from the dozens-of-seconds NUMA balancing period. Use the scheduler
  2043. * stats only if the task is so new there are no NUMA statistics yet.
  2044. */
  2045. static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
  2046. {
  2047. u64 runtime, delta, now;
  2048. /* Use the start of this time slice to avoid calculations. */
  2049. now = p->se.exec_start;
  2050. runtime = p->se.sum_exec_runtime;
  2051. if (p->last_task_numa_placement) {
  2052. delta = runtime - p->last_sum_exec_runtime;
  2053. *period = now - p->last_task_numa_placement;
  2054. /* Avoid time going backwards, prevent potential divide error: */
  2055. if (unlikely((s64)*period < 0))
  2056. *period = 0;
  2057. } else {
  2058. delta = p->se.avg.load_sum;
  2059. *period = LOAD_AVG_MAX;
  2060. }
  2061. p->last_sum_exec_runtime = runtime;
  2062. p->last_task_numa_placement = now;
  2063. return delta;
  2064. }
  2065. /*
  2066. * Determine the preferred nid for a task in a numa_group. This needs to
  2067. * be done in a way that produces consistent results with group_weight,
  2068. * otherwise workloads might not converge.
  2069. */
  2070. static int preferred_group_nid(struct task_struct *p, int nid)
  2071. {
  2072. nodemask_t nodes;
  2073. int dist;
  2074. /* Direct connections between all NUMA nodes. */
  2075. if (sched_numa_topology_type == NUMA_DIRECT)
  2076. return nid;
  2077. /*
  2078. * On a system with glueless mesh NUMA topology, group_weight
  2079. * scores nodes according to the number of NUMA hinting faults on
  2080. * both the node itself, and on nearby nodes.
  2081. */
  2082. if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
  2083. unsigned long score, max_score = 0;
  2084. int node, max_node = nid;
  2085. dist = sched_max_numa_distance;
  2086. for_each_node_state(node, N_CPU) {
  2087. score = group_weight(p, node, dist);
  2088. if (score > max_score) {
  2089. max_score = score;
  2090. max_node = node;
  2091. }
  2092. }
  2093. return max_node;
  2094. }
  2095. /*
  2096. * Finding the preferred nid in a system with NUMA backplane
  2097. * interconnect topology is more involved. The goal is to locate
  2098. * tasks from numa_groups near each other in the system, and
  2099. * untangle workloads from different sides of the system. This requires
  2100. * searching down the hierarchy of node groups, recursively searching
  2101. * inside the highest scoring group of nodes. The nodemask tricks
  2102. * keep the complexity of the search down.
  2103. */
  2104. nodes = node_states[N_CPU];
  2105. for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
  2106. unsigned long max_faults = 0;
  2107. nodemask_t max_group = NODE_MASK_NONE;
  2108. int a, b;
  2109. /* Are there nodes at this distance from each other? */
  2110. if (!find_numa_distance(dist))
  2111. continue;
  2112. for_each_node_mask(a, nodes) {
  2113. unsigned long faults = 0;
  2114. nodemask_t this_group;
  2115. nodes_clear(this_group);
  2116. /* Sum group's NUMA faults; includes a==b case. */
  2117. for_each_node_mask(b, nodes) {
  2118. if (node_distance(a, b) < dist) {
  2119. faults += group_faults(p, b);
  2120. node_set(b, this_group);
  2121. node_clear(b, nodes);
  2122. }
  2123. }
  2124. /* Remember the top group. */
  2125. if (faults > max_faults) {
  2126. max_faults = faults;
  2127. max_group = this_group;
  2128. /*
  2129. * subtle: at the smallest distance there is
  2130. * just one node left in each "group", the
  2131. * winner is the preferred nid.
  2132. */
  2133. nid = a;
  2134. }
  2135. }
  2136. /* Next round, evaluate the nodes within max_group. */
  2137. if (!max_faults)
  2138. break;
  2139. nodes = max_group;
  2140. }
  2141. return nid;
  2142. }
  2143. static void task_numa_placement(struct task_struct *p)
  2144. {
  2145. int seq, nid, max_nid = NUMA_NO_NODE;
  2146. unsigned long max_faults = 0;
  2147. unsigned long fault_types[2] = { 0, 0 };
  2148. unsigned long total_faults;
  2149. u64 runtime, period;
  2150. spinlock_t *group_lock = NULL;
  2151. struct numa_group *ng;
  2152. /*
  2153. * The p->mm->numa_scan_seq field gets updated without
  2154. * exclusive access. Use READ_ONCE() here to ensure
  2155. * that the field is read in a single access:
  2156. */
  2157. seq = READ_ONCE(p->mm->numa_scan_seq);
  2158. if (p->numa_scan_seq == seq)
  2159. return;
  2160. p->numa_scan_seq = seq;
  2161. p->numa_scan_period_max = task_scan_max(p);
  2162. total_faults = p->numa_faults_locality[0] +
  2163. p->numa_faults_locality[1];
  2164. runtime = numa_get_avg_runtime(p, &period);
  2165. /* If the task is part of a group prevent parallel updates to group stats */
  2166. ng = deref_curr_numa_group(p);
  2167. if (ng) {
  2168. group_lock = &ng->lock;
  2169. spin_lock_irq(group_lock);
  2170. }
  2171. /* Find the node with the highest number of faults */
  2172. for_each_online_node(nid) {
  2173. /* Keep track of the offsets in numa_faults array */
  2174. int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
  2175. unsigned long faults = 0, group_faults = 0;
  2176. int priv;
  2177. for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
  2178. long diff, f_diff, f_weight;
  2179. mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
  2180. membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
  2181. cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
  2182. cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
  2183. /* Decay existing window, copy faults since last scan */
  2184. diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
  2185. fault_types[priv] += p->numa_faults[membuf_idx];
  2186. p->numa_faults[membuf_idx] = 0;
  2187. /*
  2188. * Normalize the faults_from, so all tasks in a group
  2189. * count according to CPU use, instead of by the raw
  2190. * number of faults. Tasks with little runtime have
  2191. * little over-all impact on throughput, and thus their
  2192. * faults are less important.
  2193. */
  2194. f_weight = div64_u64(runtime << 16, period + 1);
  2195. f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
  2196. (total_faults + 1);
  2197. f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
  2198. p->numa_faults[cpubuf_idx] = 0;
  2199. p->numa_faults[mem_idx] += diff;
  2200. p->numa_faults[cpu_idx] += f_diff;
  2201. faults += p->numa_faults[mem_idx];
  2202. p->total_numa_faults += diff;
  2203. if (ng) {
  2204. /*
  2205. * safe because we can only change our own group
  2206. *
  2207. * mem_idx represents the offset for a given
  2208. * nid and priv in a specific region because it
  2209. * is at the beginning of the numa_faults array.
  2210. */
  2211. ng->faults[mem_idx] += diff;
  2212. ng->faults[cpu_idx] += f_diff;
  2213. ng->total_faults += diff;
  2214. group_faults += ng->faults[mem_idx];
  2215. }
  2216. }
  2217. if (!ng) {
  2218. if (faults > max_faults) {
  2219. max_faults = faults;
  2220. max_nid = nid;
  2221. }
  2222. } else if (group_faults > max_faults) {
  2223. max_faults = group_faults;
  2224. max_nid = nid;
  2225. }
  2226. }
  2227. /* Cannot migrate task to CPU-less node */
  2228. if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
  2229. int near_nid = max_nid;
  2230. int distance, near_distance = INT_MAX;
  2231. for_each_node_state(nid, N_CPU) {
  2232. distance = node_distance(max_nid, nid);
  2233. if (distance < near_distance) {
  2234. near_nid = nid;
  2235. near_distance = distance;
  2236. }
  2237. }
  2238. max_nid = near_nid;
  2239. }
  2240. if (ng) {
  2241. numa_group_count_active_nodes(ng);
  2242. spin_unlock_irq(group_lock);
  2243. max_nid = preferred_group_nid(p, max_nid);
  2244. }
  2245. if (max_faults) {
  2246. /* Set the new preferred node */
  2247. if (max_nid != p->numa_preferred_nid)
  2248. sched_setnuma(p, max_nid);
  2249. }
  2250. update_task_scan_period(p, fault_types[0], fault_types[1]);
  2251. }
  2252. static inline int get_numa_group(struct numa_group *grp)
  2253. {
  2254. return refcount_inc_not_zero(&grp->refcount);
  2255. }
  2256. static inline void put_numa_group(struct numa_group *grp)
  2257. {
  2258. if (refcount_dec_and_test(&grp->refcount))
  2259. kfree_rcu(grp, rcu);
  2260. }
  2261. static void task_numa_group(struct task_struct *p, int cpupid, int flags,
  2262. int *priv)
  2263. {
  2264. struct numa_group *grp, *my_grp;
  2265. struct task_struct *tsk;
  2266. bool join = false;
  2267. int cpu = cpupid_to_cpu(cpupid);
  2268. int i;
  2269. if (unlikely(!deref_curr_numa_group(p))) {
  2270. unsigned int size = sizeof(struct numa_group) +
  2271. NR_NUMA_HINT_FAULT_STATS *
  2272. nr_node_ids * sizeof(unsigned long);
  2273. grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
  2274. if (!grp)
  2275. return;
  2276. refcount_set(&grp->refcount, 1);
  2277. grp->active_nodes = 1;
  2278. grp->max_faults_cpu = 0;
  2279. spin_lock_init(&grp->lock);
  2280. grp->gid = p->pid;
  2281. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  2282. grp->faults[i] = p->numa_faults[i];
  2283. grp->total_faults = p->total_numa_faults;
  2284. grp->nr_tasks++;
  2285. rcu_assign_pointer(p->numa_group, grp);
  2286. }
  2287. rcu_read_lock();
  2288. tsk = READ_ONCE(cpu_rq(cpu)->curr);
  2289. if (!cpupid_match_pid(tsk, cpupid))
  2290. goto no_join;
  2291. grp = rcu_dereference(tsk->numa_group);
  2292. if (!grp)
  2293. goto no_join;
  2294. my_grp = deref_curr_numa_group(p);
  2295. if (grp == my_grp)
  2296. goto no_join;
  2297. /*
  2298. * Only join the other group if its bigger; if we're the bigger group,
  2299. * the other task will join us.
  2300. */
  2301. if (my_grp->nr_tasks > grp->nr_tasks)
  2302. goto no_join;
  2303. /*
  2304. * Tie-break on the grp address.
  2305. */
  2306. if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
  2307. goto no_join;
  2308. /* Always join threads in the same process. */
  2309. if (tsk->mm == current->mm)
  2310. join = true;
  2311. /* Simple filter to avoid false positives due to PID collisions */
  2312. if (flags & TNF_SHARED)
  2313. join = true;
  2314. /* Update priv based on whether false sharing was detected */
  2315. *priv = !join;
  2316. if (join && !get_numa_group(grp))
  2317. goto no_join;
  2318. rcu_read_unlock();
  2319. if (!join)
  2320. return;
  2321. WARN_ON_ONCE(irqs_disabled());
  2322. double_lock_irq(&my_grp->lock, &grp->lock);
  2323. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
  2324. my_grp->faults[i] -= p->numa_faults[i];
  2325. grp->faults[i] += p->numa_faults[i];
  2326. }
  2327. my_grp->total_faults -= p->total_numa_faults;
  2328. grp->total_faults += p->total_numa_faults;
  2329. my_grp->nr_tasks--;
  2330. grp->nr_tasks++;
  2331. spin_unlock(&my_grp->lock);
  2332. spin_unlock_irq(&grp->lock);
  2333. rcu_assign_pointer(p->numa_group, grp);
  2334. put_numa_group(my_grp);
  2335. return;
  2336. no_join:
  2337. rcu_read_unlock();
  2338. return;
  2339. }
  2340. /*
  2341. * Get rid of NUMA statistics associated with a task (either current or dead).
  2342. * If @final is set, the task is dead and has reached refcount zero, so we can
  2343. * safely free all relevant data structures. Otherwise, there might be
  2344. * concurrent reads from places like load balancing and procfs, and we should
  2345. * reset the data back to default state without freeing ->numa_faults.
  2346. */
  2347. void task_numa_free(struct task_struct *p, bool final)
  2348. {
  2349. /* safe: p either is current or is being freed by current */
  2350. struct numa_group *grp = rcu_dereference_raw(p->numa_group);
  2351. unsigned long *numa_faults = p->numa_faults;
  2352. unsigned long flags;
  2353. int i;
  2354. if (!numa_faults)
  2355. return;
  2356. if (grp) {
  2357. spin_lock_irqsave(&grp->lock, flags);
  2358. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  2359. grp->faults[i] -= p->numa_faults[i];
  2360. grp->total_faults -= p->total_numa_faults;
  2361. grp->nr_tasks--;
  2362. spin_unlock_irqrestore(&grp->lock, flags);
  2363. RCU_INIT_POINTER(p->numa_group, NULL);
  2364. put_numa_group(grp);
  2365. }
  2366. if (final) {
  2367. p->numa_faults = NULL;
  2368. kfree(numa_faults);
  2369. } else {
  2370. p->total_numa_faults = 0;
  2371. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  2372. numa_faults[i] = 0;
  2373. }
  2374. }
  2375. /*
  2376. * Got a PROT_NONE fault for a page on @node.
  2377. */
  2378. void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
  2379. {
  2380. struct task_struct *p = current;
  2381. bool migrated = flags & TNF_MIGRATED;
  2382. int cpu_node = task_node(current);
  2383. int local = !!(flags & TNF_FAULT_LOCAL);
  2384. struct numa_group *ng;
  2385. int priv;
  2386. if (!static_branch_likely(&sched_numa_balancing))
  2387. return;
  2388. /* for example, ksmd faulting in a user's mm */
  2389. if (!p->mm)
  2390. return;
  2391. /*
  2392. * NUMA faults statistics are unnecessary for the slow memory
  2393. * node for memory tiering mode.
  2394. */
  2395. if (!node_is_toptier(mem_node) &&
  2396. (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
  2397. !cpupid_valid(last_cpupid)))
  2398. return;
  2399. /* Allocate buffer to track faults on a per-node basis */
  2400. if (unlikely(!p->numa_faults)) {
  2401. int size = sizeof(*p->numa_faults) *
  2402. NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
  2403. p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
  2404. if (!p->numa_faults)
  2405. return;
  2406. p->total_numa_faults = 0;
  2407. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  2408. }
  2409. /*
  2410. * First accesses are treated as private, otherwise consider accesses
  2411. * to be private if the accessing pid has not changed
  2412. */
  2413. if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
  2414. priv = 1;
  2415. } else {
  2416. priv = cpupid_match_pid(p, last_cpupid);
  2417. if (!priv && !(flags & TNF_NO_GROUP))
  2418. task_numa_group(p, last_cpupid, flags, &priv);
  2419. }
  2420. /*
  2421. * If a workload spans multiple NUMA nodes, a shared fault that
  2422. * occurs wholly within the set of nodes that the workload is
  2423. * actively using should be counted as local. This allows the
  2424. * scan rate to slow down when a workload has settled down.
  2425. */
  2426. ng = deref_curr_numa_group(p);
  2427. if (!priv && !local && ng && ng->active_nodes > 1 &&
  2428. numa_is_active_node(cpu_node, ng) &&
  2429. numa_is_active_node(mem_node, ng))
  2430. local = 1;
  2431. /*
  2432. * Retry to migrate task to preferred node periodically, in case it
  2433. * previously failed, or the scheduler moved us.
  2434. */
  2435. if (time_after(jiffies, p->numa_migrate_retry)) {
  2436. task_numa_placement(p);
  2437. numa_migrate_preferred(p);
  2438. }
  2439. if (migrated)
  2440. p->numa_pages_migrated += pages;
  2441. if (flags & TNF_MIGRATE_FAIL)
  2442. p->numa_faults_locality[2] += pages;
  2443. p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
  2444. p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
  2445. p->numa_faults_locality[local] += pages;
  2446. }
  2447. static void reset_ptenuma_scan(struct task_struct *p)
  2448. {
  2449. /*
  2450. * We only did a read acquisition of the mmap sem, so
  2451. * p->mm->numa_scan_seq is written to without exclusive access
  2452. * and the update is not guaranteed to be atomic. That's not
  2453. * much of an issue though, since this is just used for
  2454. * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
  2455. * expensive, to avoid any form of compiler optimizations:
  2456. */
  2457. WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
  2458. p->mm->numa_scan_offset = 0;
  2459. }
  2460. /*
  2461. * The expensive part of numa migration is done from task_work context.
  2462. * Triggered from task_tick_numa().
  2463. */
  2464. static void task_numa_work(struct callback_head *work)
  2465. {
  2466. unsigned long migrate, next_scan, now = jiffies;
  2467. struct task_struct *p = current;
  2468. struct mm_struct *mm = p->mm;
  2469. u64 runtime = p->se.sum_exec_runtime;
  2470. MA_STATE(mas, &mm->mm_mt, 0, 0);
  2471. struct vm_area_struct *vma;
  2472. unsigned long start, end;
  2473. unsigned long nr_pte_updates = 0;
  2474. long pages, virtpages;
  2475. SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
  2476. work->next = work;
  2477. /*
  2478. * Who cares about NUMA placement when they're dying.
  2479. *
  2480. * NOTE: make sure not to dereference p->mm before this check,
  2481. * exit_task_work() happens _after_ exit_mm() so we could be called
  2482. * without p->mm even though we still had it when we enqueued this
  2483. * work.
  2484. */
  2485. if (p->flags & PF_EXITING)
  2486. return;
  2487. if (!mm->numa_next_scan) {
  2488. mm->numa_next_scan = now +
  2489. msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  2490. }
  2491. /*
  2492. * Enforce maximal scan/migration frequency..
  2493. */
  2494. migrate = mm->numa_next_scan;
  2495. if (time_before(now, migrate))
  2496. return;
  2497. if (p->numa_scan_period == 0) {
  2498. p->numa_scan_period_max = task_scan_max(p);
  2499. p->numa_scan_period = task_scan_start(p);
  2500. }
  2501. next_scan = now + msecs_to_jiffies(p->numa_scan_period);
  2502. if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
  2503. return;
  2504. /*
  2505. * Delay this task enough that another task of this mm will likely win
  2506. * the next time around.
  2507. */
  2508. p->node_stamp += 2 * TICK_NSEC;
  2509. start = mm->numa_scan_offset;
  2510. pages = sysctl_numa_balancing_scan_size;
  2511. pages <<= 20 - PAGE_SHIFT; /* MB in pages */
  2512. virtpages = pages * 8; /* Scan up to this much virtual space */
  2513. if (!pages)
  2514. return;
  2515. if (!mmap_read_trylock(mm))
  2516. return;
  2517. mas_set(&mas, start);
  2518. vma = mas_find(&mas, ULONG_MAX);
  2519. if (!vma) {
  2520. reset_ptenuma_scan(p);
  2521. start = 0;
  2522. mas_set(&mas, start);
  2523. vma = mas_find(&mas, ULONG_MAX);
  2524. }
  2525. for (; vma; vma = mas_find(&mas, ULONG_MAX)) {
  2526. if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
  2527. is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
  2528. continue;
  2529. }
  2530. /*
  2531. * Shared library pages mapped by multiple processes are not
  2532. * migrated as it is expected they are cache replicated. Avoid
  2533. * hinting faults in read-only file-backed mappings or the vdso
  2534. * as migrating the pages will be of marginal benefit.
  2535. */
  2536. if (!vma->vm_mm ||
  2537. (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
  2538. continue;
  2539. /*
  2540. * Skip inaccessible VMAs to avoid any confusion between
  2541. * PROT_NONE and NUMA hinting ptes
  2542. */
  2543. if (!vma_is_accessible(vma))
  2544. continue;
  2545. do {
  2546. start = max(start, vma->vm_start);
  2547. end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
  2548. end = min(end, vma->vm_end);
  2549. nr_pte_updates = change_prot_numa(vma, start, end);
  2550. /*
  2551. * Try to scan sysctl_numa_balancing_size worth of
  2552. * hpages that have at least one present PTE that
  2553. * is not already pte-numa. If the VMA contains
  2554. * areas that are unused or already full of prot_numa
  2555. * PTEs, scan up to virtpages, to skip through those
  2556. * areas faster.
  2557. */
  2558. if (nr_pte_updates)
  2559. pages -= (end - start) >> PAGE_SHIFT;
  2560. virtpages -= (end - start) >> PAGE_SHIFT;
  2561. start = end;
  2562. if (pages <= 0 || virtpages <= 0)
  2563. goto out;
  2564. cond_resched();
  2565. } while (end != vma->vm_end);
  2566. }
  2567. out:
  2568. /*
  2569. * It is possible to reach the end of the VMA list but the last few
  2570. * VMAs are not guaranteed to the vma_migratable. If they are not, we
  2571. * would find the !migratable VMA on the next scan but not reset the
  2572. * scanner to the start so check it now.
  2573. */
  2574. if (vma)
  2575. mm->numa_scan_offset = start;
  2576. else
  2577. reset_ptenuma_scan(p);
  2578. mmap_read_unlock(mm);
  2579. /*
  2580. * Make sure tasks use at least 32x as much time to run other code
  2581. * than they used here, to limit NUMA PTE scanning overhead to 3% max.
  2582. * Usually update_task_scan_period slows down scanning enough; on an
  2583. * overloaded system we need to limit overhead on a per task basis.
  2584. */
  2585. if (unlikely(p->se.sum_exec_runtime != runtime)) {
  2586. u64 diff = p->se.sum_exec_runtime - runtime;
  2587. p->node_stamp += 32 * diff;
  2588. }
  2589. }
  2590. void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
  2591. {
  2592. int mm_users = 0;
  2593. struct mm_struct *mm = p->mm;
  2594. if (mm) {
  2595. mm_users = atomic_read(&mm->mm_users);
  2596. if (mm_users == 1) {
  2597. mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  2598. mm->numa_scan_seq = 0;
  2599. }
  2600. }
  2601. p->node_stamp = 0;
  2602. p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
  2603. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  2604. p->numa_migrate_retry = 0;
  2605. /* Protect against double add, see task_tick_numa and task_numa_work */
  2606. p->numa_work.next = &p->numa_work;
  2607. p->numa_faults = NULL;
  2608. p->numa_pages_migrated = 0;
  2609. p->total_numa_faults = 0;
  2610. RCU_INIT_POINTER(p->numa_group, NULL);
  2611. p->last_task_numa_placement = 0;
  2612. p->last_sum_exec_runtime = 0;
  2613. init_task_work(&p->numa_work, task_numa_work);
  2614. /* New address space, reset the preferred nid */
  2615. if (!(clone_flags & CLONE_VM)) {
  2616. p->numa_preferred_nid = NUMA_NO_NODE;
  2617. return;
  2618. }
  2619. /*
  2620. * New thread, keep existing numa_preferred_nid which should be copied
  2621. * already by arch_dup_task_struct but stagger when scans start.
  2622. */
  2623. if (mm) {
  2624. unsigned int delay;
  2625. delay = min_t(unsigned int, task_scan_max(current),
  2626. current->numa_scan_period * mm_users * NSEC_PER_MSEC);
  2627. delay += 2 * TICK_NSEC;
  2628. p->node_stamp = delay;
  2629. }
  2630. }
  2631. /*
  2632. * Drive the periodic memory faults..
  2633. */
  2634. static void task_tick_numa(struct rq *rq, struct task_struct *curr)
  2635. {
  2636. struct callback_head *work = &curr->numa_work;
  2637. u64 period, now;
  2638. /*
  2639. * We don't care about NUMA placement if we don't have memory.
  2640. */
  2641. if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
  2642. return;
  2643. /*
  2644. * Using runtime rather than walltime has the dual advantage that
  2645. * we (mostly) drive the selection from busy threads and that the
  2646. * task needs to have done some actual work before we bother with
  2647. * NUMA placement.
  2648. */
  2649. now = curr->se.sum_exec_runtime;
  2650. period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
  2651. if (now > curr->node_stamp + period) {
  2652. if (!curr->node_stamp)
  2653. curr->numa_scan_period = task_scan_start(curr);
  2654. curr->node_stamp += period;
  2655. if (!time_before(jiffies, curr->mm->numa_next_scan))
  2656. task_work_add(curr, work, TWA_RESUME);
  2657. }
  2658. }
  2659. static void update_scan_period(struct task_struct *p, int new_cpu)
  2660. {
  2661. int src_nid = cpu_to_node(task_cpu(p));
  2662. int dst_nid = cpu_to_node(new_cpu);
  2663. if (!static_branch_likely(&sched_numa_balancing))
  2664. return;
  2665. if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
  2666. return;
  2667. if (src_nid == dst_nid)
  2668. return;
  2669. /*
  2670. * Allow resets if faults have been trapped before one scan
  2671. * has completed. This is most likely due to a new task that
  2672. * is pulled cross-node due to wakeups or load balancing.
  2673. */
  2674. if (p->numa_scan_seq) {
  2675. /*
  2676. * Avoid scan adjustments if moving to the preferred
  2677. * node or if the task was not previously running on
  2678. * the preferred node.
  2679. */
  2680. if (dst_nid == p->numa_preferred_nid ||
  2681. (p->numa_preferred_nid != NUMA_NO_NODE &&
  2682. src_nid != p->numa_preferred_nid))
  2683. return;
  2684. }
  2685. p->numa_scan_period = task_scan_start(p);
  2686. }
  2687. #else
  2688. static void task_tick_numa(struct rq *rq, struct task_struct *curr)
  2689. {
  2690. }
  2691. static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  2692. {
  2693. }
  2694. static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  2695. {
  2696. }
  2697. static inline void update_scan_period(struct task_struct *p, int new_cpu)
  2698. {
  2699. }
  2700. #endif /* CONFIG_NUMA_BALANCING */
  2701. static void
  2702. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2703. {
  2704. update_load_add(&cfs_rq->load, se->load.weight);
  2705. #ifdef CONFIG_SMP
  2706. if (entity_is_task(se)) {
  2707. struct rq *rq = rq_of(cfs_rq);
  2708. account_numa_enqueue(rq, task_of(se));
  2709. list_add(&se->group_node, &rq->cfs_tasks);
  2710. }
  2711. #endif
  2712. cfs_rq->nr_running++;
  2713. if (se_is_idle(se))
  2714. cfs_rq->idle_nr_running++;
  2715. }
  2716. static void
  2717. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2718. {
  2719. update_load_sub(&cfs_rq->load, se->load.weight);
  2720. #ifdef CONFIG_SMP
  2721. if (entity_is_task(se)) {
  2722. account_numa_dequeue(rq_of(cfs_rq), task_of(se));
  2723. list_del_init(&se->group_node);
  2724. }
  2725. #endif
  2726. cfs_rq->nr_running--;
  2727. if (se_is_idle(se))
  2728. cfs_rq->idle_nr_running--;
  2729. }
  2730. /*
  2731. * Signed add and clamp on underflow.
  2732. *
  2733. * Explicitly do a load-store to ensure the intermediate value never hits
  2734. * memory. This allows lockless observations without ever seeing the negative
  2735. * values.
  2736. */
  2737. #define add_positive(_ptr, _val) do { \
  2738. typeof(_ptr) ptr = (_ptr); \
  2739. typeof(_val) val = (_val); \
  2740. typeof(*ptr) res, var = READ_ONCE(*ptr); \
  2741. \
  2742. res = var + val; \
  2743. \
  2744. if (val < 0 && res > var) \
  2745. res = 0; \
  2746. \
  2747. WRITE_ONCE(*ptr, res); \
  2748. } while (0)
  2749. /*
  2750. * Unsigned subtract and clamp on underflow.
  2751. *
  2752. * Explicitly do a load-store to ensure the intermediate value never hits
  2753. * memory. This allows lockless observations without ever seeing the negative
  2754. * values.
  2755. */
  2756. #define sub_positive(_ptr, _val) do { \
  2757. typeof(_ptr) ptr = (_ptr); \
  2758. typeof(*ptr) val = (_val); \
  2759. typeof(*ptr) res, var = READ_ONCE(*ptr); \
  2760. res = var - val; \
  2761. if (res > var) \
  2762. res = 0; \
  2763. WRITE_ONCE(*ptr, res); \
  2764. } while (0)
  2765. /*
  2766. * Remove and clamp on negative, from a local variable.
  2767. *
  2768. * A variant of sub_positive(), which does not use explicit load-store
  2769. * and is thus optimized for local variable updates.
  2770. */
  2771. #define lsub_positive(_ptr, _val) do { \
  2772. typeof(_ptr) ptr = (_ptr); \
  2773. *ptr -= min_t(typeof(*ptr), *ptr, _val); \
  2774. } while (0)
  2775. #ifdef CONFIG_SMP
  2776. static inline void
  2777. enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2778. {
  2779. cfs_rq->avg.load_avg += se->avg.load_avg;
  2780. cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
  2781. }
  2782. static inline void
  2783. dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2784. {
  2785. sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
  2786. sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
  2787. /* See update_cfs_rq_load_avg() */
  2788. cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
  2789. cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
  2790. }
  2791. #else
  2792. static inline void
  2793. enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
  2794. static inline void
  2795. dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
  2796. #endif
  2797. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  2798. unsigned long weight)
  2799. {
  2800. if (se->on_rq) {
  2801. /* commit outstanding execution time */
  2802. if (cfs_rq->curr == se)
  2803. update_curr(cfs_rq);
  2804. update_load_sub(&cfs_rq->load, se->load.weight);
  2805. }
  2806. dequeue_load_avg(cfs_rq, se);
  2807. update_load_set(&se->load, weight);
  2808. #ifdef CONFIG_SMP
  2809. do {
  2810. u32 divider = get_pelt_divider(&se->avg);
  2811. se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
  2812. } while (0);
  2813. #endif
  2814. enqueue_load_avg(cfs_rq, se);
  2815. if (se->on_rq)
  2816. update_load_add(&cfs_rq->load, se->load.weight);
  2817. }
  2818. void reweight_task(struct task_struct *p, int prio)
  2819. {
  2820. struct sched_entity *se = &p->se;
  2821. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2822. struct load_weight *load = &se->load;
  2823. unsigned long weight = scale_load(sched_prio_to_weight[prio]);
  2824. reweight_entity(cfs_rq, se, weight);
  2825. load->inv_weight = sched_prio_to_wmult[prio];
  2826. }
  2827. EXPORT_SYMBOL_GPL(reweight_task);
  2828. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  2829. #ifdef CONFIG_FAIR_GROUP_SCHED
  2830. #ifdef CONFIG_SMP
  2831. /*
  2832. * All this does is approximate the hierarchical proportion which includes that
  2833. * global sum we all love to hate.
  2834. *
  2835. * That is, the weight of a group entity, is the proportional share of the
  2836. * group weight based on the group runqueue weights. That is:
  2837. *
  2838. * tg->weight * grq->load.weight
  2839. * ge->load.weight = ----------------------------- (1)
  2840. * \Sum grq->load.weight
  2841. *
  2842. * Now, because computing that sum is prohibitively expensive to compute (been
  2843. * there, done that) we approximate it with this average stuff. The average
  2844. * moves slower and therefore the approximation is cheaper and more stable.
  2845. *
  2846. * So instead of the above, we substitute:
  2847. *
  2848. * grq->load.weight -> grq->avg.load_avg (2)
  2849. *
  2850. * which yields the following:
  2851. *
  2852. * tg->weight * grq->avg.load_avg
  2853. * ge->load.weight = ------------------------------ (3)
  2854. * tg->load_avg
  2855. *
  2856. * Where: tg->load_avg ~= \Sum grq->avg.load_avg
  2857. *
  2858. * That is shares_avg, and it is right (given the approximation (2)).
  2859. *
  2860. * The problem with it is that because the average is slow -- it was designed
  2861. * to be exactly that of course -- this leads to transients in boundary
  2862. * conditions. In specific, the case where the group was idle and we start the
  2863. * one task. It takes time for our CPU's grq->avg.load_avg to build up,
  2864. * yielding bad latency etc..
  2865. *
  2866. * Now, in that special case (1) reduces to:
  2867. *
  2868. * tg->weight * grq->load.weight
  2869. * ge->load.weight = ----------------------------- = tg->weight (4)
  2870. * grp->load.weight
  2871. *
  2872. * That is, the sum collapses because all other CPUs are idle; the UP scenario.
  2873. *
  2874. * So what we do is modify our approximation (3) to approach (4) in the (near)
  2875. * UP case, like:
  2876. *
  2877. * ge->load.weight =
  2878. *
  2879. * tg->weight * grq->load.weight
  2880. * --------------------------------------------------- (5)
  2881. * tg->load_avg - grq->avg.load_avg + grq->load.weight
  2882. *
  2883. * But because grq->load.weight can drop to 0, resulting in a divide by zero,
  2884. * we need to use grq->avg.load_avg as its lower bound, which then gives:
  2885. *
  2886. *
  2887. * tg->weight * grq->load.weight
  2888. * ge->load.weight = ----------------------------- (6)
  2889. * tg_load_avg'
  2890. *
  2891. * Where:
  2892. *
  2893. * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
  2894. * max(grq->load.weight, grq->avg.load_avg)
  2895. *
  2896. * And that is shares_weight and is icky. In the (near) UP case it approaches
  2897. * (4) while in the normal case it approaches (3). It consistently
  2898. * overestimates the ge->load.weight and therefore:
  2899. *
  2900. * \Sum ge->load.weight >= tg->weight
  2901. *
  2902. * hence icky!
  2903. */
  2904. static long calc_group_shares(struct cfs_rq *cfs_rq)
  2905. {
  2906. long tg_weight, tg_shares, load, shares;
  2907. struct task_group *tg = cfs_rq->tg;
  2908. tg_shares = READ_ONCE(tg->shares);
  2909. load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
  2910. tg_weight = atomic_long_read(&tg->load_avg);
  2911. /* Ensure tg_weight >= load */
  2912. tg_weight -= cfs_rq->tg_load_avg_contrib;
  2913. tg_weight += load;
  2914. shares = (tg_shares * load);
  2915. if (tg_weight)
  2916. shares /= tg_weight;
  2917. /*
  2918. * MIN_SHARES has to be unscaled here to support per-CPU partitioning
  2919. * of a group with small tg->shares value. It is a floor value which is
  2920. * assigned as a minimum load.weight to the sched_entity representing
  2921. * the group on a CPU.
  2922. *
  2923. * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
  2924. * on an 8-core system with 8 tasks each runnable on one CPU shares has
  2925. * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
  2926. * case no task is runnable on a CPU MIN_SHARES=2 should be returned
  2927. * instead of 0.
  2928. */
  2929. return clamp_t(long, shares, MIN_SHARES, tg_shares);
  2930. }
  2931. #endif /* CONFIG_SMP */
  2932. /*
  2933. * Recomputes the group entity based on the current state of its group
  2934. * runqueue.
  2935. */
  2936. static void update_cfs_group(struct sched_entity *se)
  2937. {
  2938. struct cfs_rq *gcfs_rq = group_cfs_rq(se);
  2939. long shares;
  2940. if (!gcfs_rq)
  2941. return;
  2942. if (throttled_hierarchy(gcfs_rq))
  2943. return;
  2944. #ifndef CONFIG_SMP
  2945. shares = READ_ONCE(gcfs_rq->tg->shares);
  2946. if (likely(se->load.weight == shares))
  2947. return;
  2948. #else
  2949. shares = calc_group_shares(gcfs_rq);
  2950. #endif
  2951. reweight_entity(cfs_rq_of(se), se, shares);
  2952. }
  2953. #else /* CONFIG_FAIR_GROUP_SCHED */
  2954. static inline void update_cfs_group(struct sched_entity *se)
  2955. {
  2956. }
  2957. #endif /* CONFIG_FAIR_GROUP_SCHED */
  2958. static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
  2959. {
  2960. struct rq *rq = rq_of(cfs_rq);
  2961. if (&rq->cfs == cfs_rq) {
  2962. /*
  2963. * There are a few boundary cases this might miss but it should
  2964. * get called often enough that that should (hopefully) not be
  2965. * a real problem.
  2966. *
  2967. * It will not get called when we go idle, because the idle
  2968. * thread is a different class (!fair), nor will the utilization
  2969. * number include things like RT tasks.
  2970. *
  2971. * As is, the util number is not freq-invariant (we'd have to
  2972. * implement arch_scale_freq_capacity() for that).
  2973. *
  2974. * See cpu_util_cfs().
  2975. */
  2976. cpufreq_update_util(rq, flags);
  2977. }
  2978. }
  2979. #ifdef CONFIG_SMP
  2980. static inline bool load_avg_is_decayed(struct sched_avg *sa)
  2981. {
  2982. if (sa->load_sum)
  2983. return false;
  2984. if (sa->util_sum)
  2985. return false;
  2986. if (sa->runnable_sum)
  2987. return false;
  2988. /*
  2989. * _avg must be null when _sum are null because _avg = _sum / divider
  2990. * Make sure that rounding and/or propagation of PELT values never
  2991. * break this.
  2992. */
  2993. SCHED_WARN_ON(sa->load_avg ||
  2994. sa->util_avg ||
  2995. sa->runnable_avg);
  2996. return true;
  2997. }
  2998. static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
  2999. {
  3000. return u64_u32_load_copy(cfs_rq->avg.last_update_time,
  3001. cfs_rq->last_update_time_copy);
  3002. }
  3003. #ifdef CONFIG_FAIR_GROUP_SCHED
  3004. /*
  3005. * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
  3006. * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
  3007. * bottom-up, we only have to test whether the cfs_rq before us on the list
  3008. * is our child.
  3009. * If cfs_rq is not on the list, test whether a child needs its to be added to
  3010. * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
  3011. */
  3012. static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
  3013. {
  3014. struct cfs_rq *prev_cfs_rq;
  3015. struct list_head *prev;
  3016. if (cfs_rq->on_list) {
  3017. prev = cfs_rq->leaf_cfs_rq_list.prev;
  3018. } else {
  3019. struct rq *rq = rq_of(cfs_rq);
  3020. prev = rq->tmp_alone_branch;
  3021. }
  3022. prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
  3023. return (prev_cfs_rq->tg->parent == cfs_rq->tg);
  3024. }
  3025. static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
  3026. {
  3027. if (cfs_rq->load.weight)
  3028. return false;
  3029. if (!load_avg_is_decayed(&cfs_rq->avg))
  3030. return false;
  3031. if (child_cfs_rq_on_list(cfs_rq))
  3032. return false;
  3033. return true;
  3034. }
  3035. /**
  3036. * update_tg_load_avg - update the tg's load avg
  3037. * @cfs_rq: the cfs_rq whose avg changed
  3038. *
  3039. * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
  3040. * However, because tg->load_avg is a global value there are performance
  3041. * considerations.
  3042. *
  3043. * In order to avoid having to look at the other cfs_rq's, we use a
  3044. * differential update where we store the last value we propagated. This in
  3045. * turn allows skipping updates if the differential is 'small'.
  3046. *
  3047. * Updating tg's load_avg is necessary before update_cfs_share().
  3048. */
  3049. static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
  3050. {
  3051. long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
  3052. /*
  3053. * No need to update load_avg for root_task_group as it is not used.
  3054. */
  3055. if (cfs_rq->tg == &root_task_group)
  3056. return;
  3057. if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
  3058. atomic_long_add(delta, &cfs_rq->tg->load_avg);
  3059. cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
  3060. }
  3061. }
  3062. /*
  3063. * Called within set_task_rq() right before setting a task's CPU. The
  3064. * caller only guarantees p->pi_lock is held; no other assumptions,
  3065. * including the state of rq->lock, should be made.
  3066. */
  3067. void set_task_rq_fair(struct sched_entity *se,
  3068. struct cfs_rq *prev, struct cfs_rq *next)
  3069. {
  3070. u64 p_last_update_time;
  3071. u64 n_last_update_time;
  3072. if (!sched_feat(ATTACH_AGE_LOAD))
  3073. return;
  3074. /*
  3075. * We are supposed to update the task to "current" time, then its up to
  3076. * date and ready to go to new CPU/cfs_rq. But we have difficulty in
  3077. * getting what current time is, so simply throw away the out-of-date
  3078. * time. This will result in the wakee task is less decayed, but giving
  3079. * the wakee more load sounds not bad.
  3080. */
  3081. if (!(se->avg.last_update_time && prev))
  3082. return;
  3083. p_last_update_time = cfs_rq_last_update_time(prev);
  3084. n_last_update_time = cfs_rq_last_update_time(next);
  3085. __update_load_avg_blocked_se(p_last_update_time, se);
  3086. se->avg.last_update_time = n_last_update_time;
  3087. }
  3088. /*
  3089. * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
  3090. * propagate its contribution. The key to this propagation is the invariant
  3091. * that for each group:
  3092. *
  3093. * ge->avg == grq->avg (1)
  3094. *
  3095. * _IFF_ we look at the pure running and runnable sums. Because they
  3096. * represent the very same entity, just at different points in the hierarchy.
  3097. *
  3098. * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
  3099. * and simply copies the running/runnable sum over (but still wrong, because
  3100. * the group entity and group rq do not have their PELT windows aligned).
  3101. *
  3102. * However, update_tg_cfs_load() is more complex. So we have:
  3103. *
  3104. * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
  3105. *
  3106. * And since, like util, the runnable part should be directly transferable,
  3107. * the following would _appear_ to be the straight forward approach:
  3108. *
  3109. * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
  3110. *
  3111. * And per (1) we have:
  3112. *
  3113. * ge->avg.runnable_avg == grq->avg.runnable_avg
  3114. *
  3115. * Which gives:
  3116. *
  3117. * ge->load.weight * grq->avg.load_avg
  3118. * ge->avg.load_avg = ----------------------------------- (4)
  3119. * grq->load.weight
  3120. *
  3121. * Except that is wrong!
  3122. *
  3123. * Because while for entities historical weight is not important and we
  3124. * really only care about our future and therefore can consider a pure
  3125. * runnable sum, runqueues can NOT do this.
  3126. *
  3127. * We specifically want runqueues to have a load_avg that includes
  3128. * historical weights. Those represent the blocked load, the load we expect
  3129. * to (shortly) return to us. This only works by keeping the weights as
  3130. * integral part of the sum. We therefore cannot decompose as per (3).
  3131. *
  3132. * Another reason this doesn't work is that runnable isn't a 0-sum entity.
  3133. * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
  3134. * rq itself is runnable anywhere between 2/3 and 1 depending on how the
  3135. * runnable section of these tasks overlap (or not). If they were to perfectly
  3136. * align the rq as a whole would be runnable 2/3 of the time. If however we
  3137. * always have at least 1 runnable task, the rq as a whole is always runnable.
  3138. *
  3139. * So we'll have to approximate.. :/
  3140. *
  3141. * Given the constraint:
  3142. *
  3143. * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
  3144. *
  3145. * We can construct a rule that adds runnable to a rq by assuming minimal
  3146. * overlap.
  3147. *
  3148. * On removal, we'll assume each task is equally runnable; which yields:
  3149. *
  3150. * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
  3151. *
  3152. * XXX: only do this for the part of runnable > running ?
  3153. *
  3154. */
  3155. static inline void
  3156. update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
  3157. {
  3158. long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
  3159. u32 new_sum, divider;
  3160. /* Nothing to update */
  3161. if (!delta_avg)
  3162. return;
  3163. /*
  3164. * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
  3165. * See ___update_load_avg() for details.
  3166. */
  3167. divider = get_pelt_divider(&cfs_rq->avg);
  3168. /* Set new sched_entity's utilization */
  3169. se->avg.util_avg = gcfs_rq->avg.util_avg;
  3170. new_sum = se->avg.util_avg * divider;
  3171. delta_sum = (long)new_sum - (long)se->avg.util_sum;
  3172. se->avg.util_sum = new_sum;
  3173. /* Update parent cfs_rq utilization */
  3174. add_positive(&cfs_rq->avg.util_avg, delta_avg);
  3175. add_positive(&cfs_rq->avg.util_sum, delta_sum);
  3176. /* See update_cfs_rq_load_avg() */
  3177. cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
  3178. cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
  3179. }
  3180. static inline void
  3181. update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
  3182. {
  3183. long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
  3184. u32 new_sum, divider;
  3185. /* Nothing to update */
  3186. if (!delta_avg)
  3187. return;
  3188. /*
  3189. * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
  3190. * See ___update_load_avg() for details.
  3191. */
  3192. divider = get_pelt_divider(&cfs_rq->avg);
  3193. /* Set new sched_entity's runnable */
  3194. se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
  3195. new_sum = se->avg.runnable_avg * divider;
  3196. delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
  3197. se->avg.runnable_sum = new_sum;
  3198. /* Update parent cfs_rq runnable */
  3199. add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
  3200. add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
  3201. /* See update_cfs_rq_load_avg() */
  3202. cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
  3203. cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
  3204. }
  3205. static inline void
  3206. update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
  3207. {
  3208. long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
  3209. unsigned long load_avg;
  3210. u64 load_sum = 0;
  3211. s64 delta_sum;
  3212. u32 divider;
  3213. if (!runnable_sum)
  3214. return;
  3215. gcfs_rq->prop_runnable_sum = 0;
  3216. /*
  3217. * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
  3218. * See ___update_load_avg() for details.
  3219. */
  3220. divider = get_pelt_divider(&cfs_rq->avg);
  3221. if (runnable_sum >= 0) {
  3222. /*
  3223. * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
  3224. * the CPU is saturated running == runnable.
  3225. */
  3226. runnable_sum += se->avg.load_sum;
  3227. runnable_sum = min_t(long, runnable_sum, divider);
  3228. } else {
  3229. /*
  3230. * Estimate the new unweighted runnable_sum of the gcfs_rq by
  3231. * assuming all tasks are equally runnable.
  3232. */
  3233. if (scale_load_down(gcfs_rq->load.weight)) {
  3234. load_sum = div_u64(gcfs_rq->avg.load_sum,
  3235. scale_load_down(gcfs_rq->load.weight));
  3236. }
  3237. /* But make sure to not inflate se's runnable */
  3238. runnable_sum = min(se->avg.load_sum, load_sum);
  3239. }
  3240. /*
  3241. * runnable_sum can't be lower than running_sum
  3242. * Rescale running sum to be in the same range as runnable sum
  3243. * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
  3244. * runnable_sum is in [0 : LOAD_AVG_MAX]
  3245. */
  3246. running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
  3247. runnable_sum = max(runnable_sum, running_sum);
  3248. load_sum = se_weight(se) * runnable_sum;
  3249. load_avg = div_u64(load_sum, divider);
  3250. delta_avg = load_avg - se->avg.load_avg;
  3251. if (!delta_avg)
  3252. return;
  3253. delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
  3254. se->avg.load_sum = runnable_sum;
  3255. se->avg.load_avg = load_avg;
  3256. add_positive(&cfs_rq->avg.load_avg, delta_avg);
  3257. add_positive(&cfs_rq->avg.load_sum, delta_sum);
  3258. /* See update_cfs_rq_load_avg() */
  3259. cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
  3260. cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
  3261. }
  3262. static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
  3263. {
  3264. cfs_rq->propagate = 1;
  3265. cfs_rq->prop_runnable_sum += runnable_sum;
  3266. }
  3267. /* Update task and its cfs_rq load average */
  3268. static inline int propagate_entity_load_avg(struct sched_entity *se)
  3269. {
  3270. struct cfs_rq *cfs_rq, *gcfs_rq;
  3271. if (entity_is_task(se))
  3272. return 0;
  3273. gcfs_rq = group_cfs_rq(se);
  3274. if (!gcfs_rq->propagate)
  3275. return 0;
  3276. gcfs_rq->propagate = 0;
  3277. cfs_rq = cfs_rq_of(se);
  3278. add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
  3279. update_tg_cfs_util(cfs_rq, se, gcfs_rq);
  3280. update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
  3281. update_tg_cfs_load(cfs_rq, se, gcfs_rq);
  3282. trace_pelt_cfs_tp(cfs_rq);
  3283. trace_pelt_se_tp(se);
  3284. return 1;
  3285. }
  3286. /*
  3287. * Check if we need to update the load and the utilization of a blocked
  3288. * group_entity:
  3289. */
  3290. static inline bool skip_blocked_update(struct sched_entity *se)
  3291. {
  3292. struct cfs_rq *gcfs_rq = group_cfs_rq(se);
  3293. /*
  3294. * If sched_entity still have not zero load or utilization, we have to
  3295. * decay it:
  3296. */
  3297. if (se->avg.load_avg || se->avg.util_avg)
  3298. return false;
  3299. /*
  3300. * If there is a pending propagation, we have to update the load and
  3301. * the utilization of the sched_entity:
  3302. */
  3303. if (gcfs_rq->propagate)
  3304. return false;
  3305. /*
  3306. * Otherwise, the load and the utilization of the sched_entity is
  3307. * already zero and there is no pending propagation, so it will be a
  3308. * waste of time to try to decay it:
  3309. */
  3310. return true;
  3311. }
  3312. #else /* CONFIG_FAIR_GROUP_SCHED */
  3313. static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
  3314. static inline int propagate_entity_load_avg(struct sched_entity *se)
  3315. {
  3316. return 0;
  3317. }
  3318. static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
  3319. #endif /* CONFIG_FAIR_GROUP_SCHED */
  3320. #ifdef CONFIG_NO_HZ_COMMON
  3321. static inline void migrate_se_pelt_lag(struct sched_entity *se)
  3322. {
  3323. u64 throttled = 0, now, lut;
  3324. struct cfs_rq *cfs_rq;
  3325. struct rq *rq;
  3326. bool is_idle;
  3327. if (load_avg_is_decayed(&se->avg))
  3328. return;
  3329. cfs_rq = cfs_rq_of(se);
  3330. rq = rq_of(cfs_rq);
  3331. rcu_read_lock();
  3332. is_idle = is_idle_task(rcu_dereference(rq->curr));
  3333. rcu_read_unlock();
  3334. /*
  3335. * The lag estimation comes with a cost we don't want to pay all the
  3336. * time. Hence, limiting to the case where the source CPU is idle and
  3337. * we know we are at the greatest risk to have an outdated clock.
  3338. */
  3339. if (!is_idle)
  3340. return;
  3341. /*
  3342. * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
  3343. *
  3344. * last_update_time (the cfs_rq's last_update_time)
  3345. * = cfs_rq_clock_pelt()@cfs_rq_idle
  3346. * = rq_clock_pelt()@cfs_rq_idle
  3347. * - cfs->throttled_clock_pelt_time@cfs_rq_idle
  3348. *
  3349. * cfs_idle_lag (delta between rq's update and cfs_rq's update)
  3350. * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
  3351. *
  3352. * rq_idle_lag (delta between now and rq's update)
  3353. * = sched_clock_cpu() - rq_clock()@rq_idle
  3354. *
  3355. * We can then write:
  3356. *
  3357. * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
  3358. * sched_clock_cpu() - rq_clock()@rq_idle
  3359. * Where:
  3360. * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
  3361. * rq_clock()@rq_idle is rq->clock_idle
  3362. * cfs->throttled_clock_pelt_time@cfs_rq_idle
  3363. * is cfs_rq->throttled_pelt_idle
  3364. */
  3365. #ifdef CONFIG_CFS_BANDWIDTH
  3366. throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
  3367. /* The clock has been stopped for throttling */
  3368. if (throttled == U64_MAX)
  3369. return;
  3370. #endif
  3371. now = u64_u32_load(rq->clock_pelt_idle);
  3372. /*
  3373. * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
  3374. * is observed the old clock_pelt_idle value and the new clock_idle,
  3375. * which lead to an underestimation. The opposite would lead to an
  3376. * overestimation.
  3377. */
  3378. smp_rmb();
  3379. lut = cfs_rq_last_update_time(cfs_rq);
  3380. now -= throttled;
  3381. if (now < lut)
  3382. /*
  3383. * cfs_rq->avg.last_update_time is more recent than our
  3384. * estimation, let's use it.
  3385. */
  3386. now = lut;
  3387. else
  3388. now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
  3389. __update_load_avg_blocked_se(now, se);
  3390. }
  3391. #else
  3392. static void migrate_se_pelt_lag(struct sched_entity *se) {}
  3393. #endif
  3394. /**
  3395. * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
  3396. * @now: current time, as per cfs_rq_clock_pelt()
  3397. * @cfs_rq: cfs_rq to update
  3398. *
  3399. * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
  3400. * avg. The immediate corollary is that all (fair) tasks must be attached.
  3401. *
  3402. * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
  3403. *
  3404. * Return: true if the load decayed or we removed load.
  3405. *
  3406. * Since both these conditions indicate a changed cfs_rq->avg.load we should
  3407. * call update_tg_load_avg() when this function returns true.
  3408. */
  3409. static inline int
  3410. update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
  3411. {
  3412. unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
  3413. struct sched_avg *sa = &cfs_rq->avg;
  3414. int decayed = 0;
  3415. if (cfs_rq->removed.nr) {
  3416. unsigned long r;
  3417. u32 divider = get_pelt_divider(&cfs_rq->avg);
  3418. raw_spin_lock(&cfs_rq->removed.lock);
  3419. swap(cfs_rq->removed.util_avg, removed_util);
  3420. swap(cfs_rq->removed.load_avg, removed_load);
  3421. swap(cfs_rq->removed.runnable_avg, removed_runnable);
  3422. cfs_rq->removed.nr = 0;
  3423. raw_spin_unlock(&cfs_rq->removed.lock);
  3424. r = removed_load;
  3425. sub_positive(&sa->load_avg, r);
  3426. sub_positive(&sa->load_sum, r * divider);
  3427. /* See sa->util_sum below */
  3428. sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
  3429. r = removed_util;
  3430. sub_positive(&sa->util_avg, r);
  3431. sub_positive(&sa->util_sum, r * divider);
  3432. /*
  3433. * Because of rounding, se->util_sum might ends up being +1 more than
  3434. * cfs->util_sum. Although this is not a problem by itself, detaching
  3435. * a lot of tasks with the rounding problem between 2 updates of
  3436. * util_avg (~1ms) can make cfs->util_sum becoming null whereas
  3437. * cfs_util_avg is not.
  3438. * Check that util_sum is still above its lower bound for the new
  3439. * util_avg. Given that period_contrib might have moved since the last
  3440. * sync, we are only sure that util_sum must be above or equal to
  3441. * util_avg * minimum possible divider
  3442. */
  3443. sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
  3444. r = removed_runnable;
  3445. sub_positive(&sa->runnable_avg, r);
  3446. sub_positive(&sa->runnable_sum, r * divider);
  3447. /* See sa->util_sum above */
  3448. sa->runnable_sum = max_t(u32, sa->runnable_sum,
  3449. sa->runnable_avg * PELT_MIN_DIVIDER);
  3450. /*
  3451. * removed_runnable is the unweighted version of removed_load so we
  3452. * can use it to estimate removed_load_sum.
  3453. */
  3454. add_tg_cfs_propagate(cfs_rq,
  3455. -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
  3456. decayed = 1;
  3457. }
  3458. decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
  3459. u64_u32_store_copy(sa->last_update_time,
  3460. cfs_rq->last_update_time_copy,
  3461. sa->last_update_time);
  3462. return decayed;
  3463. }
  3464. /**
  3465. * attach_entity_load_avg - attach this entity to its cfs_rq load avg
  3466. * @cfs_rq: cfs_rq to attach to
  3467. * @se: sched_entity to attach
  3468. *
  3469. * Must call update_cfs_rq_load_avg() before this, since we rely on
  3470. * cfs_rq->avg.last_update_time being current.
  3471. */
  3472. static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  3473. {
  3474. /*
  3475. * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
  3476. * See ___update_load_avg() for details.
  3477. */
  3478. u32 divider = get_pelt_divider(&cfs_rq->avg);
  3479. /*
  3480. * When we attach the @se to the @cfs_rq, we must align the decay
  3481. * window because without that, really weird and wonderful things can
  3482. * happen.
  3483. *
  3484. * XXX illustrate
  3485. */
  3486. se->avg.last_update_time = cfs_rq->avg.last_update_time;
  3487. se->avg.period_contrib = cfs_rq->avg.period_contrib;
  3488. /*
  3489. * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
  3490. * period_contrib. This isn't strictly correct, but since we're
  3491. * entirely outside of the PELT hierarchy, nobody cares if we truncate
  3492. * _sum a little.
  3493. */
  3494. se->avg.util_sum = se->avg.util_avg * divider;
  3495. se->avg.runnable_sum = se->avg.runnable_avg * divider;
  3496. se->avg.load_sum = se->avg.load_avg * divider;
  3497. if (se_weight(se) < se->avg.load_sum)
  3498. se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
  3499. else
  3500. se->avg.load_sum = 1;
  3501. trace_android_rvh_attach_entity_load_avg(cfs_rq, se);
  3502. enqueue_load_avg(cfs_rq, se);
  3503. cfs_rq->avg.util_avg += se->avg.util_avg;
  3504. cfs_rq->avg.util_sum += se->avg.util_sum;
  3505. cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
  3506. cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
  3507. add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
  3508. cfs_rq_util_change(cfs_rq, 0);
  3509. trace_pelt_cfs_tp(cfs_rq);
  3510. }
  3511. /**
  3512. * detach_entity_load_avg - detach this entity from its cfs_rq load avg
  3513. * @cfs_rq: cfs_rq to detach from
  3514. * @se: sched_entity to detach
  3515. *
  3516. * Must call update_cfs_rq_load_avg() before this, since we rely on
  3517. * cfs_rq->avg.last_update_time being current.
  3518. */
  3519. static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  3520. {
  3521. trace_android_rvh_detach_entity_load_avg(cfs_rq, se);
  3522. dequeue_load_avg(cfs_rq, se);
  3523. sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
  3524. sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
  3525. /* See update_cfs_rq_load_avg() */
  3526. cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
  3527. cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
  3528. sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
  3529. sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
  3530. /* See update_cfs_rq_load_avg() */
  3531. cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
  3532. cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
  3533. add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
  3534. cfs_rq_util_change(cfs_rq, 0);
  3535. trace_pelt_cfs_tp(cfs_rq);
  3536. }
  3537. /*
  3538. * Optional action to be done while updating the load average
  3539. */
  3540. #define UPDATE_TG 0x1
  3541. #define SKIP_AGE_LOAD 0x2
  3542. #define DO_ATTACH 0x4
  3543. #define DO_DETACH 0x8
  3544. /* Update task and its cfs_rq load average */
  3545. static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  3546. {
  3547. u64 now = cfs_rq_clock_pelt(cfs_rq);
  3548. int decayed;
  3549. /*
  3550. * Track task load average for carrying it to new CPU after migrated, and
  3551. * track group sched_entity load average for task_h_load calc in migration
  3552. */
  3553. if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
  3554. __update_load_avg_se(now, cfs_rq, se);
  3555. decayed = update_cfs_rq_load_avg(now, cfs_rq);
  3556. decayed |= propagate_entity_load_avg(se);
  3557. trace_android_rvh_update_load_avg(now, cfs_rq, se);
  3558. if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
  3559. /*
  3560. * DO_ATTACH means we're here from enqueue_entity().
  3561. * !last_update_time means we've passed through
  3562. * migrate_task_rq_fair() indicating we migrated.
  3563. *
  3564. * IOW we're enqueueing a task on a new CPU.
  3565. */
  3566. attach_entity_load_avg(cfs_rq, se);
  3567. update_tg_load_avg(cfs_rq);
  3568. } else if (flags & DO_DETACH) {
  3569. /*
  3570. * DO_DETACH means we're here from dequeue_entity()
  3571. * and we are migrating task out of the CPU.
  3572. */
  3573. detach_entity_load_avg(cfs_rq, se);
  3574. update_tg_load_avg(cfs_rq);
  3575. } else if (decayed) {
  3576. cfs_rq_util_change(cfs_rq, 0);
  3577. if (flags & UPDATE_TG)
  3578. update_tg_load_avg(cfs_rq);
  3579. }
  3580. }
  3581. /*
  3582. * Synchronize entity load avg of dequeued entity without locking
  3583. * the previous rq.
  3584. */
  3585. static void sync_entity_load_avg(struct sched_entity *se)
  3586. {
  3587. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3588. u64 last_update_time;
  3589. last_update_time = cfs_rq_last_update_time(cfs_rq);
  3590. __update_load_avg_blocked_se(last_update_time, se);
  3591. }
  3592. /*
  3593. * Task first catches up with cfs_rq, and then subtract
  3594. * itself from the cfs_rq (task must be off the queue now).
  3595. */
  3596. static void remove_entity_load_avg(struct sched_entity *se)
  3597. {
  3598. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3599. unsigned long flags;
  3600. /*
  3601. * tasks cannot exit without having gone through wake_up_new_task() ->
  3602. * enqueue_task_fair() which will have added things to the cfs_rq,
  3603. * so we can remove unconditionally.
  3604. */
  3605. sync_entity_load_avg(se);
  3606. trace_android_rvh_remove_entity_load_avg(cfs_rq, se);
  3607. raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
  3608. ++cfs_rq->removed.nr;
  3609. cfs_rq->removed.util_avg += se->avg.util_avg;
  3610. cfs_rq->removed.load_avg += se->avg.load_avg;
  3611. cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
  3612. raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
  3613. }
  3614. static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
  3615. {
  3616. return cfs_rq->avg.runnable_avg;
  3617. }
  3618. static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
  3619. {
  3620. return cfs_rq->avg.load_avg;
  3621. }
  3622. static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
  3623. static inline unsigned long task_util(struct task_struct *p)
  3624. {
  3625. return READ_ONCE(p->se.avg.util_avg);
  3626. }
  3627. static inline unsigned long _task_util_est(struct task_struct *p)
  3628. {
  3629. struct util_est ue = READ_ONCE(p->se.avg.util_est);
  3630. return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
  3631. }
  3632. static inline unsigned long task_util_est(struct task_struct *p)
  3633. {
  3634. return max(task_util(p), _task_util_est(p));
  3635. }
  3636. static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
  3637. struct task_struct *p)
  3638. {
  3639. unsigned int enqueued;
  3640. if (!sched_feat(UTIL_EST))
  3641. return;
  3642. /* Update root cfs_rq's estimated utilization */
  3643. enqueued = cfs_rq->avg.util_est.enqueued;
  3644. enqueued += _task_util_est(p);
  3645. WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
  3646. trace_sched_util_est_cfs_tp(cfs_rq);
  3647. }
  3648. static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
  3649. struct task_struct *p)
  3650. {
  3651. unsigned int enqueued;
  3652. if (!sched_feat(UTIL_EST))
  3653. return;
  3654. /* Update root cfs_rq's estimated utilization */
  3655. enqueued = cfs_rq->avg.util_est.enqueued;
  3656. enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
  3657. WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
  3658. trace_sched_util_est_cfs_tp(cfs_rq);
  3659. }
  3660. #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
  3661. /*
  3662. * Check if a (signed) value is within a specified (unsigned) margin,
  3663. * based on the observation that:
  3664. *
  3665. * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
  3666. *
  3667. * NOTE: this only works when value + margin < INT_MAX.
  3668. */
  3669. static inline bool within_margin(int value, int margin)
  3670. {
  3671. return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
  3672. }
  3673. static inline void util_est_update(struct cfs_rq *cfs_rq,
  3674. struct task_struct *p,
  3675. bool task_sleep)
  3676. {
  3677. long last_ewma_diff, last_enqueued_diff;
  3678. struct util_est ue;
  3679. int ret = 0;
  3680. trace_android_rvh_util_est_update(cfs_rq, p, task_sleep, &ret);
  3681. if (ret)
  3682. return;
  3683. if (!sched_feat(UTIL_EST))
  3684. return;
  3685. /*
  3686. * Skip update of task's estimated utilization when the task has not
  3687. * yet completed an activation, e.g. being migrated.
  3688. */
  3689. if (!task_sleep)
  3690. return;
  3691. /*
  3692. * If the PELT values haven't changed since enqueue time,
  3693. * skip the util_est update.
  3694. */
  3695. ue = p->se.avg.util_est;
  3696. if (ue.enqueued & UTIL_AVG_UNCHANGED)
  3697. return;
  3698. last_enqueued_diff = ue.enqueued;
  3699. /*
  3700. * Reset EWMA on utilization increases, the moving average is used only
  3701. * to smooth utilization decreases.
  3702. */
  3703. ue.enqueued = task_util(p);
  3704. if (sched_feat(UTIL_EST_FASTUP)) {
  3705. if (ue.ewma < ue.enqueued) {
  3706. ue.ewma = ue.enqueued;
  3707. goto done;
  3708. }
  3709. }
  3710. /*
  3711. * Skip update of task's estimated utilization when its members are
  3712. * already ~1% close to its last activation value.
  3713. */
  3714. last_ewma_diff = ue.enqueued - ue.ewma;
  3715. last_enqueued_diff -= ue.enqueued;
  3716. if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
  3717. if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
  3718. goto done;
  3719. return;
  3720. }
  3721. /*
  3722. * To avoid overestimation of actual task utilization, skip updates if
  3723. * we cannot grant there is idle time in this CPU.
  3724. */
  3725. if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
  3726. return;
  3727. /*
  3728. * Update Task's estimated utilization
  3729. *
  3730. * When *p completes an activation we can consolidate another sample
  3731. * of the task size. This is done by storing the current PELT value
  3732. * as ue.enqueued and by using this value to update the Exponential
  3733. * Weighted Moving Average (EWMA):
  3734. *
  3735. * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
  3736. * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
  3737. * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
  3738. * = w * ( last_ewma_diff ) + ewma(t-1)
  3739. * = w * (last_ewma_diff + ewma(t-1) / w)
  3740. *
  3741. * Where 'w' is the weight of new samples, which is configured to be
  3742. * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
  3743. */
  3744. ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
  3745. ue.ewma += last_ewma_diff;
  3746. ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
  3747. done:
  3748. ue.enqueued |= UTIL_AVG_UNCHANGED;
  3749. WRITE_ONCE(p->se.avg.util_est, ue);
  3750. trace_sched_util_est_se_tp(&p->se);
  3751. }
  3752. static inline int util_fits_cpu(unsigned long util,
  3753. unsigned long uclamp_min,
  3754. unsigned long uclamp_max,
  3755. int cpu)
  3756. {
  3757. unsigned long capacity_orig, capacity_orig_thermal;
  3758. unsigned long capacity = capacity_of(cpu);
  3759. bool fits, uclamp_max_fits, done = false;
  3760. trace_android_rvh_util_fits_cpu(util, uclamp_min, uclamp_max, cpu, &fits, &done);
  3761. if (done)
  3762. return fits;
  3763. /*
  3764. * Check if the real util fits without any uclamp boost/cap applied.
  3765. */
  3766. fits = fits_capacity(util, capacity);
  3767. if (!uclamp_is_used())
  3768. return fits;
  3769. /*
  3770. * We must use capacity_orig_of() for comparing against uclamp_min and
  3771. * uclamp_max. We only care about capacity pressure (by using
  3772. * capacity_of()) for comparing against the real util.
  3773. *
  3774. * If a task is boosted to 1024 for example, we don't want a tiny
  3775. * pressure to skew the check whether it fits a CPU or not.
  3776. *
  3777. * Similarly if a task is capped to capacity_orig_of(little_cpu), it
  3778. * should fit a little cpu even if there's some pressure.
  3779. *
  3780. * Only exception is for thermal pressure since it has a direct impact
  3781. * on available OPP of the system.
  3782. *
  3783. * We honour it for uclamp_min only as a drop in performance level
  3784. * could result in not getting the requested minimum performance level.
  3785. *
  3786. * For uclamp_max, we can tolerate a drop in performance level as the
  3787. * goal is to cap the task. So it's okay if it's getting less.
  3788. */
  3789. capacity_orig = capacity_orig_of(cpu);
  3790. capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
  3791. /*
  3792. * We want to force a task to fit a cpu as implied by uclamp_max.
  3793. * But we do have some corner cases to cater for..
  3794. *
  3795. *
  3796. * C=z
  3797. * | ___
  3798. * | C=y | |
  3799. * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
  3800. * | C=x | | | |
  3801. * | ___ | | | |
  3802. * | | | | | | | (util somewhere in this region)
  3803. * | | | | | | |
  3804. * | | | | | | |
  3805. * +----------------------------------------
  3806. * cpu0 cpu1 cpu2
  3807. *
  3808. * In the above example if a task is capped to a specific performance
  3809. * point, y, then when:
  3810. *
  3811. * * util = 80% of x then it does not fit on cpu0 and should migrate
  3812. * to cpu1
  3813. * * util = 80% of y then it is forced to fit on cpu1 to honour
  3814. * uclamp_max request.
  3815. *
  3816. * which is what we're enforcing here. A task always fits if
  3817. * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
  3818. * the normal upmigration rules should withhold still.
  3819. *
  3820. * Only exception is when we are on max capacity, then we need to be
  3821. * careful not to block overutilized state. This is so because:
  3822. *
  3823. * 1. There's no concept of capping at max_capacity! We can't go
  3824. * beyond this performance level anyway.
  3825. * 2. The system is being saturated when we're operating near
  3826. * max capacity, it doesn't make sense to block overutilized.
  3827. */
  3828. uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
  3829. uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
  3830. fits = fits || uclamp_max_fits;
  3831. /*
  3832. *
  3833. * C=z
  3834. * | ___ (region a, capped, util >= uclamp_max)
  3835. * | C=y | |
  3836. * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
  3837. * | C=x | | | |
  3838. * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
  3839. * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
  3840. * | | | | | | |
  3841. * | | | | | | | (region c, boosted, util < uclamp_min)
  3842. * +----------------------------------------
  3843. * cpu0 cpu1 cpu2
  3844. *
  3845. * a) If util > uclamp_max, then we're capped, we don't care about
  3846. * actual fitness value here. We only care if uclamp_max fits
  3847. * capacity without taking margin/pressure into account.
  3848. * See comment above.
  3849. *
  3850. * b) If uclamp_min <= util <= uclamp_max, then the normal
  3851. * fits_capacity() rules apply. Except we need to ensure that we
  3852. * enforce we remain within uclamp_max, see comment above.
  3853. *
  3854. * c) If util < uclamp_min, then we are boosted. Same as (b) but we
  3855. * need to take into account the boosted value fits the CPU without
  3856. * taking margin/pressure into account.
  3857. *
  3858. * Cases (a) and (b) are handled in the 'fits' variable already. We
  3859. * just need to consider an extra check for case (c) after ensuring we
  3860. * handle the case uclamp_min > uclamp_max.
  3861. */
  3862. uclamp_min = min(uclamp_min, uclamp_max);
  3863. if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
  3864. return -1;
  3865. return fits;
  3866. }
  3867. static inline int task_fits_cpu(struct task_struct *p, int cpu)
  3868. {
  3869. unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
  3870. unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
  3871. unsigned long util = task_util_est(p);
  3872. /*
  3873. * Return true only if the cpu fully fits the task requirements, which
  3874. * include the utilization but also the performance hints.
  3875. */
  3876. return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
  3877. }
  3878. inline void update_misfit_status(struct task_struct *p, struct rq *rq)
  3879. {
  3880. bool need_update = true;
  3881. trace_android_rvh_update_misfit_status(p, rq, &need_update);
  3882. if (!sched_asym_cpucap_active() || !need_update)
  3883. return;
  3884. if (!p || p->nr_cpus_allowed == 1) {
  3885. rq->misfit_task_load = 0;
  3886. return;
  3887. }
  3888. if (task_fits_cpu(p, cpu_of(rq))) {
  3889. rq->misfit_task_load = 0;
  3890. return;
  3891. }
  3892. /*
  3893. * Make sure that misfit_task_load will not be null even if
  3894. * task_h_load() returns 0.
  3895. */
  3896. rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
  3897. }
  3898. EXPORT_SYMBOL_GPL(update_misfit_status);
  3899. #else /* CONFIG_SMP */
  3900. static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
  3901. {
  3902. return !cfs_rq->nr_running;
  3903. }
  3904. #define UPDATE_TG 0x0
  3905. #define SKIP_AGE_LOAD 0x0
  3906. #define DO_ATTACH 0x0
  3907. #define DO_DETACH 0x0
  3908. static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
  3909. {
  3910. cfs_rq_util_change(cfs_rq, 0);
  3911. }
  3912. static inline void remove_entity_load_avg(struct sched_entity *se) {}
  3913. static inline void
  3914. attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  3915. static inline void
  3916. detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  3917. static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
  3918. {
  3919. return 0;
  3920. }
  3921. static inline void
  3922. util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
  3923. static inline void
  3924. util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
  3925. static inline void
  3926. util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
  3927. bool task_sleep) {}
  3928. static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
  3929. #endif /* CONFIG_SMP */
  3930. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  3931. {
  3932. #ifdef CONFIG_SCHED_DEBUG
  3933. s64 d = se->vruntime - cfs_rq->min_vruntime;
  3934. if (d < 0)
  3935. d = -d;
  3936. if (d > 3*sysctl_sched_latency)
  3937. schedstat_inc(cfs_rq->nr_spread_over);
  3938. #endif
  3939. }
  3940. static inline bool entity_is_long_sleeper(struct sched_entity *se)
  3941. {
  3942. struct cfs_rq *cfs_rq;
  3943. u64 sleep_time;
  3944. if (se->exec_start == 0)
  3945. return false;
  3946. cfs_rq = cfs_rq_of(se);
  3947. sleep_time = rq_clock_task(rq_of(cfs_rq));
  3948. /* Happen while migrating because of clock task divergence */
  3949. if (sleep_time <= se->exec_start)
  3950. return false;
  3951. sleep_time -= se->exec_start;
  3952. if (sleep_time > ((1ULL << 63) / scale_load_down(NICE_0_LOAD)))
  3953. return true;
  3954. return false;
  3955. }
  3956. static void
  3957. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  3958. {
  3959. u64 vruntime = cfs_rq->min_vruntime;
  3960. /*
  3961. * The 'current' period is already promised to the current tasks,
  3962. * however the extra weight of the new task will slow them down a
  3963. * little, place the new task so that it fits in the slot that
  3964. * stays open at the end.
  3965. */
  3966. if (initial && sched_feat(START_DEBIT))
  3967. vruntime += sched_vslice(cfs_rq, se);
  3968. /* sleeps up to a single latency don't count. */
  3969. if (!initial) {
  3970. unsigned long thresh;
  3971. if (se_is_idle(se))
  3972. thresh = sysctl_sched_min_granularity;
  3973. else
  3974. thresh = sysctl_sched_latency;
  3975. /*
  3976. * Halve their sleep time's effect, to allow
  3977. * for a gentler effect of sleepers:
  3978. */
  3979. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  3980. thresh >>= 1;
  3981. vruntime -= thresh;
  3982. }
  3983. trace_android_rvh_place_entity(cfs_rq, se, initial, &vruntime);
  3984. /*
  3985. * Pull vruntime of the entity being placed to the base level of
  3986. * cfs_rq, to prevent boosting it if placed backwards.
  3987. * However, min_vruntime can advance much faster than real time, with
  3988. * the extreme being when an entity with the minimal weight always runs
  3989. * on the cfs_rq. If the waking entity slept for a long time, its
  3990. * vruntime difference from min_vruntime may overflow s64 and their
  3991. * comparison may get inversed, so ignore the entity's original
  3992. * vruntime in that case.
  3993. * The maximal vruntime speedup is given by the ratio of normal to
  3994. * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES.
  3995. * When placing a migrated waking entity, its exec_start has been set
  3996. * from a different rq. In order to take into account a possible
  3997. * divergence between new and prev rq's clocks task because of irq and
  3998. * stolen time, we take an additional margin.
  3999. * So, cutting off on the sleep time of
  4000. * 2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days
  4001. * should be safe.
  4002. */
  4003. if (entity_is_long_sleeper(se))
  4004. se->vruntime = vruntime;
  4005. else
  4006. se->vruntime = max_vruntime(se->vruntime, vruntime);
  4007. }
  4008. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  4009. static inline bool cfs_bandwidth_used(void);
  4010. /*
  4011. * MIGRATION
  4012. *
  4013. * dequeue
  4014. * update_curr()
  4015. * update_min_vruntime()
  4016. * vruntime -= min_vruntime
  4017. *
  4018. * enqueue
  4019. * update_curr()
  4020. * update_min_vruntime()
  4021. * vruntime += min_vruntime
  4022. *
  4023. * this way the vruntime transition between RQs is done when both
  4024. * min_vruntime are up-to-date.
  4025. *
  4026. * WAKEUP (remote)
  4027. *
  4028. * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
  4029. * vruntime -= min_vruntime
  4030. *
  4031. * enqueue
  4032. * update_curr()
  4033. * update_min_vruntime()
  4034. * vruntime += min_vruntime
  4035. *
  4036. * this way we don't have the most up-to-date min_vruntime on the originating
  4037. * CPU and an up-to-date min_vruntime on the destination CPU.
  4038. */
  4039. static void
  4040. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  4041. {
  4042. bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
  4043. bool curr = cfs_rq->curr == se;
  4044. /*
  4045. * If we're the current task, we must renormalise before calling
  4046. * update_curr().
  4047. */
  4048. if (renorm && curr)
  4049. se->vruntime += cfs_rq->min_vruntime;
  4050. update_curr(cfs_rq);
  4051. /*
  4052. * Otherwise, renormalise after, such that we're placed at the current
  4053. * moment in time, instead of some random moment in the past. Being
  4054. * placed in the past could significantly boost this task to the
  4055. * fairness detriment of existing tasks.
  4056. */
  4057. if (renorm && !curr)
  4058. se->vruntime += cfs_rq->min_vruntime;
  4059. /*
  4060. * When enqueuing a sched_entity, we must:
  4061. * - Update loads to have both entity and cfs_rq synced with now.
  4062. * - For group_entity, update its runnable_weight to reflect the new
  4063. * h_nr_running of its group cfs_rq.
  4064. * - For group_entity, update its weight to reflect the new share of
  4065. * its group cfs_rq
  4066. * - Add its new weight to cfs_rq->load.weight
  4067. */
  4068. update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
  4069. se_update_runnable(se);
  4070. update_cfs_group(se);
  4071. account_entity_enqueue(cfs_rq, se);
  4072. if (flags & ENQUEUE_WAKEUP)
  4073. place_entity(cfs_rq, se, 0);
  4074. /* Entity has migrated, no longer consider this task hot */
  4075. if (flags & ENQUEUE_MIGRATED)
  4076. se->exec_start = 0;
  4077. check_schedstat_required();
  4078. update_stats_enqueue_fair(cfs_rq, se, flags);
  4079. check_spread(cfs_rq, se);
  4080. if (!curr)
  4081. __enqueue_entity(cfs_rq, se);
  4082. se->on_rq = 1;
  4083. if (cfs_rq->nr_running == 1) {
  4084. check_enqueue_throttle(cfs_rq);
  4085. if (!throttled_hierarchy(cfs_rq))
  4086. list_add_leaf_cfs_rq(cfs_rq);
  4087. }
  4088. }
  4089. static void __clear_buddies_last(struct sched_entity *se)
  4090. {
  4091. for_each_sched_entity(se) {
  4092. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4093. if (cfs_rq->last != se)
  4094. break;
  4095. cfs_rq->last = NULL;
  4096. }
  4097. }
  4098. static void __clear_buddies_next(struct sched_entity *se)
  4099. {
  4100. for_each_sched_entity(se) {
  4101. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4102. if (cfs_rq->next != se)
  4103. break;
  4104. cfs_rq->next = NULL;
  4105. }
  4106. }
  4107. static void __clear_buddies_skip(struct sched_entity *se)
  4108. {
  4109. for_each_sched_entity(se) {
  4110. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4111. if (cfs_rq->skip != se)
  4112. break;
  4113. cfs_rq->skip = NULL;
  4114. }
  4115. }
  4116. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  4117. {
  4118. if (cfs_rq->last == se)
  4119. __clear_buddies_last(se);
  4120. if (cfs_rq->next == se)
  4121. __clear_buddies_next(se);
  4122. if (cfs_rq->skip == se)
  4123. __clear_buddies_skip(se);
  4124. }
  4125. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  4126. static void
  4127. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  4128. {
  4129. int action = UPDATE_TG;
  4130. if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
  4131. action |= DO_DETACH;
  4132. /*
  4133. * Update run-time statistics of the 'current'.
  4134. */
  4135. update_curr(cfs_rq);
  4136. /*
  4137. * When dequeuing a sched_entity, we must:
  4138. * - Update loads to have both entity and cfs_rq synced with now.
  4139. * - For group_entity, update its runnable_weight to reflect the new
  4140. * h_nr_running of its group cfs_rq.
  4141. * - Subtract its previous weight from cfs_rq->load.weight.
  4142. * - For group entity, update its weight to reflect the new share
  4143. * of its group cfs_rq.
  4144. */
  4145. update_load_avg(cfs_rq, se, action);
  4146. se_update_runnable(se);
  4147. update_stats_dequeue_fair(cfs_rq, se, flags);
  4148. clear_buddies(cfs_rq, se);
  4149. if (se != cfs_rq->curr)
  4150. __dequeue_entity(cfs_rq, se);
  4151. se->on_rq = 0;
  4152. account_entity_dequeue(cfs_rq, se);
  4153. /*
  4154. * Normalize after update_curr(); which will also have moved
  4155. * min_vruntime if @se is the one holding it back. But before doing
  4156. * update_min_vruntime() again, which will discount @se's position and
  4157. * can move min_vruntime forward still more.
  4158. */
  4159. if (!(flags & DEQUEUE_SLEEP))
  4160. se->vruntime -= cfs_rq->min_vruntime;
  4161. /* return excess runtime on last dequeue */
  4162. return_cfs_rq_runtime(cfs_rq);
  4163. update_cfs_group(se);
  4164. /*
  4165. * Now advance min_vruntime if @se was the entity holding it back,
  4166. * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
  4167. * put back on, and if we advance min_vruntime, we'll be placed back
  4168. * further than we started -- ie. we'll be penalized.
  4169. */
  4170. if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
  4171. update_min_vruntime(cfs_rq);
  4172. if (cfs_rq->nr_running == 0)
  4173. update_idle_cfs_rq_clock_pelt(cfs_rq);
  4174. }
  4175. /*
  4176. * Preempt the current task with a newly woken task if needed:
  4177. */
  4178. static void
  4179. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  4180. {
  4181. unsigned long ideal_runtime, delta_exec;
  4182. struct sched_entity *se;
  4183. s64 delta;
  4184. bool skip_preempt = false;
  4185. /*
  4186. * When many tasks blow up the sched_period; it is possible that
  4187. * sched_slice() reports unusually large results (when many tasks are
  4188. * very light for example). Therefore impose a maximum.
  4189. */
  4190. ideal_runtime = min_t(u64, sched_slice(cfs_rq, curr), sysctl_sched_latency);
  4191. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  4192. trace_android_rvh_check_preempt_tick(current, &ideal_runtime, &skip_preempt,
  4193. delta_exec, cfs_rq, curr, sysctl_sched_min_granularity);
  4194. if (skip_preempt)
  4195. return;
  4196. if (delta_exec > ideal_runtime) {
  4197. resched_curr(rq_of(cfs_rq));
  4198. /*
  4199. * The current task ran long enough, ensure it doesn't get
  4200. * re-elected due to buddy favours.
  4201. */
  4202. clear_buddies(cfs_rq, curr);
  4203. return;
  4204. }
  4205. /*
  4206. * Ensure that a task that missed wakeup preemption by a
  4207. * narrow margin doesn't have to wait for a full slice.
  4208. * This also mitigates buddy induced latencies under load.
  4209. */
  4210. if (delta_exec < sysctl_sched_min_granularity)
  4211. return;
  4212. se = __pick_first_entity(cfs_rq);
  4213. delta = curr->vruntime - se->vruntime;
  4214. if (delta < 0)
  4215. return;
  4216. if (delta > ideal_runtime)
  4217. resched_curr(rq_of(cfs_rq));
  4218. }
  4219. void set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  4220. {
  4221. clear_buddies(cfs_rq, se);
  4222. /* 'current' is not kept within the tree. */
  4223. if (se->on_rq) {
  4224. /*
  4225. * Any task has to be enqueued before it get to execute on
  4226. * a CPU. So account for the time it spent waiting on the
  4227. * runqueue.
  4228. */
  4229. update_stats_wait_end_fair(cfs_rq, se);
  4230. __dequeue_entity(cfs_rq, se);
  4231. update_load_avg(cfs_rq, se, UPDATE_TG);
  4232. }
  4233. update_stats_curr_start(cfs_rq, se);
  4234. cfs_rq->curr = se;
  4235. /*
  4236. * Track our maximum slice length, if the CPU's load is at
  4237. * least twice that of our own weight (i.e. dont track it
  4238. * when there are only lesser-weight tasks around):
  4239. */
  4240. if (schedstat_enabled() &&
  4241. rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
  4242. struct sched_statistics *stats;
  4243. stats = __schedstats_from_se(se);
  4244. __schedstat_set(stats->slice_max,
  4245. max((u64)stats->slice_max,
  4246. se->sum_exec_runtime - se->prev_sum_exec_runtime));
  4247. }
  4248. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  4249. }
  4250. EXPORT_SYMBOL_GPL(set_next_entity);
  4251. static int
  4252. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  4253. /*
  4254. * Pick the next process, keeping these things in mind, in this order:
  4255. * 1) keep things fair between processes/task groups
  4256. * 2) pick the "next" process, since someone really wants that to run
  4257. * 3) pick the "last" process, for cache locality
  4258. * 4) do not run the "skip" process, if something else is available
  4259. */
  4260. static struct sched_entity *
  4261. pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  4262. {
  4263. struct sched_entity *left = __pick_first_entity(cfs_rq);
  4264. struct sched_entity *se = NULL;
  4265. trace_android_rvh_pick_next_entity(cfs_rq, curr, &se);
  4266. if (se)
  4267. goto done;
  4268. /*
  4269. * If curr is set we have to see if its left of the leftmost entity
  4270. * still in the tree, provided there was anything in the tree at all.
  4271. */
  4272. if (!left || (curr && entity_before(curr, left)))
  4273. left = curr;
  4274. se = left; /* ideally we run the leftmost entity */
  4275. /*
  4276. * Avoid running the skip buddy, if running something else can
  4277. * be done without getting too unfair.
  4278. */
  4279. if (cfs_rq->skip && cfs_rq->skip == se) {
  4280. struct sched_entity *second;
  4281. if (se == curr) {
  4282. second = __pick_first_entity(cfs_rq);
  4283. } else {
  4284. second = __pick_next_entity(se);
  4285. if (!second || (curr && entity_before(curr, second)))
  4286. second = curr;
  4287. }
  4288. if (second && (!left || wakeup_preempt_entity(second, left) < 1))
  4289. se = second;
  4290. }
  4291. if (cfs_rq->next && (!left || wakeup_preempt_entity(cfs_rq->next, left) < 1)) {
  4292. /*
  4293. * Someone really wants this to run. If it's not unfair, run it.
  4294. */
  4295. se = cfs_rq->next;
  4296. } else if (cfs_rq->last && (!left || wakeup_preempt_entity(cfs_rq->last, left) < 1)) {
  4297. /*
  4298. * Prefer last buddy, try to return the CPU to a preempted task.
  4299. */
  4300. se = cfs_rq->last;
  4301. }
  4302. done:
  4303. return se;
  4304. }
  4305. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  4306. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  4307. {
  4308. /*
  4309. * If still on the runqueue then deactivate_task()
  4310. * was not called and update_curr() has to be done:
  4311. */
  4312. if (prev->on_rq)
  4313. update_curr(cfs_rq);
  4314. /* throttle cfs_rqs exceeding runtime */
  4315. check_cfs_rq_runtime(cfs_rq);
  4316. check_spread(cfs_rq, prev);
  4317. if (prev->on_rq) {
  4318. update_stats_wait_start_fair(cfs_rq, prev);
  4319. /* Put 'current' back into the tree. */
  4320. __enqueue_entity(cfs_rq, prev);
  4321. /* in !on_rq case, update occurred at dequeue */
  4322. update_load_avg(cfs_rq, prev, 0);
  4323. }
  4324. cfs_rq->curr = NULL;
  4325. }
  4326. static void
  4327. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  4328. {
  4329. /*
  4330. * Update run-time statistics of the 'current'.
  4331. */
  4332. update_curr(cfs_rq);
  4333. /*
  4334. * Ensure that runnable average is periodically updated.
  4335. */
  4336. update_load_avg(cfs_rq, curr, UPDATE_TG);
  4337. update_cfs_group(curr);
  4338. #ifdef CONFIG_SCHED_HRTICK
  4339. /*
  4340. * queued ticks are scheduled to match the slice, so don't bother
  4341. * validating it and just reschedule.
  4342. */
  4343. if (queued) {
  4344. resched_curr(rq_of(cfs_rq));
  4345. return;
  4346. }
  4347. /*
  4348. * don't let the period tick interfere with the hrtick preemption
  4349. */
  4350. if (!sched_feat(DOUBLE_TICK) &&
  4351. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  4352. return;
  4353. #endif
  4354. if (cfs_rq->nr_running > 1)
  4355. check_preempt_tick(cfs_rq, curr);
  4356. trace_android_rvh_entity_tick(cfs_rq, curr);
  4357. }
  4358. /**************************************************
  4359. * CFS bandwidth control machinery
  4360. */
  4361. #ifdef CONFIG_CFS_BANDWIDTH
  4362. #ifdef CONFIG_JUMP_LABEL
  4363. static struct static_key __cfs_bandwidth_used;
  4364. static inline bool cfs_bandwidth_used(void)
  4365. {
  4366. return static_key_false(&__cfs_bandwidth_used);
  4367. }
  4368. void cfs_bandwidth_usage_inc(void)
  4369. {
  4370. static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
  4371. }
  4372. void cfs_bandwidth_usage_dec(void)
  4373. {
  4374. static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
  4375. }
  4376. #else /* CONFIG_JUMP_LABEL */
  4377. static bool cfs_bandwidth_used(void)
  4378. {
  4379. return true;
  4380. }
  4381. void cfs_bandwidth_usage_inc(void) {}
  4382. void cfs_bandwidth_usage_dec(void) {}
  4383. #endif /* CONFIG_JUMP_LABEL */
  4384. /*
  4385. * default period for cfs group bandwidth.
  4386. * default: 0.1s, units: nanoseconds
  4387. */
  4388. static inline u64 default_cfs_period(void)
  4389. {
  4390. return 100000000ULL;
  4391. }
  4392. static inline u64 sched_cfs_bandwidth_slice(void)
  4393. {
  4394. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  4395. }
  4396. /*
  4397. * Replenish runtime according to assigned quota. We use sched_clock_cpu
  4398. * directly instead of rq->clock to avoid adding additional synchronization
  4399. * around rq->lock.
  4400. *
  4401. * requires cfs_b->lock
  4402. */
  4403. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  4404. {
  4405. s64 runtime;
  4406. if (unlikely(cfs_b->quota == RUNTIME_INF))
  4407. return;
  4408. cfs_b->runtime += cfs_b->quota;
  4409. runtime = cfs_b->runtime_snap - cfs_b->runtime;
  4410. if (runtime > 0) {
  4411. cfs_b->burst_time += runtime;
  4412. cfs_b->nr_burst++;
  4413. }
  4414. cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
  4415. cfs_b->runtime_snap = cfs_b->runtime;
  4416. }
  4417. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  4418. {
  4419. return &tg->cfs_bandwidth;
  4420. }
  4421. /* returns 0 on failure to allocate runtime */
  4422. static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
  4423. struct cfs_rq *cfs_rq, u64 target_runtime)
  4424. {
  4425. u64 min_amount, amount = 0;
  4426. lockdep_assert_held(&cfs_b->lock);
  4427. /* note: this is a positive sum as runtime_remaining <= 0 */
  4428. min_amount = target_runtime - cfs_rq->runtime_remaining;
  4429. if (cfs_b->quota == RUNTIME_INF)
  4430. amount = min_amount;
  4431. else {
  4432. start_cfs_bandwidth(cfs_b);
  4433. if (cfs_b->runtime > 0) {
  4434. amount = min(cfs_b->runtime, min_amount);
  4435. cfs_b->runtime -= amount;
  4436. cfs_b->idle = 0;
  4437. }
  4438. }
  4439. cfs_rq->runtime_remaining += amount;
  4440. return cfs_rq->runtime_remaining > 0;
  4441. }
  4442. /* returns 0 on failure to allocate runtime */
  4443. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  4444. {
  4445. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  4446. int ret;
  4447. raw_spin_lock(&cfs_b->lock);
  4448. ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
  4449. raw_spin_unlock(&cfs_b->lock);
  4450. return ret;
  4451. }
  4452. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  4453. {
  4454. /* dock delta_exec before expiring quota (as it could span periods) */
  4455. cfs_rq->runtime_remaining -= delta_exec;
  4456. if (likely(cfs_rq->runtime_remaining > 0))
  4457. return;
  4458. if (cfs_rq->throttled)
  4459. return;
  4460. /*
  4461. * if we're unable to extend our runtime we resched so that the active
  4462. * hierarchy can be throttled
  4463. */
  4464. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  4465. resched_curr(rq_of(cfs_rq));
  4466. }
  4467. static __always_inline
  4468. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  4469. {
  4470. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  4471. return;
  4472. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  4473. }
  4474. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  4475. {
  4476. return cfs_bandwidth_used() && cfs_rq->throttled;
  4477. }
  4478. /* check whether cfs_rq, or any parent, is throttled */
  4479. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  4480. {
  4481. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  4482. }
  4483. /*
  4484. * Ensure that neither of the group entities corresponding to src_cpu or
  4485. * dest_cpu are members of a throttled hierarchy when performing group
  4486. * load-balance operations.
  4487. */
  4488. static inline int throttled_lb_pair(struct task_group *tg,
  4489. int src_cpu, int dest_cpu)
  4490. {
  4491. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  4492. src_cfs_rq = tg->cfs_rq[src_cpu];
  4493. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  4494. return throttled_hierarchy(src_cfs_rq) ||
  4495. throttled_hierarchy(dest_cfs_rq);
  4496. }
  4497. static int tg_unthrottle_up(struct task_group *tg, void *data)
  4498. {
  4499. struct rq *rq = data;
  4500. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  4501. cfs_rq->throttle_count--;
  4502. if (!cfs_rq->throttle_count) {
  4503. cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
  4504. cfs_rq->throttled_clock_pelt;
  4505. /* Add cfs_rq with load or one or more already running entities to the list */
  4506. if (!cfs_rq_is_decayed(cfs_rq))
  4507. list_add_leaf_cfs_rq(cfs_rq);
  4508. }
  4509. return 0;
  4510. }
  4511. static int tg_throttle_down(struct task_group *tg, void *data)
  4512. {
  4513. struct rq *rq = data;
  4514. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  4515. /* group is entering throttled state, stop time */
  4516. if (!cfs_rq->throttle_count) {
  4517. cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
  4518. list_del_leaf_cfs_rq(cfs_rq);
  4519. }
  4520. cfs_rq->throttle_count++;
  4521. return 0;
  4522. }
  4523. static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
  4524. {
  4525. struct rq *rq = rq_of(cfs_rq);
  4526. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  4527. struct sched_entity *se;
  4528. long task_delta, idle_task_delta, dequeue = 1;
  4529. raw_spin_lock(&cfs_b->lock);
  4530. /* This will start the period timer if necessary */
  4531. if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
  4532. /*
  4533. * We have raced with bandwidth becoming available, and if we
  4534. * actually throttled the timer might not unthrottle us for an
  4535. * entire period. We additionally needed to make sure that any
  4536. * subsequent check_cfs_rq_runtime calls agree not to throttle
  4537. * us, as we may commit to do cfs put_prev+pick_next, so we ask
  4538. * for 1ns of runtime rather than just check cfs_b.
  4539. */
  4540. dequeue = 0;
  4541. } else {
  4542. list_add_tail_rcu(&cfs_rq->throttled_list,
  4543. &cfs_b->throttled_cfs_rq);
  4544. }
  4545. raw_spin_unlock(&cfs_b->lock);
  4546. if (!dequeue)
  4547. return false; /* Throttle no longer required. */
  4548. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  4549. /* freeze hierarchy runnable averages while throttled */
  4550. rcu_read_lock();
  4551. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  4552. rcu_read_unlock();
  4553. task_delta = cfs_rq->h_nr_running;
  4554. idle_task_delta = cfs_rq->idle_h_nr_running;
  4555. for_each_sched_entity(se) {
  4556. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  4557. /* throttled entity or throttle-on-deactivate */
  4558. if (!se->on_rq)
  4559. goto done;
  4560. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  4561. if (cfs_rq_is_idle(group_cfs_rq(se)))
  4562. idle_task_delta = cfs_rq->h_nr_running;
  4563. qcfs_rq->h_nr_running -= task_delta;
  4564. qcfs_rq->idle_h_nr_running -= idle_task_delta;
  4565. if (qcfs_rq->load.weight) {
  4566. /* Avoid re-evaluating load for this entity: */
  4567. se = parent_entity(se);
  4568. break;
  4569. }
  4570. }
  4571. for_each_sched_entity(se) {
  4572. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  4573. /* throttled entity or throttle-on-deactivate */
  4574. if (!se->on_rq)
  4575. goto done;
  4576. update_load_avg(qcfs_rq, se, 0);
  4577. se_update_runnable(se);
  4578. if (cfs_rq_is_idle(group_cfs_rq(se)))
  4579. idle_task_delta = cfs_rq->h_nr_running;
  4580. qcfs_rq->h_nr_running -= task_delta;
  4581. qcfs_rq->idle_h_nr_running -= idle_task_delta;
  4582. }
  4583. /* At this point se is NULL and we are at root level*/
  4584. sub_nr_running(rq, task_delta);
  4585. done:
  4586. /*
  4587. * Note: distribution will already see us throttled via the
  4588. * throttled-list. rq->lock protects completion.
  4589. */
  4590. cfs_rq->throttled = 1;
  4591. cfs_rq->throttled_clock = rq_clock(rq);
  4592. return true;
  4593. }
  4594. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  4595. {
  4596. struct rq *rq = rq_of(cfs_rq);
  4597. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  4598. struct sched_entity *se;
  4599. long task_delta, idle_task_delta;
  4600. se = cfs_rq->tg->se[cpu_of(rq)];
  4601. cfs_rq->throttled = 0;
  4602. update_rq_clock(rq);
  4603. raw_spin_lock(&cfs_b->lock);
  4604. cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
  4605. list_del_rcu(&cfs_rq->throttled_list);
  4606. raw_spin_unlock(&cfs_b->lock);
  4607. /* update hierarchical throttle state */
  4608. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  4609. if (!cfs_rq->load.weight) {
  4610. if (!cfs_rq->on_list)
  4611. return;
  4612. /*
  4613. * Nothing to run but something to decay (on_list)?
  4614. * Complete the branch.
  4615. */
  4616. for_each_sched_entity(se) {
  4617. if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
  4618. break;
  4619. }
  4620. goto unthrottle_throttle;
  4621. }
  4622. task_delta = cfs_rq->h_nr_running;
  4623. idle_task_delta = cfs_rq->idle_h_nr_running;
  4624. for_each_sched_entity(se) {
  4625. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  4626. if (se->on_rq)
  4627. break;
  4628. enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
  4629. if (cfs_rq_is_idle(group_cfs_rq(se)))
  4630. idle_task_delta = cfs_rq->h_nr_running;
  4631. qcfs_rq->h_nr_running += task_delta;
  4632. qcfs_rq->idle_h_nr_running += idle_task_delta;
  4633. /* end evaluation on encountering a throttled cfs_rq */
  4634. if (cfs_rq_throttled(qcfs_rq))
  4635. goto unthrottle_throttle;
  4636. }
  4637. for_each_sched_entity(se) {
  4638. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  4639. update_load_avg(qcfs_rq, se, UPDATE_TG);
  4640. se_update_runnable(se);
  4641. if (cfs_rq_is_idle(group_cfs_rq(se)))
  4642. idle_task_delta = cfs_rq->h_nr_running;
  4643. qcfs_rq->h_nr_running += task_delta;
  4644. qcfs_rq->idle_h_nr_running += idle_task_delta;
  4645. /* end evaluation on encountering a throttled cfs_rq */
  4646. if (cfs_rq_throttled(qcfs_rq))
  4647. goto unthrottle_throttle;
  4648. }
  4649. /* At this point se is NULL and we are at root level*/
  4650. add_nr_running(rq, task_delta);
  4651. unthrottle_throttle:
  4652. assert_list_leaf_cfs_rq(rq);
  4653. /* Determine whether we need to wake up potentially idle CPU: */
  4654. if (rq->curr == rq->idle && rq->cfs.nr_running)
  4655. resched_curr(rq);
  4656. }
  4657. static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
  4658. {
  4659. struct cfs_rq *cfs_rq;
  4660. u64 runtime, remaining = 1;
  4661. rcu_read_lock();
  4662. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  4663. throttled_list) {
  4664. struct rq *rq = rq_of(cfs_rq);
  4665. struct rq_flags rf;
  4666. rq_lock_irqsave(rq, &rf);
  4667. if (!cfs_rq_throttled(cfs_rq))
  4668. goto next;
  4669. /* By the above check, this should never be true */
  4670. SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
  4671. raw_spin_lock(&cfs_b->lock);
  4672. runtime = -cfs_rq->runtime_remaining + 1;
  4673. if (runtime > cfs_b->runtime)
  4674. runtime = cfs_b->runtime;
  4675. cfs_b->runtime -= runtime;
  4676. remaining = cfs_b->runtime;
  4677. raw_spin_unlock(&cfs_b->lock);
  4678. cfs_rq->runtime_remaining += runtime;
  4679. /* we check whether we're throttled above */
  4680. if (cfs_rq->runtime_remaining > 0)
  4681. unthrottle_cfs_rq(cfs_rq);
  4682. next:
  4683. rq_unlock_irqrestore(rq, &rf);
  4684. if (!remaining)
  4685. break;
  4686. }
  4687. rcu_read_unlock();
  4688. }
  4689. /*
  4690. * Responsible for refilling a task_group's bandwidth and unthrottling its
  4691. * cfs_rqs as appropriate. If there has been no activity within the last
  4692. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  4693. * used to track this state.
  4694. */
  4695. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
  4696. {
  4697. int throttled;
  4698. /* no need to continue the timer with no bandwidth constraint */
  4699. if (cfs_b->quota == RUNTIME_INF)
  4700. goto out_deactivate;
  4701. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  4702. cfs_b->nr_periods += overrun;
  4703. /* Refill extra burst quota even if cfs_b->idle */
  4704. __refill_cfs_bandwidth_runtime(cfs_b);
  4705. /*
  4706. * idle depends on !throttled (for the case of a large deficit), and if
  4707. * we're going inactive then everything else can be deferred
  4708. */
  4709. if (cfs_b->idle && !throttled)
  4710. goto out_deactivate;
  4711. if (!throttled) {
  4712. /* mark as potentially idle for the upcoming period */
  4713. cfs_b->idle = 1;
  4714. return 0;
  4715. }
  4716. /* account preceding periods in which throttling occurred */
  4717. cfs_b->nr_throttled += overrun;
  4718. /*
  4719. * This check is repeated as we release cfs_b->lock while we unthrottle.
  4720. */
  4721. while (throttled && cfs_b->runtime > 0) {
  4722. raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
  4723. /* we can't nest cfs_b->lock while distributing bandwidth */
  4724. distribute_cfs_runtime(cfs_b);
  4725. raw_spin_lock_irqsave(&cfs_b->lock, flags);
  4726. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  4727. }
  4728. /*
  4729. * While we are ensured activity in the period following an
  4730. * unthrottle, this also covers the case in which the new bandwidth is
  4731. * insufficient to cover the existing bandwidth deficit. (Forcing the
  4732. * timer to remain active while there are any throttled entities.)
  4733. */
  4734. cfs_b->idle = 0;
  4735. return 0;
  4736. out_deactivate:
  4737. return 1;
  4738. }
  4739. /* a cfs_rq won't donate quota below this amount */
  4740. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  4741. /* minimum remaining period time to redistribute slack quota */
  4742. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  4743. /* how long we wait to gather additional slack before distributing */
  4744. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  4745. /*
  4746. * Are we near the end of the current quota period?
  4747. *
  4748. * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
  4749. * hrtimer base being cleared by hrtimer_start. In the case of
  4750. * migrate_hrtimers, base is never cleared, so we are fine.
  4751. */
  4752. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  4753. {
  4754. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  4755. s64 remaining;
  4756. /* if the call-back is running a quota refresh is already occurring */
  4757. if (hrtimer_callback_running(refresh_timer))
  4758. return 1;
  4759. /* is a quota refresh about to occur? */
  4760. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  4761. if (remaining < (s64)min_expire)
  4762. return 1;
  4763. return 0;
  4764. }
  4765. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  4766. {
  4767. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  4768. /* if there's a quota refresh soon don't bother with slack */
  4769. if (runtime_refresh_within(cfs_b, min_left))
  4770. return;
  4771. /* don't push forwards an existing deferred unthrottle */
  4772. if (cfs_b->slack_started)
  4773. return;
  4774. cfs_b->slack_started = true;
  4775. hrtimer_start(&cfs_b->slack_timer,
  4776. ns_to_ktime(cfs_bandwidth_slack_period),
  4777. HRTIMER_MODE_REL);
  4778. }
  4779. /* we know any runtime found here is valid as update_curr() precedes return */
  4780. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  4781. {
  4782. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  4783. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  4784. if (slack_runtime <= 0)
  4785. return;
  4786. raw_spin_lock(&cfs_b->lock);
  4787. if (cfs_b->quota != RUNTIME_INF) {
  4788. cfs_b->runtime += slack_runtime;
  4789. /* we are under rq->lock, defer unthrottling using a timer */
  4790. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  4791. !list_empty(&cfs_b->throttled_cfs_rq))
  4792. start_cfs_slack_bandwidth(cfs_b);
  4793. }
  4794. raw_spin_unlock(&cfs_b->lock);
  4795. /* even if it's not valid for return we don't want to try again */
  4796. cfs_rq->runtime_remaining -= slack_runtime;
  4797. }
  4798. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  4799. {
  4800. if (!cfs_bandwidth_used())
  4801. return;
  4802. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  4803. return;
  4804. __return_cfs_rq_runtime(cfs_rq);
  4805. }
  4806. /*
  4807. * This is done with a timer (instead of inline with bandwidth return) since
  4808. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  4809. */
  4810. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  4811. {
  4812. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  4813. unsigned long flags;
  4814. /* confirm we're still not at a refresh boundary */
  4815. raw_spin_lock_irqsave(&cfs_b->lock, flags);
  4816. cfs_b->slack_started = false;
  4817. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
  4818. raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
  4819. return;
  4820. }
  4821. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
  4822. runtime = cfs_b->runtime;
  4823. raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
  4824. if (!runtime)
  4825. return;
  4826. distribute_cfs_runtime(cfs_b);
  4827. }
  4828. /*
  4829. * When a group wakes up we want to make sure that its quota is not already
  4830. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  4831. * runtime as update_curr() throttling can not trigger until it's on-rq.
  4832. */
  4833. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  4834. {
  4835. if (!cfs_bandwidth_used())
  4836. return;
  4837. /* an active group must be handled by the update_curr()->put() path */
  4838. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  4839. return;
  4840. /* ensure the group is not already throttled */
  4841. if (cfs_rq_throttled(cfs_rq))
  4842. return;
  4843. /* update runtime allocation */
  4844. account_cfs_rq_runtime(cfs_rq, 0);
  4845. if (cfs_rq->runtime_remaining <= 0)
  4846. throttle_cfs_rq(cfs_rq);
  4847. }
  4848. static void sync_throttle(struct task_group *tg, int cpu)
  4849. {
  4850. struct cfs_rq *pcfs_rq, *cfs_rq;
  4851. if (!cfs_bandwidth_used())
  4852. return;
  4853. if (!tg->parent)
  4854. return;
  4855. cfs_rq = tg->cfs_rq[cpu];
  4856. pcfs_rq = tg->parent->cfs_rq[cpu];
  4857. cfs_rq->throttle_count = pcfs_rq->throttle_count;
  4858. cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
  4859. }
  4860. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  4861. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  4862. {
  4863. if (!cfs_bandwidth_used())
  4864. return false;
  4865. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  4866. return false;
  4867. /*
  4868. * it's possible for a throttled entity to be forced into a running
  4869. * state (e.g. set_curr_task), in this case we're finished.
  4870. */
  4871. if (cfs_rq_throttled(cfs_rq))
  4872. return true;
  4873. return throttle_cfs_rq(cfs_rq);
  4874. }
  4875. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  4876. {
  4877. struct cfs_bandwidth *cfs_b =
  4878. container_of(timer, struct cfs_bandwidth, slack_timer);
  4879. do_sched_cfs_slack_timer(cfs_b);
  4880. return HRTIMER_NORESTART;
  4881. }
  4882. extern const u64 max_cfs_quota_period;
  4883. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  4884. {
  4885. struct cfs_bandwidth *cfs_b =
  4886. container_of(timer, struct cfs_bandwidth, period_timer);
  4887. unsigned long flags;
  4888. int overrun;
  4889. int idle = 0;
  4890. int count = 0;
  4891. raw_spin_lock_irqsave(&cfs_b->lock, flags);
  4892. for (;;) {
  4893. overrun = hrtimer_forward_now(timer, cfs_b->period);
  4894. if (!overrun)
  4895. break;
  4896. idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
  4897. if (++count > 3) {
  4898. u64 new, old = ktime_to_ns(cfs_b->period);
  4899. /*
  4900. * Grow period by a factor of 2 to avoid losing precision.
  4901. * Precision loss in the quota/period ratio can cause __cfs_schedulable
  4902. * to fail.
  4903. */
  4904. new = old * 2;
  4905. if (new < max_cfs_quota_period) {
  4906. cfs_b->period = ns_to_ktime(new);
  4907. cfs_b->quota *= 2;
  4908. cfs_b->burst *= 2;
  4909. pr_warn_ratelimited(
  4910. "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
  4911. smp_processor_id(),
  4912. div_u64(new, NSEC_PER_USEC),
  4913. div_u64(cfs_b->quota, NSEC_PER_USEC));
  4914. } else {
  4915. pr_warn_ratelimited(
  4916. "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
  4917. smp_processor_id(),
  4918. div_u64(old, NSEC_PER_USEC),
  4919. div_u64(cfs_b->quota, NSEC_PER_USEC));
  4920. }
  4921. /* reset count so we don't come right back in here */
  4922. count = 0;
  4923. }
  4924. }
  4925. if (idle)
  4926. cfs_b->period_active = 0;
  4927. raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
  4928. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  4929. }
  4930. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  4931. {
  4932. raw_spin_lock_init(&cfs_b->lock);
  4933. cfs_b->runtime = 0;
  4934. cfs_b->quota = RUNTIME_INF;
  4935. cfs_b->period = ns_to_ktime(default_cfs_period());
  4936. cfs_b->burst = 0;
  4937. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  4938. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
  4939. cfs_b->period_timer.function = sched_cfs_period_timer;
  4940. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  4941. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  4942. cfs_b->slack_started = false;
  4943. }
  4944. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  4945. {
  4946. cfs_rq->runtime_enabled = 0;
  4947. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  4948. }
  4949. void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  4950. {
  4951. lockdep_assert_held(&cfs_b->lock);
  4952. if (cfs_b->period_active)
  4953. return;
  4954. cfs_b->period_active = 1;
  4955. hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
  4956. hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
  4957. }
  4958. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  4959. {
  4960. /* init_cfs_bandwidth() was not called */
  4961. if (!cfs_b->throttled_cfs_rq.next)
  4962. return;
  4963. hrtimer_cancel(&cfs_b->period_timer);
  4964. hrtimer_cancel(&cfs_b->slack_timer);
  4965. }
  4966. /*
  4967. * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
  4968. *
  4969. * The race is harmless, since modifying bandwidth settings of unhooked group
  4970. * bits doesn't do much.
  4971. */
  4972. /* cpu online callback */
  4973. static void __maybe_unused update_runtime_enabled(struct rq *rq)
  4974. {
  4975. struct task_group *tg;
  4976. lockdep_assert_rq_held(rq);
  4977. rcu_read_lock();
  4978. list_for_each_entry_rcu(tg, &task_groups, list) {
  4979. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  4980. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  4981. raw_spin_lock(&cfs_b->lock);
  4982. cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
  4983. raw_spin_unlock(&cfs_b->lock);
  4984. }
  4985. rcu_read_unlock();
  4986. }
  4987. /* cpu offline callback */
  4988. static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
  4989. {
  4990. struct task_group *tg;
  4991. lockdep_assert_rq_held(rq);
  4992. rcu_read_lock();
  4993. list_for_each_entry_rcu(tg, &task_groups, list) {
  4994. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  4995. if (!cfs_rq->runtime_enabled)
  4996. continue;
  4997. /*
  4998. * clock_task is not advancing so we just need to make sure
  4999. * there's some valid quota amount
  5000. */
  5001. cfs_rq->runtime_remaining = 1;
  5002. /*
  5003. * Offline rq is schedulable till CPU is completely disabled
  5004. * in take_cpu_down(), so we prevent new cfs throttling here.
  5005. */
  5006. cfs_rq->runtime_enabled = 0;
  5007. if (cfs_rq_throttled(cfs_rq))
  5008. unthrottle_cfs_rq(cfs_rq);
  5009. }
  5010. rcu_read_unlock();
  5011. }
  5012. #else /* CONFIG_CFS_BANDWIDTH */
  5013. static inline bool cfs_bandwidth_used(void)
  5014. {
  5015. return false;
  5016. }
  5017. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
  5018. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
  5019. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  5020. static inline void sync_throttle(struct task_group *tg, int cpu) {}
  5021. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  5022. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  5023. {
  5024. return 0;
  5025. }
  5026. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  5027. {
  5028. return 0;
  5029. }
  5030. static inline int throttled_lb_pair(struct task_group *tg,
  5031. int src_cpu, int dest_cpu)
  5032. {
  5033. return 0;
  5034. }
  5035. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  5036. #ifdef CONFIG_FAIR_GROUP_SCHED
  5037. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  5038. #endif
  5039. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  5040. {
  5041. return NULL;
  5042. }
  5043. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  5044. static inline void update_runtime_enabled(struct rq *rq) {}
  5045. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  5046. #endif /* CONFIG_CFS_BANDWIDTH */
  5047. /**************************************************
  5048. * CFS operations on tasks:
  5049. */
  5050. #ifdef CONFIG_SCHED_HRTICK
  5051. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  5052. {
  5053. struct sched_entity *se = &p->se;
  5054. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  5055. SCHED_WARN_ON(task_rq(p) != rq);
  5056. if (rq->cfs.h_nr_running > 1) {
  5057. u64 slice = sched_slice(cfs_rq, se);
  5058. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  5059. s64 delta = slice - ran;
  5060. if (delta < 0) {
  5061. if (task_current(rq, p))
  5062. resched_curr(rq);
  5063. return;
  5064. }
  5065. hrtick_start(rq, delta);
  5066. }
  5067. }
  5068. /*
  5069. * called from enqueue/dequeue and updates the hrtick when the
  5070. * current task is from our class and nr_running is low enough
  5071. * to matter.
  5072. */
  5073. static void hrtick_update(struct rq *rq)
  5074. {
  5075. struct task_struct *curr = rq->curr;
  5076. if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
  5077. return;
  5078. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  5079. hrtick_start_fair(rq, curr);
  5080. }
  5081. #else /* !CONFIG_SCHED_HRTICK */
  5082. static inline void
  5083. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  5084. {
  5085. }
  5086. static inline void hrtick_update(struct rq *rq)
  5087. {
  5088. }
  5089. #endif
  5090. #ifdef CONFIG_SMP
  5091. static inline bool cpu_overutilized(int cpu)
  5092. {
  5093. unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
  5094. unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
  5095. int overutilized = -1;
  5096. trace_android_rvh_cpu_overutilized(cpu, &overutilized);
  5097. if (overutilized != -1)
  5098. return overutilized;
  5099. /* Return true only if the utilization doesn't fit CPU's capacity */
  5100. return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
  5101. }
  5102. static inline void update_overutilized_status(struct rq *rq)
  5103. {
  5104. if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
  5105. WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
  5106. trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
  5107. }
  5108. }
  5109. #else
  5110. static inline void update_overutilized_status(struct rq *rq) { }
  5111. #endif
  5112. /* Runqueue only has SCHED_IDLE tasks enqueued */
  5113. static int sched_idle_rq(struct rq *rq)
  5114. {
  5115. return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
  5116. rq->nr_running);
  5117. }
  5118. /*
  5119. * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
  5120. * of idle_nr_running, which does not consider idle descendants of normal
  5121. * entities.
  5122. */
  5123. static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
  5124. {
  5125. return cfs_rq->nr_running &&
  5126. cfs_rq->nr_running == cfs_rq->idle_nr_running;
  5127. }
  5128. #ifdef CONFIG_SMP
  5129. static int sched_idle_cpu(int cpu)
  5130. {
  5131. return sched_idle_rq(cpu_rq(cpu));
  5132. }
  5133. #endif
  5134. /*
  5135. * The enqueue_task method is called before nr_running is
  5136. * increased. Here we update the fair scheduling stats and
  5137. * then put the task into the rbtree:
  5138. */
  5139. static void
  5140. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  5141. {
  5142. struct cfs_rq *cfs_rq;
  5143. struct sched_entity *se = &p->se;
  5144. int idle_h_nr_running = task_has_idle_policy(p);
  5145. int task_new = !(flags & ENQUEUE_WAKEUP);
  5146. int should_iowait_boost;
  5147. /*
  5148. * The code below (indirectly) updates schedutil which looks at
  5149. * the cfs_rq utilization to select a frequency.
  5150. * Let's add the task's estimated utilization to the cfs_rq's
  5151. * estimated utilization, before we update schedutil.
  5152. */
  5153. util_est_enqueue(&rq->cfs, p);
  5154. /*
  5155. * If in_iowait is set, the code below may not trigger any cpufreq
  5156. * utilization updates, so do it here explicitly with the IOWAIT flag
  5157. * passed.
  5158. */
  5159. should_iowait_boost = p->in_iowait;
  5160. trace_android_rvh_set_iowait(p, rq, &should_iowait_boost);
  5161. if (should_iowait_boost)
  5162. cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
  5163. for_each_sched_entity(se) {
  5164. if (se->on_rq)
  5165. break;
  5166. cfs_rq = cfs_rq_of(se);
  5167. enqueue_entity(cfs_rq, se, flags);
  5168. cfs_rq->h_nr_running++;
  5169. cfs_rq->idle_h_nr_running += idle_h_nr_running;
  5170. if (cfs_rq_is_idle(cfs_rq))
  5171. idle_h_nr_running = 1;
  5172. /* end evaluation on encountering a throttled cfs_rq */
  5173. if (cfs_rq_throttled(cfs_rq))
  5174. goto enqueue_throttle;
  5175. flags = ENQUEUE_WAKEUP;
  5176. }
  5177. trace_android_rvh_enqueue_task_fair(rq, p, flags);
  5178. for_each_sched_entity(se) {
  5179. cfs_rq = cfs_rq_of(se);
  5180. update_load_avg(cfs_rq, se, UPDATE_TG);
  5181. se_update_runnable(se);
  5182. update_cfs_group(se);
  5183. cfs_rq->h_nr_running++;
  5184. cfs_rq->idle_h_nr_running += idle_h_nr_running;
  5185. if (cfs_rq_is_idle(cfs_rq))
  5186. idle_h_nr_running = 1;
  5187. /* end evaluation on encountering a throttled cfs_rq */
  5188. if (cfs_rq_throttled(cfs_rq))
  5189. goto enqueue_throttle;
  5190. }
  5191. /* At this point se is NULL and we are at root level*/
  5192. add_nr_running(rq, 1);
  5193. /*
  5194. * Since new tasks are assigned an initial util_avg equal to
  5195. * half of the spare capacity of their CPU, tiny tasks have the
  5196. * ability to cross the overutilized threshold, which will
  5197. * result in the load balancer ruining all the task placement
  5198. * done by EAS. As a way to mitigate that effect, do not account
  5199. * for the first enqueue operation of new tasks during the
  5200. * overutilized flag detection.
  5201. *
  5202. * A better way of solving this problem would be to wait for
  5203. * the PELT signals of tasks to converge before taking them
  5204. * into account, but that is not straightforward to implement,
  5205. * and the following generally works well enough in practice.
  5206. */
  5207. if (!task_new)
  5208. update_overutilized_status(rq);
  5209. enqueue_throttle:
  5210. assert_list_leaf_cfs_rq(rq);
  5211. hrtick_update(rq);
  5212. }
  5213. static void set_next_buddy(struct sched_entity *se);
  5214. /*
  5215. * The dequeue_task method is called before nr_running is
  5216. * decreased. We remove the task from the rbtree and
  5217. * update the fair scheduling stats:
  5218. */
  5219. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  5220. {
  5221. struct cfs_rq *cfs_rq;
  5222. struct sched_entity *se = &p->se;
  5223. int task_sleep = flags & DEQUEUE_SLEEP;
  5224. int idle_h_nr_running = task_has_idle_policy(p);
  5225. bool was_sched_idle = sched_idle_rq(rq);
  5226. util_est_dequeue(&rq->cfs, p);
  5227. for_each_sched_entity(se) {
  5228. cfs_rq = cfs_rq_of(se);
  5229. dequeue_entity(cfs_rq, se, flags);
  5230. cfs_rq->h_nr_running--;
  5231. cfs_rq->idle_h_nr_running -= idle_h_nr_running;
  5232. if (cfs_rq_is_idle(cfs_rq))
  5233. idle_h_nr_running = 1;
  5234. /* end evaluation on encountering a throttled cfs_rq */
  5235. if (cfs_rq_throttled(cfs_rq))
  5236. goto dequeue_throttle;
  5237. /* Don't dequeue parent if it has other entities besides us */
  5238. if (cfs_rq->load.weight) {
  5239. /* Avoid re-evaluating load for this entity: */
  5240. se = parent_entity(se);
  5241. /*
  5242. * Bias pick_next to pick a task from this cfs_rq, as
  5243. * p is sleeping when it is within its sched_slice.
  5244. */
  5245. if (task_sleep && se && !throttled_hierarchy(cfs_rq))
  5246. set_next_buddy(se);
  5247. break;
  5248. }
  5249. flags |= DEQUEUE_SLEEP;
  5250. }
  5251. trace_android_rvh_dequeue_task_fair(rq, p, flags);
  5252. for_each_sched_entity(se) {
  5253. cfs_rq = cfs_rq_of(se);
  5254. update_load_avg(cfs_rq, se, UPDATE_TG);
  5255. se_update_runnable(se);
  5256. update_cfs_group(se);
  5257. cfs_rq->h_nr_running--;
  5258. cfs_rq->idle_h_nr_running -= idle_h_nr_running;
  5259. if (cfs_rq_is_idle(cfs_rq))
  5260. idle_h_nr_running = 1;
  5261. /* end evaluation on encountering a throttled cfs_rq */
  5262. if (cfs_rq_throttled(cfs_rq))
  5263. goto dequeue_throttle;
  5264. }
  5265. /* At this point se is NULL and we are at root level*/
  5266. sub_nr_running(rq, 1);
  5267. /* balance early to pull high priority tasks */
  5268. if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
  5269. rq->next_balance = jiffies;
  5270. dequeue_throttle:
  5271. util_est_update(&rq->cfs, p, task_sleep);
  5272. hrtick_update(rq);
  5273. }
  5274. #ifdef CONFIG_SMP
  5275. /* Working cpumask for: load_balance, load_balance_newidle. */
  5276. static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
  5277. static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
  5278. #ifdef CONFIG_NO_HZ_COMMON
  5279. static struct {
  5280. cpumask_var_t idle_cpus_mask;
  5281. atomic_t nr_cpus;
  5282. int has_blocked; /* Idle CPUS has blocked load */
  5283. int needs_update; /* Newly idle CPUs need their next_balance collated */
  5284. unsigned long next_balance; /* in jiffy units */
  5285. unsigned long next_blocked; /* Next update of blocked load in jiffies */
  5286. } nohz ____cacheline_aligned;
  5287. #endif /* CONFIG_NO_HZ_COMMON */
  5288. static unsigned long cpu_load(struct rq *rq)
  5289. {
  5290. return cfs_rq_load_avg(&rq->cfs);
  5291. }
  5292. /*
  5293. * cpu_load_without - compute CPU load without any contributions from *p
  5294. * @cpu: the CPU which load is requested
  5295. * @p: the task which load should be discounted
  5296. *
  5297. * The load of a CPU is defined by the load of tasks currently enqueued on that
  5298. * CPU as well as tasks which are currently sleeping after an execution on that
  5299. * CPU.
  5300. *
  5301. * This method returns the load of the specified CPU by discounting the load of
  5302. * the specified task, whenever the task is currently contributing to the CPU
  5303. * load.
  5304. */
  5305. static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
  5306. {
  5307. struct cfs_rq *cfs_rq;
  5308. unsigned int load;
  5309. /* Task has no contribution or is new */
  5310. if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
  5311. return cpu_load(rq);
  5312. cfs_rq = &rq->cfs;
  5313. load = READ_ONCE(cfs_rq->avg.load_avg);
  5314. /* Discount task's util from CPU's util */
  5315. lsub_positive(&load, task_h_load(p));
  5316. return load;
  5317. }
  5318. static unsigned long cpu_runnable(struct rq *rq)
  5319. {
  5320. return cfs_rq_runnable_avg(&rq->cfs);
  5321. }
  5322. static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
  5323. {
  5324. struct cfs_rq *cfs_rq;
  5325. unsigned int runnable;
  5326. /* Task has no contribution or is new */
  5327. if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
  5328. return cpu_runnable(rq);
  5329. cfs_rq = &rq->cfs;
  5330. runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
  5331. /* Discount task's runnable from CPU's runnable */
  5332. lsub_positive(&runnable, p->se.avg.runnable_avg);
  5333. return runnable;
  5334. }
  5335. static unsigned long capacity_of(int cpu)
  5336. {
  5337. return cpu_rq(cpu)->cpu_capacity;
  5338. }
  5339. static void record_wakee(struct task_struct *p)
  5340. {
  5341. /*
  5342. * Only decay a single time; tasks that have less then 1 wakeup per
  5343. * jiffy will not have built up many flips.
  5344. */
  5345. if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
  5346. current->wakee_flips >>= 1;
  5347. current->wakee_flip_decay_ts = jiffies;
  5348. }
  5349. if (current->last_wakee != p) {
  5350. current->last_wakee = p;
  5351. current->wakee_flips++;
  5352. }
  5353. }
  5354. /*
  5355. * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
  5356. *
  5357. * A waker of many should wake a different task than the one last awakened
  5358. * at a frequency roughly N times higher than one of its wakees.
  5359. *
  5360. * In order to determine whether we should let the load spread vs consolidating
  5361. * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
  5362. * partner, and a factor of lls_size higher frequency in the other.
  5363. *
  5364. * With both conditions met, we can be relatively sure that the relationship is
  5365. * non-monogamous, with partner count exceeding socket size.
  5366. *
  5367. * Waker/wakee being client/server, worker/dispatcher, interrupt source or
  5368. * whatever is irrelevant, spread criteria is apparent partner count exceeds
  5369. * socket size.
  5370. */
  5371. static int wake_wide(struct task_struct *p)
  5372. {
  5373. unsigned int master = current->wakee_flips;
  5374. unsigned int slave = p->wakee_flips;
  5375. int factor = __this_cpu_read(sd_llc_size);
  5376. if (master < slave)
  5377. swap(master, slave);
  5378. if (slave < factor || master < slave * factor)
  5379. return 0;
  5380. return 1;
  5381. }
  5382. /*
  5383. * The purpose of wake_affine() is to quickly determine on which CPU we can run
  5384. * soonest. For the purpose of speed we only consider the waking and previous
  5385. * CPU.
  5386. *
  5387. * wake_affine_idle() - only considers 'now', it check if the waking CPU is
  5388. * cache-affine and is (or will be) idle.
  5389. *
  5390. * wake_affine_weight() - considers the weight to reflect the average
  5391. * scheduling latency of the CPUs. This seems to work
  5392. * for the overloaded case.
  5393. */
  5394. static int
  5395. wake_affine_idle(int this_cpu, int prev_cpu, int sync)
  5396. {
  5397. /*
  5398. * If this_cpu is idle, it implies the wakeup is from interrupt
  5399. * context. Only allow the move if cache is shared. Otherwise an
  5400. * interrupt intensive workload could force all tasks onto one
  5401. * node depending on the IO topology or IRQ affinity settings.
  5402. *
  5403. * If the prev_cpu is idle and cache affine then avoid a migration.
  5404. * There is no guarantee that the cache hot data from an interrupt
  5405. * is more important than cache hot data on the prev_cpu and from
  5406. * a cpufreq perspective, it's better to have higher utilisation
  5407. * on one CPU.
  5408. */
  5409. if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
  5410. return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
  5411. if (sync && cpu_rq(this_cpu)->nr_running == 1)
  5412. return this_cpu;
  5413. if (available_idle_cpu(prev_cpu))
  5414. return prev_cpu;
  5415. return nr_cpumask_bits;
  5416. }
  5417. static int
  5418. wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
  5419. int this_cpu, int prev_cpu, int sync)
  5420. {
  5421. s64 this_eff_load, prev_eff_load;
  5422. unsigned long task_load;
  5423. this_eff_load = cpu_load(cpu_rq(this_cpu));
  5424. if (sync) {
  5425. unsigned long current_load = task_h_load(current);
  5426. if (current_load > this_eff_load)
  5427. return this_cpu;
  5428. this_eff_load -= current_load;
  5429. }
  5430. task_load = task_h_load(p);
  5431. this_eff_load += task_load;
  5432. if (sched_feat(WA_BIAS))
  5433. this_eff_load *= 100;
  5434. this_eff_load *= capacity_of(prev_cpu);
  5435. prev_eff_load = cpu_load(cpu_rq(prev_cpu));
  5436. prev_eff_load -= task_load;
  5437. if (sched_feat(WA_BIAS))
  5438. prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
  5439. prev_eff_load *= capacity_of(this_cpu);
  5440. /*
  5441. * If sync, adjust the weight of prev_eff_load such that if
  5442. * prev_eff == this_eff that select_idle_sibling() will consider
  5443. * stacking the wakee on top of the waker if no other CPU is
  5444. * idle.
  5445. */
  5446. if (sync)
  5447. prev_eff_load += 1;
  5448. return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
  5449. }
  5450. static int wake_affine(struct sched_domain *sd, struct task_struct *p,
  5451. int this_cpu, int prev_cpu, int sync)
  5452. {
  5453. int target = nr_cpumask_bits;
  5454. if (sched_feat(WA_IDLE))
  5455. target = wake_affine_idle(this_cpu, prev_cpu, sync);
  5456. if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
  5457. target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
  5458. schedstat_inc(p->stats.nr_wakeups_affine_attempts);
  5459. if (target != this_cpu)
  5460. return prev_cpu;
  5461. schedstat_inc(sd->ttwu_move_affine);
  5462. schedstat_inc(p->stats.nr_wakeups_affine);
  5463. return target;
  5464. }
  5465. static struct sched_group *
  5466. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
  5467. /*
  5468. * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
  5469. */
  5470. static int
  5471. find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  5472. {
  5473. unsigned long load, min_load = ULONG_MAX;
  5474. unsigned int min_exit_latency = UINT_MAX;
  5475. u64 latest_idle_timestamp = 0;
  5476. int least_loaded_cpu = this_cpu;
  5477. int shallowest_idle_cpu = -1;
  5478. int i;
  5479. /* Check if we have any choice: */
  5480. if (group->group_weight == 1)
  5481. return cpumask_first(sched_group_span(group));
  5482. /* Traverse only the allowed CPUs */
  5483. for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
  5484. struct rq *rq = cpu_rq(i);
  5485. if (!sched_core_cookie_match(rq, p))
  5486. continue;
  5487. if (sched_idle_cpu(i))
  5488. return i;
  5489. if (available_idle_cpu(i)) {
  5490. struct cpuidle_state *idle = idle_get_state(rq);
  5491. if (idle && idle->exit_latency < min_exit_latency) {
  5492. /*
  5493. * We give priority to a CPU whose idle state
  5494. * has the smallest exit latency irrespective
  5495. * of any idle timestamp.
  5496. */
  5497. min_exit_latency = idle->exit_latency;
  5498. latest_idle_timestamp = rq->idle_stamp;
  5499. shallowest_idle_cpu = i;
  5500. } else if ((!idle || idle->exit_latency == min_exit_latency) &&
  5501. rq->idle_stamp > latest_idle_timestamp) {
  5502. /*
  5503. * If equal or no active idle state, then
  5504. * the most recently idled CPU might have
  5505. * a warmer cache.
  5506. */
  5507. latest_idle_timestamp = rq->idle_stamp;
  5508. shallowest_idle_cpu = i;
  5509. }
  5510. } else if (shallowest_idle_cpu == -1) {
  5511. load = cpu_load(cpu_rq(i));
  5512. if (load < min_load) {
  5513. min_load = load;
  5514. least_loaded_cpu = i;
  5515. }
  5516. }
  5517. }
  5518. return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
  5519. }
  5520. static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
  5521. int cpu, int prev_cpu, int sd_flag)
  5522. {
  5523. int new_cpu = cpu;
  5524. if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
  5525. return prev_cpu;
  5526. /*
  5527. * We need task's util for cpu_util_without, sync it up to
  5528. * prev_cpu's last_update_time.
  5529. */
  5530. if (!(sd_flag & SD_BALANCE_FORK))
  5531. sync_entity_load_avg(&p->se);
  5532. while (sd) {
  5533. struct sched_group *group;
  5534. struct sched_domain *tmp;
  5535. int weight;
  5536. if (!(sd->flags & sd_flag)) {
  5537. sd = sd->child;
  5538. continue;
  5539. }
  5540. group = find_idlest_group(sd, p, cpu);
  5541. if (!group) {
  5542. sd = sd->child;
  5543. continue;
  5544. }
  5545. new_cpu = find_idlest_group_cpu(group, p, cpu);
  5546. if (new_cpu == cpu) {
  5547. /* Now try balancing at a lower domain level of 'cpu': */
  5548. sd = sd->child;
  5549. continue;
  5550. }
  5551. /* Now try balancing at a lower domain level of 'new_cpu': */
  5552. cpu = new_cpu;
  5553. weight = sd->span_weight;
  5554. sd = NULL;
  5555. for_each_domain(cpu, tmp) {
  5556. if (weight <= tmp->span_weight)
  5557. break;
  5558. if (tmp->flags & sd_flag)
  5559. sd = tmp;
  5560. }
  5561. }
  5562. return new_cpu;
  5563. }
  5564. static inline int __select_idle_cpu(int cpu, struct task_struct *p)
  5565. {
  5566. if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
  5567. sched_cpu_cookie_match(cpu_rq(cpu), p))
  5568. return cpu;
  5569. return -1;
  5570. }
  5571. #ifdef CONFIG_SCHED_SMT
  5572. DEFINE_STATIC_KEY_FALSE(sched_smt_present);
  5573. EXPORT_SYMBOL_GPL(sched_smt_present);
  5574. static inline void set_idle_cores(int cpu, int val)
  5575. {
  5576. struct sched_domain_shared *sds;
  5577. sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
  5578. if (sds)
  5579. WRITE_ONCE(sds->has_idle_cores, val);
  5580. }
  5581. static inline bool test_idle_cores(int cpu)
  5582. {
  5583. struct sched_domain_shared *sds;
  5584. sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
  5585. if (sds)
  5586. return READ_ONCE(sds->has_idle_cores);
  5587. return false;
  5588. }
  5589. /*
  5590. * Scans the local SMT mask to see if the entire core is idle, and records this
  5591. * information in sd_llc_shared->has_idle_cores.
  5592. *
  5593. * Since SMT siblings share all cache levels, inspecting this limited remote
  5594. * state should be fairly cheap.
  5595. */
  5596. void __update_idle_core(struct rq *rq)
  5597. {
  5598. int core = cpu_of(rq);
  5599. int cpu;
  5600. rcu_read_lock();
  5601. if (test_idle_cores(core))
  5602. goto unlock;
  5603. for_each_cpu(cpu, cpu_smt_mask(core)) {
  5604. if (cpu == core)
  5605. continue;
  5606. if (!available_idle_cpu(cpu))
  5607. goto unlock;
  5608. }
  5609. set_idle_cores(core, 1);
  5610. unlock:
  5611. rcu_read_unlock();
  5612. }
  5613. /*
  5614. * Scan the entire LLC domain for idle cores; this dynamically switches off if
  5615. * there are no idle cores left in the system; tracked through
  5616. * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
  5617. */
  5618. static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
  5619. {
  5620. bool idle = true;
  5621. int cpu;
  5622. for_each_cpu(cpu, cpu_smt_mask(core)) {
  5623. if (!available_idle_cpu(cpu)) {
  5624. idle = false;
  5625. if (*idle_cpu == -1) {
  5626. if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
  5627. *idle_cpu = cpu;
  5628. break;
  5629. }
  5630. continue;
  5631. }
  5632. break;
  5633. }
  5634. if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
  5635. *idle_cpu = cpu;
  5636. }
  5637. if (idle)
  5638. return core;
  5639. cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
  5640. return -1;
  5641. }
  5642. /*
  5643. * Scan the local SMT mask for idle CPUs.
  5644. */
  5645. static int select_idle_smt(struct task_struct *p, int target)
  5646. {
  5647. int cpu;
  5648. for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
  5649. if (cpu == target)
  5650. continue;
  5651. if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
  5652. return cpu;
  5653. }
  5654. return -1;
  5655. }
  5656. #else /* CONFIG_SCHED_SMT */
  5657. static inline void set_idle_cores(int cpu, int val)
  5658. {
  5659. }
  5660. static inline bool test_idle_cores(int cpu)
  5661. {
  5662. return false;
  5663. }
  5664. static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
  5665. {
  5666. return __select_idle_cpu(core, p);
  5667. }
  5668. static inline int select_idle_smt(struct task_struct *p, int target)
  5669. {
  5670. return -1;
  5671. }
  5672. #endif /* CONFIG_SCHED_SMT */
  5673. /*
  5674. * Scan the LLC domain for idle CPUs; this is dynamically regulated by
  5675. * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
  5676. * average idle time for this rq (as found in rq->avg_idle).
  5677. */
  5678. static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
  5679. {
  5680. struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
  5681. int i, cpu, idle_cpu = -1, nr = INT_MAX;
  5682. struct sched_domain_shared *sd_share;
  5683. struct rq *this_rq = this_rq();
  5684. int this = smp_processor_id();
  5685. struct sched_domain *this_sd = NULL;
  5686. u64 time = 0;
  5687. cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
  5688. if (sched_feat(SIS_PROP) && !has_idle_core) {
  5689. u64 avg_cost, avg_idle, span_avg;
  5690. unsigned long now = jiffies;
  5691. this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
  5692. if (!this_sd)
  5693. return -1;
  5694. /*
  5695. * If we're busy, the assumption that the last idle period
  5696. * predicts the future is flawed; age away the remaining
  5697. * predicted idle time.
  5698. */
  5699. if (unlikely(this_rq->wake_stamp < now)) {
  5700. while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
  5701. this_rq->wake_stamp++;
  5702. this_rq->wake_avg_idle >>= 1;
  5703. }
  5704. }
  5705. avg_idle = this_rq->wake_avg_idle;
  5706. avg_cost = this_sd->avg_scan_cost + 1;
  5707. span_avg = sd->span_weight * avg_idle;
  5708. if (span_avg > 4*avg_cost)
  5709. nr = div_u64(span_avg, avg_cost);
  5710. else
  5711. nr = 4;
  5712. time = cpu_clock(this);
  5713. }
  5714. if (sched_feat(SIS_UTIL)) {
  5715. sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
  5716. if (sd_share) {
  5717. /* because !--nr is the condition to stop scan */
  5718. nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
  5719. /* overloaded LLC is unlikely to have idle cpu/core */
  5720. if (nr == 1)
  5721. return -1;
  5722. }
  5723. }
  5724. for_each_cpu_wrap(cpu, cpus, target + 1) {
  5725. if (has_idle_core) {
  5726. i = select_idle_core(p, cpu, cpus, &idle_cpu);
  5727. if ((unsigned int)i < nr_cpumask_bits)
  5728. return i;
  5729. } else {
  5730. if (!--nr)
  5731. return -1;
  5732. idle_cpu = __select_idle_cpu(cpu, p);
  5733. if ((unsigned int)idle_cpu < nr_cpumask_bits)
  5734. break;
  5735. }
  5736. }
  5737. if (has_idle_core)
  5738. set_idle_cores(target, false);
  5739. if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
  5740. time = cpu_clock(this) - time;
  5741. /*
  5742. * Account for the scan cost of wakeups against the average
  5743. * idle time.
  5744. */
  5745. this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
  5746. update_avg(&this_sd->avg_scan_cost, time);
  5747. }
  5748. return idle_cpu;
  5749. }
  5750. /*
  5751. * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
  5752. * the task fits. If no CPU is big enough, but there are idle ones, try to
  5753. * maximize capacity.
  5754. */
  5755. static int
  5756. select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
  5757. {
  5758. unsigned long task_util, util_min, util_max, best_cap = 0;
  5759. int fits, best_fits = 0;
  5760. int cpu, best_cpu = -1;
  5761. struct cpumask *cpus;
  5762. cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
  5763. cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
  5764. task_util = task_util_est(p);
  5765. util_min = uclamp_eff_value(p, UCLAMP_MIN);
  5766. util_max = uclamp_eff_value(p, UCLAMP_MAX);
  5767. for_each_cpu_wrap(cpu, cpus, target) {
  5768. unsigned long cpu_cap = capacity_of(cpu);
  5769. if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
  5770. continue;
  5771. fits = util_fits_cpu(task_util, util_min, util_max, cpu);
  5772. /* This CPU fits with all requirements */
  5773. if (fits > 0)
  5774. return cpu;
  5775. /*
  5776. * Only the min performance hint (i.e. uclamp_min) doesn't fit.
  5777. * Look for the CPU with best capacity.
  5778. */
  5779. else if (fits < 0)
  5780. cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
  5781. /*
  5782. * First, select CPU which fits better (-1 being better than 0).
  5783. * Then, select the one with best capacity at same level.
  5784. */
  5785. if ((fits < best_fits) ||
  5786. ((fits == best_fits) && (cpu_cap > best_cap))) {
  5787. best_cap = cpu_cap;
  5788. best_cpu = cpu;
  5789. best_fits = fits;
  5790. }
  5791. }
  5792. return best_cpu;
  5793. }
  5794. static inline bool asym_fits_cpu(unsigned long util,
  5795. unsigned long util_min,
  5796. unsigned long util_max,
  5797. int cpu)
  5798. {
  5799. if (sched_asym_cpucap_active())
  5800. /*
  5801. * Return true only if the cpu fully fits the task requirements
  5802. * which include the utilization and the performance hints.
  5803. */
  5804. return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
  5805. return true;
  5806. }
  5807. /*
  5808. * Try and locate an idle core/thread in the LLC cache domain.
  5809. */
  5810. static int select_idle_sibling(struct task_struct *p, int prev, int target)
  5811. {
  5812. bool has_idle_core = false;
  5813. struct sched_domain *sd;
  5814. unsigned long task_util, util_min, util_max;
  5815. int i, recent_used_cpu;
  5816. /*
  5817. * On asymmetric system, update task utilization because we will check
  5818. * that the task fits with cpu's capacity.
  5819. */
  5820. if (sched_asym_cpucap_active()) {
  5821. sync_entity_load_avg(&p->se);
  5822. task_util = task_util_est(p);
  5823. util_min = uclamp_eff_value(p, UCLAMP_MIN);
  5824. util_max = uclamp_eff_value(p, UCLAMP_MAX);
  5825. }
  5826. /*
  5827. * per-cpu select_rq_mask usage
  5828. */
  5829. lockdep_assert_irqs_disabled();
  5830. if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
  5831. asym_fits_cpu(task_util, util_min, util_max, target))
  5832. return target;
  5833. /*
  5834. * If the previous CPU is cache affine and idle, don't be stupid:
  5835. */
  5836. if (prev != target && cpus_share_cache(prev, target) &&
  5837. (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
  5838. asym_fits_cpu(task_util, util_min, util_max, prev))
  5839. return prev;
  5840. /*
  5841. * Allow a per-cpu kthread to stack with the wakee if the
  5842. * kworker thread and the tasks previous CPUs are the same.
  5843. * The assumption is that the wakee queued work for the
  5844. * per-cpu kthread that is now complete and the wakeup is
  5845. * essentially a sync wakeup. An obvious example of this
  5846. * pattern is IO completions.
  5847. */
  5848. if (is_per_cpu_kthread(current) &&
  5849. in_task() &&
  5850. prev == smp_processor_id() &&
  5851. this_rq()->nr_running <= 1 &&
  5852. asym_fits_cpu(task_util, util_min, util_max, prev)) {
  5853. return prev;
  5854. }
  5855. /* Check a recently used CPU as a potential idle candidate: */
  5856. recent_used_cpu = p->recent_used_cpu;
  5857. p->recent_used_cpu = prev;
  5858. if (recent_used_cpu != prev &&
  5859. recent_used_cpu != target &&
  5860. cpus_share_cache(recent_used_cpu, target) &&
  5861. (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
  5862. cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
  5863. asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
  5864. return recent_used_cpu;
  5865. }
  5866. /*
  5867. * For asymmetric CPU capacity systems, our domain of interest is
  5868. * sd_asym_cpucapacity rather than sd_llc.
  5869. */
  5870. if (sched_asym_cpucap_active()) {
  5871. sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
  5872. /*
  5873. * On an asymmetric CPU capacity system where an exclusive
  5874. * cpuset defines a symmetric island (i.e. one unique
  5875. * capacity_orig value through the cpuset), the key will be set
  5876. * but the CPUs within that cpuset will not have a domain with
  5877. * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
  5878. * capacity path.
  5879. */
  5880. if (sd) {
  5881. i = select_idle_capacity(p, sd, target);
  5882. return ((unsigned)i < nr_cpumask_bits) ? i : target;
  5883. }
  5884. }
  5885. sd = rcu_dereference(per_cpu(sd_llc, target));
  5886. if (!sd)
  5887. return target;
  5888. if (sched_smt_active()) {
  5889. has_idle_core = test_idle_cores(target);
  5890. if (!has_idle_core && cpus_share_cache(prev, target)) {
  5891. i = select_idle_smt(p, prev);
  5892. if ((unsigned int)i < nr_cpumask_bits)
  5893. return i;
  5894. }
  5895. }
  5896. i = select_idle_cpu(p, sd, has_idle_core, target);
  5897. if ((unsigned)i < nr_cpumask_bits)
  5898. return i;
  5899. return target;
  5900. }
  5901. /*
  5902. * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
  5903. * (@dst_cpu = -1) or migrated to @dst_cpu.
  5904. */
  5905. static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
  5906. {
  5907. struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
  5908. unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
  5909. /*
  5910. * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
  5911. * contribution. If @p migrates from another CPU to @cpu add its
  5912. * contribution. In all the other cases @cpu is not impacted by the
  5913. * migration so its util_avg is already correct.
  5914. */
  5915. if (task_cpu(p) == cpu && dst_cpu != cpu)
  5916. lsub_positive(&util, task_util(p));
  5917. else if (task_cpu(p) != cpu && dst_cpu == cpu)
  5918. util += task_util(p);
  5919. if (sched_feat(UTIL_EST)) {
  5920. unsigned long util_est;
  5921. util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
  5922. /*
  5923. * During wake-up @p isn't enqueued yet and doesn't contribute
  5924. * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
  5925. * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
  5926. * has been enqueued.
  5927. *
  5928. * During exec (@dst_cpu = -1) @p is enqueued and does
  5929. * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
  5930. * Remove it to "simulate" cpu_util without @p's contribution.
  5931. *
  5932. * Despite the task_on_rq_queued(@p) check there is still a
  5933. * small window for a possible race when an exec
  5934. * select_task_rq_fair() races with LB's detach_task().
  5935. *
  5936. * detach_task()
  5937. * deactivate_task()
  5938. * p->on_rq = TASK_ON_RQ_MIGRATING;
  5939. * -------------------------------- A
  5940. * dequeue_task() \
  5941. * dequeue_task_fair() + Race Time
  5942. * util_est_dequeue() /
  5943. * -------------------------------- B
  5944. *
  5945. * The additional check "current == p" is required to further
  5946. * reduce the race window.
  5947. */
  5948. if (dst_cpu == cpu)
  5949. util_est += _task_util_est(p);
  5950. else if (unlikely(task_on_rq_queued(p) || current == p))
  5951. lsub_positive(&util_est, _task_util_est(p));
  5952. util = max(util, util_est);
  5953. }
  5954. return min(util, capacity_orig_of(cpu));
  5955. }
  5956. /*
  5957. * cpu_util_without: compute cpu utilization without any contributions from *p
  5958. * @cpu: the CPU which utilization is requested
  5959. * @p: the task which utilization should be discounted
  5960. *
  5961. * The utilization of a CPU is defined by the utilization of tasks currently
  5962. * enqueued on that CPU as well as tasks which are currently sleeping after an
  5963. * execution on that CPU.
  5964. *
  5965. * This method returns the utilization of the specified CPU by discounting the
  5966. * utilization of the specified task, whenever the task is currently
  5967. * contributing to the CPU utilization.
  5968. */
  5969. static unsigned long cpu_util_without(int cpu, struct task_struct *p)
  5970. {
  5971. /* Task has no contribution or is new */
  5972. if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
  5973. return cpu_util_cfs(cpu);
  5974. return cpu_util_next(cpu, p, -1);
  5975. }
  5976. /*
  5977. * energy_env - Utilization landscape for energy estimation.
  5978. * @task_busy_time: Utilization contribution by the task for which we test the
  5979. * placement. Given by eenv_task_busy_time().
  5980. * @pd_busy_time: Utilization of the whole perf domain without the task
  5981. * contribution. Given by eenv_pd_busy_time().
  5982. * @cpu_cap: Maximum CPU capacity for the perf domain.
  5983. * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
  5984. */
  5985. struct energy_env {
  5986. unsigned long task_busy_time;
  5987. unsigned long pd_busy_time;
  5988. unsigned long cpu_cap;
  5989. unsigned long pd_cap;
  5990. };
  5991. /*
  5992. * Compute the task busy time for compute_energy(). This time cannot be
  5993. * injected directly into effective_cpu_util() because of the IRQ scaling.
  5994. * The latter only makes sense with the most recent CPUs where the task has
  5995. * run.
  5996. */
  5997. static inline void eenv_task_busy_time(struct energy_env *eenv,
  5998. struct task_struct *p, int prev_cpu)
  5999. {
  6000. unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
  6001. unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
  6002. if (unlikely(irq >= max_cap))
  6003. busy_time = max_cap;
  6004. else
  6005. busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
  6006. eenv->task_busy_time = busy_time;
  6007. }
  6008. /*
  6009. * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
  6010. * utilization for each @pd_cpus, it however doesn't take into account
  6011. * clamping since the ratio (utilization / cpu_capacity) is already enough to
  6012. * scale the EM reported power consumption at the (eventually clamped)
  6013. * cpu_capacity.
  6014. *
  6015. * The contribution of the task @p for which we want to estimate the
  6016. * energy cost is removed (by cpu_util_next()) and must be calculated
  6017. * separately (see eenv_task_busy_time). This ensures:
  6018. *
  6019. * - A stable PD utilization, no matter which CPU of that PD we want to place
  6020. * the task on.
  6021. *
  6022. * - A fair comparison between CPUs as the task contribution (task_util())
  6023. * will always be the same no matter which CPU utilization we rely on
  6024. * (util_avg or util_est).
  6025. *
  6026. * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
  6027. * exceed @eenv->pd_cap.
  6028. */
  6029. static inline void eenv_pd_busy_time(struct energy_env *eenv,
  6030. struct cpumask *pd_cpus,
  6031. struct task_struct *p)
  6032. {
  6033. unsigned long busy_time = 0;
  6034. int cpu;
  6035. for_each_cpu(cpu, pd_cpus) {
  6036. unsigned long util = cpu_util_next(cpu, p, -1);
  6037. busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
  6038. }
  6039. eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
  6040. }
  6041. /*
  6042. * Compute the maximum utilization for compute_energy() when the task @p
  6043. * is placed on the cpu @dst_cpu.
  6044. *
  6045. * Returns the maximum utilization among @eenv->cpus. This utilization can't
  6046. * exceed @eenv->cpu_cap.
  6047. */
  6048. static inline unsigned long
  6049. eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
  6050. struct task_struct *p, int dst_cpu)
  6051. {
  6052. unsigned long max_util = 0;
  6053. int cpu;
  6054. for_each_cpu(cpu, pd_cpus) {
  6055. struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
  6056. unsigned long util = cpu_util_next(cpu, p, dst_cpu);
  6057. unsigned long cpu_util;
  6058. /*
  6059. * Performance domain frequency: utilization clamping
  6060. * must be considered since it affects the selection
  6061. * of the performance domain frequency.
  6062. * NOTE: in case RT tasks are running, by default the
  6063. * FREQUENCY_UTIL's utilization can be max OPP.
  6064. */
  6065. cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
  6066. max_util = max(max_util, cpu_util);
  6067. }
  6068. return min(max_util, eenv->cpu_cap);
  6069. }
  6070. /*
  6071. * compute_energy(): Use the Energy Model to estimate the energy that @pd would
  6072. * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
  6073. * contribution is ignored.
  6074. */
  6075. static inline unsigned long
  6076. compute_energy(struct energy_env *eenv, struct perf_domain *pd,
  6077. struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
  6078. {
  6079. unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
  6080. unsigned long busy_time = eenv->pd_busy_time;
  6081. if (dst_cpu >= 0)
  6082. busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
  6083. return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
  6084. }
  6085. /*
  6086. * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
  6087. * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
  6088. * spare capacity in each performance domain and uses it as a potential
  6089. * candidate to execute the task. Then, it uses the Energy Model to figure
  6090. * out which of the CPU candidates is the most energy-efficient.
  6091. *
  6092. * The rationale for this heuristic is as follows. In a performance domain,
  6093. * all the most energy efficient CPU candidates (according to the Energy
  6094. * Model) are those for which we'll request a low frequency. When there are
  6095. * several CPUs for which the frequency request will be the same, we don't
  6096. * have enough data to break the tie between them, because the Energy Model
  6097. * only includes active power costs. With this model, if we assume that
  6098. * frequency requests follow utilization (e.g. using schedutil), the CPU with
  6099. * the maximum spare capacity in a performance domain is guaranteed to be among
  6100. * the best candidates of the performance domain.
  6101. *
  6102. * In practice, it could be preferable from an energy standpoint to pack
  6103. * small tasks on a CPU in order to let other CPUs go in deeper idle states,
  6104. * but that could also hurt our chances to go cluster idle, and we have no
  6105. * ways to tell with the current Energy Model if this is actually a good
  6106. * idea or not. So, find_energy_efficient_cpu() basically favors
  6107. * cluster-packing, and spreading inside a cluster. That should at least be
  6108. * a good thing for latency, and this is consistent with the idea that most
  6109. * of the energy savings of EAS come from the asymmetry of the system, and
  6110. * not so much from breaking the tie between identical CPUs. That's also the
  6111. * reason why EAS is enabled in the topology code only for systems where
  6112. * SD_ASYM_CPUCAPACITY is set.
  6113. *
  6114. * NOTE: Forkees are not accepted in the energy-aware wake-up path because
  6115. * they don't have any useful utilization data yet and it's not possible to
  6116. * forecast their impact on energy consumption. Consequently, they will be
  6117. * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
  6118. * to be energy-inefficient in some use-cases. The alternative would be to
  6119. * bias new tasks towards specific types of CPUs first, or to try to infer
  6120. * their util_avg from the parent task, but those heuristics could hurt
  6121. * other use-cases too. So, until someone finds a better way to solve this,
  6122. * let's keep things simple by re-using the existing slow path.
  6123. */
  6124. static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu, int sync)
  6125. {
  6126. struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
  6127. unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
  6128. unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
  6129. unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
  6130. struct root_domain *rd = this_rq()->rd;
  6131. int cpu, best_energy_cpu, target = -1;
  6132. int prev_fits = -1, best_fits = -1;
  6133. unsigned long best_thermal_cap = 0;
  6134. unsigned long prev_thermal_cap = 0;
  6135. struct sched_domain *sd;
  6136. struct perf_domain *pd;
  6137. struct energy_env eenv;
  6138. int new_cpu = INT_MAX;
  6139. trace_android_rvh_find_energy_efficient_cpu(p, prev_cpu, sync, &new_cpu);
  6140. if (new_cpu != INT_MAX)
  6141. return new_cpu;
  6142. sync_entity_load_avg(&p->se);
  6143. rcu_read_lock();
  6144. pd = rcu_dereference(rd->pd);
  6145. if (!pd || READ_ONCE(rd->overutilized))
  6146. goto unlock;
  6147. cpu = smp_processor_id();
  6148. if (sync && cpu_rq(cpu)->nr_running == 1 &&
  6149. cpumask_test_cpu(cpu, p->cpus_ptr) &&
  6150. task_fits_cpu(p, cpu)) {
  6151. rcu_read_unlock();
  6152. return cpu;
  6153. }
  6154. /*
  6155. * Energy-aware wake-up happens on the lowest sched_domain starting
  6156. * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
  6157. */
  6158. sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
  6159. while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  6160. sd = sd->parent;
  6161. if (!sd)
  6162. goto unlock;
  6163. target = prev_cpu;
  6164. if (!task_util_est(p) && p_util_min == 0)
  6165. goto unlock;
  6166. eenv_task_busy_time(&eenv, p, prev_cpu);
  6167. for (; pd; pd = pd->next) {
  6168. unsigned long util_min = p_util_min, util_max = p_util_max;
  6169. unsigned long cpu_cap, cpu_thermal_cap, util;
  6170. long prev_spare_cap = -1, max_spare_cap = -1;
  6171. unsigned long rq_util_min, rq_util_max;
  6172. unsigned long cur_delta, base_energy;
  6173. int max_spare_cap_cpu = -1;
  6174. int fits, max_fits = -1;
  6175. cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
  6176. if (cpumask_empty(cpus))
  6177. continue;
  6178. /* Account thermal pressure for the energy estimation */
  6179. cpu = cpumask_first(cpus);
  6180. cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
  6181. cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
  6182. eenv.cpu_cap = cpu_thermal_cap;
  6183. eenv.pd_cap = 0;
  6184. for_each_cpu(cpu, cpus) {
  6185. struct rq *rq = cpu_rq(cpu);
  6186. eenv.pd_cap += cpu_thermal_cap;
  6187. if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
  6188. continue;
  6189. if (!cpumask_test_cpu(cpu, p->cpus_ptr))
  6190. continue;
  6191. util = cpu_util_next(cpu, p, cpu);
  6192. cpu_cap = capacity_of(cpu);
  6193. /*
  6194. * Skip CPUs that cannot satisfy the capacity request.
  6195. * IOW, placing the task there would make the CPU
  6196. * overutilized. Take uclamp into account to see how
  6197. * much capacity we can get out of the CPU; this is
  6198. * aligned with sched_cpu_util().
  6199. */
  6200. if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
  6201. /*
  6202. * Open code uclamp_rq_util_with() except for
  6203. * the clamp() part. Ie: apply max aggregation
  6204. * only. util_fits_cpu() logic requires to
  6205. * operate on non clamped util but must use the
  6206. * max-aggregated uclamp_{min, max}.
  6207. */
  6208. rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
  6209. rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
  6210. util_min = max(rq_util_min, p_util_min);
  6211. util_max = max(rq_util_max, p_util_max);
  6212. }
  6213. fits = util_fits_cpu(util, util_min, util_max, cpu);
  6214. if (!fits)
  6215. continue;
  6216. lsub_positive(&cpu_cap, util);
  6217. if (cpu == prev_cpu) {
  6218. /* Always use prev_cpu as a candidate. */
  6219. prev_spare_cap = cpu_cap;
  6220. prev_fits = fits;
  6221. } else if ((fits > max_fits) ||
  6222. ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
  6223. /*
  6224. * Find the CPU with the maximum spare capacity
  6225. * among the remaining CPUs in the performance
  6226. * domain.
  6227. */
  6228. max_spare_cap = cpu_cap;
  6229. max_spare_cap_cpu = cpu;
  6230. max_fits = fits;
  6231. }
  6232. }
  6233. if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
  6234. continue;
  6235. eenv_pd_busy_time(&eenv, cpus, p);
  6236. /* Compute the 'base' energy of the pd, without @p */
  6237. base_energy = compute_energy(&eenv, pd, cpus, p, -1);
  6238. /* Evaluate the energy impact of using prev_cpu. */
  6239. if (prev_spare_cap > -1) {
  6240. prev_delta = compute_energy(&eenv, pd, cpus, p,
  6241. prev_cpu);
  6242. /* CPU utilization has changed */
  6243. if (prev_delta < base_energy)
  6244. goto unlock;
  6245. prev_delta -= base_energy;
  6246. prev_thermal_cap = cpu_thermal_cap;
  6247. best_delta = min(best_delta, prev_delta);
  6248. }
  6249. /* Evaluate the energy impact of using max_spare_cap_cpu. */
  6250. if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
  6251. /* Current best energy cpu fits better */
  6252. if (max_fits < best_fits)
  6253. continue;
  6254. /*
  6255. * Both don't fit performance hint (i.e. uclamp_min)
  6256. * but best energy cpu has better capacity.
  6257. */
  6258. if ((max_fits < 0) &&
  6259. (cpu_thermal_cap <= best_thermal_cap))
  6260. continue;
  6261. cur_delta = compute_energy(&eenv, pd, cpus, p,
  6262. max_spare_cap_cpu);
  6263. /* CPU utilization has changed */
  6264. if (cur_delta < base_energy)
  6265. goto unlock;
  6266. cur_delta -= base_energy;
  6267. /*
  6268. * Both fit for the task but best energy cpu has lower
  6269. * energy impact.
  6270. */
  6271. if ((max_fits > 0) && (best_fits > 0) &&
  6272. (cur_delta >= best_delta))
  6273. continue;
  6274. best_delta = cur_delta;
  6275. best_energy_cpu = max_spare_cap_cpu;
  6276. best_fits = max_fits;
  6277. best_thermal_cap = cpu_thermal_cap;
  6278. }
  6279. }
  6280. rcu_read_unlock();
  6281. if ((best_fits > prev_fits) ||
  6282. ((best_fits > 0) && (best_delta < prev_delta)) ||
  6283. ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
  6284. target = best_energy_cpu;
  6285. return target;
  6286. unlock:
  6287. rcu_read_unlock();
  6288. return target;
  6289. }
  6290. /*
  6291. * select_task_rq_fair: Select target runqueue for the waking task in domains
  6292. * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
  6293. * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
  6294. *
  6295. * Balances load by selecting the idlest CPU in the idlest group, or under
  6296. * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
  6297. *
  6298. * Returns the target CPU number.
  6299. */
  6300. static int
  6301. select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
  6302. {
  6303. int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
  6304. struct sched_domain *tmp, *sd = NULL;
  6305. int cpu = smp_processor_id();
  6306. int new_cpu = prev_cpu;
  6307. int want_affine = 0;
  6308. int target_cpu = -1;
  6309. /* SD_flags and WF_flags share the first nibble */
  6310. int sd_flag = wake_flags & 0xF;
  6311. if (trace_android_rvh_select_task_rq_fair_enabled() &&
  6312. !(sd_flag & SD_BALANCE_FORK))
  6313. sync_entity_load_avg(&p->se);
  6314. trace_android_rvh_select_task_rq_fair(p, prev_cpu, sd_flag,
  6315. wake_flags, &target_cpu);
  6316. if (target_cpu >= 0)
  6317. return target_cpu;
  6318. /*
  6319. * required for stable ->cpus_allowed
  6320. */
  6321. lockdep_assert_held(&p->pi_lock);
  6322. if (wake_flags & WF_TTWU) {
  6323. record_wakee(p);
  6324. if (sched_energy_enabled()) {
  6325. new_cpu = find_energy_efficient_cpu(p, prev_cpu, sync);
  6326. if (new_cpu >= 0)
  6327. return new_cpu;
  6328. new_cpu = prev_cpu;
  6329. }
  6330. want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
  6331. }
  6332. rcu_read_lock();
  6333. for_each_domain(cpu, tmp) {
  6334. /*
  6335. * If both 'cpu' and 'prev_cpu' are part of this domain,
  6336. * cpu is a valid SD_WAKE_AFFINE target.
  6337. */
  6338. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  6339. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  6340. if (cpu != prev_cpu)
  6341. new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
  6342. sd = NULL; /* Prefer wake_affine over balance flags */
  6343. break;
  6344. }
  6345. /*
  6346. * Usually only true for WF_EXEC and WF_FORK, as sched_domains
  6347. * usually do not have SD_BALANCE_WAKE set. That means wakeup
  6348. * will usually go to the fast path.
  6349. */
  6350. if (tmp->flags & sd_flag)
  6351. sd = tmp;
  6352. else if (!want_affine)
  6353. break;
  6354. }
  6355. if (unlikely(sd)) {
  6356. /* Slow path */
  6357. new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
  6358. } else if (wake_flags & WF_TTWU) { /* XXX always ? */
  6359. /* Fast path */
  6360. new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
  6361. }
  6362. rcu_read_unlock();
  6363. return new_cpu;
  6364. }
  6365. /*
  6366. * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
  6367. * cfs_rq_of(p) references at time of call are still valid and identify the
  6368. * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
  6369. */
  6370. static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
  6371. {
  6372. struct sched_entity *se = &p->se;
  6373. /*
  6374. * As blocked tasks retain absolute vruntime the migration needs to
  6375. * deal with this by subtracting the old and adding the new
  6376. * min_vruntime -- the latter is done by enqueue_entity() when placing
  6377. * the task on the new runqueue.
  6378. */
  6379. if (READ_ONCE(p->__state) == TASK_WAKING) {
  6380. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  6381. se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
  6382. }
  6383. if (!task_on_rq_migrating(p)) {
  6384. remove_entity_load_avg(se);
  6385. /*
  6386. * Here, the task's PELT values have been updated according to
  6387. * the current rq's clock. But if that clock hasn't been
  6388. * updated in a while, a substantial idle time will be missed,
  6389. * leading to an inflation after wake-up on the new rq.
  6390. *
  6391. * Estimate the missing time from the cfs_rq last_update_time
  6392. * and update sched_avg to improve the PELT continuity after
  6393. * migration.
  6394. */
  6395. migrate_se_pelt_lag(se);
  6396. }
  6397. /* Tell new CPU we are migrated */
  6398. se->avg.last_update_time = 0;
  6399. update_scan_period(p, new_cpu);
  6400. }
  6401. static void task_dead_fair(struct task_struct *p)
  6402. {
  6403. remove_entity_load_avg(&p->se);
  6404. }
  6405. static int
  6406. balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
  6407. {
  6408. if (rq->nr_running)
  6409. return 1;
  6410. return newidle_balance(rq, rf) != 0;
  6411. }
  6412. #endif /* CONFIG_SMP */
  6413. static unsigned long wakeup_gran(struct sched_entity *se)
  6414. {
  6415. unsigned long gran = sysctl_sched_wakeup_granularity;
  6416. /*
  6417. * Since its curr running now, convert the gran from real-time
  6418. * to virtual-time in his units.
  6419. *
  6420. * By using 'se' instead of 'curr' we penalize light tasks, so
  6421. * they get preempted easier. That is, if 'se' < 'curr' then
  6422. * the resulting gran will be larger, therefore penalizing the
  6423. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  6424. * be smaller, again penalizing the lighter task.
  6425. *
  6426. * This is especially important for buddies when the leftmost
  6427. * task is higher priority than the buddy.
  6428. */
  6429. return calc_delta_fair(gran, se);
  6430. }
  6431. /*
  6432. * Should 'se' preempt 'curr'.
  6433. *
  6434. * |s1
  6435. * |s2
  6436. * |s3
  6437. * g
  6438. * |<--->|c
  6439. *
  6440. * w(c, s1) = -1
  6441. * w(c, s2) = 0
  6442. * w(c, s3) = 1
  6443. *
  6444. */
  6445. static int
  6446. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  6447. {
  6448. s64 gran, vdiff = curr->vruntime - se->vruntime;
  6449. if (vdiff <= 0)
  6450. return -1;
  6451. gran = wakeup_gran(se);
  6452. if (vdiff > gran)
  6453. return 1;
  6454. return 0;
  6455. }
  6456. static void set_last_buddy(struct sched_entity *se)
  6457. {
  6458. for_each_sched_entity(se) {
  6459. if (SCHED_WARN_ON(!se->on_rq))
  6460. return;
  6461. if (se_is_idle(se))
  6462. return;
  6463. cfs_rq_of(se)->last = se;
  6464. }
  6465. }
  6466. static void set_next_buddy(struct sched_entity *se)
  6467. {
  6468. for_each_sched_entity(se) {
  6469. if (SCHED_WARN_ON(!se->on_rq))
  6470. return;
  6471. if (se_is_idle(se))
  6472. return;
  6473. cfs_rq_of(se)->next = se;
  6474. }
  6475. }
  6476. static void set_skip_buddy(struct sched_entity *se)
  6477. {
  6478. for_each_sched_entity(se)
  6479. cfs_rq_of(se)->skip = se;
  6480. }
  6481. /*
  6482. * Preempt the current task with a newly woken task if needed:
  6483. */
  6484. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  6485. {
  6486. struct task_struct *curr = rq->curr;
  6487. struct sched_entity *se = &curr->se, *pse = &p->se;
  6488. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  6489. int scale = cfs_rq->nr_running >= sched_nr_latency;
  6490. int next_buddy_marked = 0;
  6491. int cse_is_idle, pse_is_idle;
  6492. bool ignore = false;
  6493. bool preempt = false;
  6494. if (unlikely(se == pse))
  6495. return;
  6496. trace_android_rvh_check_preempt_wakeup_ignore(curr, &ignore);
  6497. if (ignore)
  6498. return;
  6499. /*
  6500. * This is possible from callers such as attach_tasks(), in which we
  6501. * unconditionally check_preempt_curr() after an enqueue (which may have
  6502. * lead to a throttle). This both saves work and prevents false
  6503. * next-buddy nomination below.
  6504. */
  6505. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  6506. return;
  6507. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  6508. set_next_buddy(pse);
  6509. next_buddy_marked = 1;
  6510. }
  6511. /*
  6512. * We can come here with TIF_NEED_RESCHED already set from new task
  6513. * wake up path.
  6514. *
  6515. * Note: this also catches the edge-case of curr being in a throttled
  6516. * group (e.g. via set_curr_task), since update_curr() (in the
  6517. * enqueue of curr) will have resulted in resched being set. This
  6518. * prevents us from potentially nominating it as a false LAST_BUDDY
  6519. * below.
  6520. */
  6521. if (test_tsk_need_resched(curr))
  6522. return;
  6523. /* Idle tasks are by definition preempted by non-idle tasks. */
  6524. if (unlikely(task_has_idle_policy(curr)) &&
  6525. likely(!task_has_idle_policy(p)))
  6526. goto preempt;
  6527. /*
  6528. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  6529. * is driven by the tick):
  6530. */
  6531. if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
  6532. return;
  6533. find_matching_se(&se, &pse);
  6534. WARN_ON_ONCE(!pse);
  6535. cse_is_idle = se_is_idle(se);
  6536. pse_is_idle = se_is_idle(pse);
  6537. /*
  6538. * Preempt an idle group in favor of a non-idle group (and don't preempt
  6539. * in the inverse case).
  6540. */
  6541. if (cse_is_idle && !pse_is_idle)
  6542. goto preempt;
  6543. if (cse_is_idle != pse_is_idle)
  6544. return;
  6545. update_curr(cfs_rq_of(se));
  6546. trace_android_rvh_check_preempt_wakeup(rq, p, &preempt, &ignore,
  6547. wake_flags, se, pse, next_buddy_marked, sysctl_sched_wakeup_granularity);
  6548. if (preempt)
  6549. goto preempt;
  6550. if (ignore)
  6551. return;
  6552. if (wakeup_preempt_entity(se, pse) == 1) {
  6553. /*
  6554. * Bias pick_next to pick the sched entity that is
  6555. * triggering this preemption.
  6556. */
  6557. if (!next_buddy_marked)
  6558. set_next_buddy(pse);
  6559. goto preempt;
  6560. }
  6561. return;
  6562. preempt:
  6563. resched_curr(rq);
  6564. /*
  6565. * Only set the backward buddy when the current task is still
  6566. * on the rq. This can happen when a wakeup gets interleaved
  6567. * with schedule on the ->pre_schedule() or idle_balance()
  6568. * point, either of which can * drop the rq lock.
  6569. *
  6570. * Also, during early boot the idle thread is in the fair class,
  6571. * for obvious reasons its a bad idea to schedule back to it.
  6572. */
  6573. if (unlikely(!se->on_rq || curr == rq->idle))
  6574. return;
  6575. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  6576. set_last_buddy(se);
  6577. }
  6578. #ifdef CONFIG_SMP
  6579. static struct task_struct *pick_task_fair(struct rq *rq)
  6580. {
  6581. struct sched_entity *se;
  6582. struct cfs_rq *cfs_rq;
  6583. again:
  6584. cfs_rq = &rq->cfs;
  6585. if (!cfs_rq->nr_running)
  6586. return NULL;
  6587. do {
  6588. struct sched_entity *curr = cfs_rq->curr;
  6589. /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
  6590. if (curr) {
  6591. if (curr->on_rq)
  6592. update_curr(cfs_rq);
  6593. else
  6594. curr = NULL;
  6595. if (unlikely(check_cfs_rq_runtime(cfs_rq)))
  6596. goto again;
  6597. }
  6598. se = pick_next_entity(cfs_rq, curr);
  6599. if (unlikely(!se))
  6600. goto again;
  6601. cfs_rq = group_cfs_rq(se);
  6602. } while (cfs_rq);
  6603. return task_of(se);
  6604. }
  6605. #endif
  6606. struct task_struct *
  6607. pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
  6608. {
  6609. struct cfs_rq *cfs_rq = &rq->cfs;
  6610. struct sched_entity *se = NULL;
  6611. struct task_struct *p = NULL;
  6612. int new_tasks;
  6613. bool repick = false;
  6614. again:
  6615. if (!sched_fair_runnable(rq))
  6616. goto idle;
  6617. #ifdef CONFIG_FAIR_GROUP_SCHED
  6618. if (!prev || prev->sched_class != &fair_sched_class)
  6619. goto simple;
  6620. /*
  6621. * Because of the set_next_buddy() in dequeue_task_fair() it is rather
  6622. * likely that a next task is from the same cgroup as the current.
  6623. *
  6624. * Therefore attempt to avoid putting and setting the entire cgroup
  6625. * hierarchy, only change the part that actually changes.
  6626. */
  6627. do {
  6628. struct sched_entity *curr = cfs_rq->curr;
  6629. /*
  6630. * Since we got here without doing put_prev_entity() we also
  6631. * have to consider cfs_rq->curr. If it is still a runnable
  6632. * entity, update_curr() will update its vruntime, otherwise
  6633. * forget we've ever seen it.
  6634. */
  6635. if (curr) {
  6636. if (curr->on_rq)
  6637. update_curr(cfs_rq);
  6638. else
  6639. curr = NULL;
  6640. /*
  6641. * This call to check_cfs_rq_runtime() will do the
  6642. * throttle and dequeue its entity in the parent(s).
  6643. * Therefore the nr_running test will indeed
  6644. * be correct.
  6645. */
  6646. if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
  6647. cfs_rq = &rq->cfs;
  6648. if (!cfs_rq->nr_running)
  6649. goto idle;
  6650. goto simple;
  6651. }
  6652. }
  6653. se = pick_next_entity(cfs_rq, curr);
  6654. if (unlikely(!se)) {
  6655. cfs_rq = &rq->cfs;
  6656. goto again;
  6657. }
  6658. cfs_rq = group_cfs_rq(se);
  6659. } while (cfs_rq);
  6660. p = task_of(se);
  6661. trace_android_rvh_replace_next_task_fair(rq, &p, &se, &repick, false, prev);
  6662. /*
  6663. * Since we haven't yet done put_prev_entity and if the selected task
  6664. * is a different task than we started out with, try and touch the
  6665. * least amount of cfs_rqs.
  6666. */
  6667. if (prev != p) {
  6668. struct sched_entity *pse = &prev->se;
  6669. while (!(cfs_rq = is_same_group(se, pse))) {
  6670. int se_depth = se->depth;
  6671. int pse_depth = pse->depth;
  6672. if (se_depth <= pse_depth) {
  6673. put_prev_entity(cfs_rq_of(pse), pse);
  6674. pse = parent_entity(pse);
  6675. }
  6676. if (se_depth >= pse_depth) {
  6677. set_next_entity(cfs_rq_of(se), se);
  6678. se = parent_entity(se);
  6679. }
  6680. }
  6681. put_prev_entity(cfs_rq, pse);
  6682. set_next_entity(cfs_rq, se);
  6683. }
  6684. goto done;
  6685. simple:
  6686. #endif
  6687. if (prev)
  6688. put_prev_task(rq, prev);
  6689. trace_android_rvh_replace_next_task_fair(rq, &p, &se, &repick, true, prev);
  6690. if (repick)
  6691. goto done;
  6692. do {
  6693. se = pick_next_entity(cfs_rq, NULL);
  6694. if (unlikely(!se)) {
  6695. cfs_rq = &rq->cfs;
  6696. goto again;
  6697. }
  6698. set_next_entity(cfs_rq, se);
  6699. cfs_rq = group_cfs_rq(se);
  6700. } while (cfs_rq);
  6701. p = task_of(se);
  6702. done: __maybe_unused;
  6703. #ifdef CONFIG_SMP
  6704. /*
  6705. * Move the next running task to the front of
  6706. * the list, so our cfs_tasks list becomes MRU
  6707. * one.
  6708. */
  6709. list_move(&p->se.group_node, &rq->cfs_tasks);
  6710. #endif
  6711. if (hrtick_enabled_fair(rq))
  6712. hrtick_start_fair(rq, p);
  6713. update_misfit_status(p, rq);
  6714. return p;
  6715. idle:
  6716. if (!rf)
  6717. return NULL;
  6718. new_tasks = newidle_balance(rq, rf);
  6719. /*
  6720. * Because newidle_balance() releases (and re-acquires) rq->lock, it is
  6721. * possible for any higher priority task to appear. In that case we
  6722. * must re-start the pick_next_entity() loop.
  6723. */
  6724. if (new_tasks < 0)
  6725. return RETRY_TASK;
  6726. if (new_tasks > 0)
  6727. goto again;
  6728. /*
  6729. * rq is about to be idle, check if we need to update the
  6730. * lost_idle_time of clock_pelt
  6731. */
  6732. update_idle_rq_clock_pelt(rq);
  6733. return NULL;
  6734. }
  6735. static struct task_struct *__pick_next_task_fair(struct rq *rq)
  6736. {
  6737. return pick_next_task_fair(rq, NULL, NULL);
  6738. }
  6739. /*
  6740. * Account for a descheduled task:
  6741. */
  6742. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  6743. {
  6744. struct sched_entity *se = &prev->se;
  6745. struct cfs_rq *cfs_rq;
  6746. for_each_sched_entity(se) {
  6747. cfs_rq = cfs_rq_of(se);
  6748. put_prev_entity(cfs_rq, se);
  6749. }
  6750. }
  6751. /*
  6752. * sched_yield() is very simple
  6753. *
  6754. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  6755. */
  6756. static void yield_task_fair(struct rq *rq)
  6757. {
  6758. struct task_struct *curr = rq->curr;
  6759. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  6760. struct sched_entity *se = &curr->se;
  6761. /*
  6762. * Are we the only task in the tree?
  6763. */
  6764. if (unlikely(rq->nr_running == 1))
  6765. return;
  6766. clear_buddies(cfs_rq, se);
  6767. if (curr->policy != SCHED_BATCH) {
  6768. update_rq_clock(rq);
  6769. /*
  6770. * Update run-time statistics of the 'current'.
  6771. */
  6772. update_curr(cfs_rq);
  6773. /*
  6774. * Tell update_rq_clock() that we've just updated,
  6775. * so we don't do microscopic update in schedule()
  6776. * and double the fastpath cost.
  6777. */
  6778. rq_clock_skip_update(rq);
  6779. }
  6780. set_skip_buddy(se);
  6781. }
  6782. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
  6783. {
  6784. struct sched_entity *se = &p->se;
  6785. /* throttled hierarchies are not runnable */
  6786. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  6787. return false;
  6788. /* Tell the scheduler that we'd really like pse to run next. */
  6789. set_next_buddy(se);
  6790. yield_task_fair(rq);
  6791. return true;
  6792. }
  6793. #ifdef CONFIG_SMP
  6794. /**************************************************
  6795. * Fair scheduling class load-balancing methods.
  6796. *
  6797. * BASICS
  6798. *
  6799. * The purpose of load-balancing is to achieve the same basic fairness the
  6800. * per-CPU scheduler provides, namely provide a proportional amount of compute
  6801. * time to each task. This is expressed in the following equation:
  6802. *
  6803. * W_i,n/P_i == W_j,n/P_j for all i,j (1)
  6804. *
  6805. * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
  6806. * W_i,0 is defined as:
  6807. *
  6808. * W_i,0 = \Sum_j w_i,j (2)
  6809. *
  6810. * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
  6811. * is derived from the nice value as per sched_prio_to_weight[].
  6812. *
  6813. * The weight average is an exponential decay average of the instantaneous
  6814. * weight:
  6815. *
  6816. * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
  6817. *
  6818. * C_i is the compute capacity of CPU i, typically it is the
  6819. * fraction of 'recent' time available for SCHED_OTHER task execution. But it
  6820. * can also include other factors [XXX].
  6821. *
  6822. * To achieve this balance we define a measure of imbalance which follows
  6823. * directly from (1):
  6824. *
  6825. * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
  6826. *
  6827. * We them move tasks around to minimize the imbalance. In the continuous
  6828. * function space it is obvious this converges, in the discrete case we get
  6829. * a few fun cases generally called infeasible weight scenarios.
  6830. *
  6831. * [XXX expand on:
  6832. * - infeasible weights;
  6833. * - local vs global optima in the discrete case. ]
  6834. *
  6835. *
  6836. * SCHED DOMAINS
  6837. *
  6838. * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
  6839. * for all i,j solution, we create a tree of CPUs that follows the hardware
  6840. * topology where each level pairs two lower groups (or better). This results
  6841. * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
  6842. * tree to only the first of the previous level and we decrease the frequency
  6843. * of load-balance at each level inv. proportional to the number of CPUs in
  6844. * the groups.
  6845. *
  6846. * This yields:
  6847. *
  6848. * log_2 n 1 n
  6849. * \Sum { --- * --- * 2^i } = O(n) (5)
  6850. * i = 0 2^i 2^i
  6851. * `- size of each group
  6852. * | | `- number of CPUs doing load-balance
  6853. * | `- freq
  6854. * `- sum over all levels
  6855. *
  6856. * Coupled with a limit on how many tasks we can migrate every balance pass,
  6857. * this makes (5) the runtime complexity of the balancer.
  6858. *
  6859. * An important property here is that each CPU is still (indirectly) connected
  6860. * to every other CPU in at most O(log n) steps:
  6861. *
  6862. * The adjacency matrix of the resulting graph is given by:
  6863. *
  6864. * log_2 n
  6865. * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
  6866. * k = 0
  6867. *
  6868. * And you'll find that:
  6869. *
  6870. * A^(log_2 n)_i,j != 0 for all i,j (7)
  6871. *
  6872. * Showing there's indeed a path between every CPU in at most O(log n) steps.
  6873. * The task movement gives a factor of O(m), giving a convergence complexity
  6874. * of:
  6875. *
  6876. * O(nm log n), n := nr_cpus, m := nr_tasks (8)
  6877. *
  6878. *
  6879. * WORK CONSERVING
  6880. *
  6881. * In order to avoid CPUs going idle while there's still work to do, new idle
  6882. * balancing is more aggressive and has the newly idle CPU iterate up the domain
  6883. * tree itself instead of relying on other CPUs to bring it work.
  6884. *
  6885. * This adds some complexity to both (5) and (8) but it reduces the total idle
  6886. * time.
  6887. *
  6888. * [XXX more?]
  6889. *
  6890. *
  6891. * CGROUPS
  6892. *
  6893. * Cgroups make a horror show out of (2), instead of a simple sum we get:
  6894. *
  6895. * s_k,i
  6896. * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
  6897. * S_k
  6898. *
  6899. * Where
  6900. *
  6901. * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
  6902. *
  6903. * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
  6904. *
  6905. * The big problem is S_k, its a global sum needed to compute a local (W_i)
  6906. * property.
  6907. *
  6908. * [XXX write more on how we solve this.. _after_ merging pjt's patches that
  6909. * rewrite all of this once again.]
  6910. */
  6911. unsigned long __read_mostly max_load_balance_interval = HZ/10;
  6912. EXPORT_SYMBOL_GPL(max_load_balance_interval);
  6913. enum fbq_type { regular, remote, all };
  6914. /*
  6915. * 'group_type' describes the group of CPUs at the moment of load balancing.
  6916. *
  6917. * The enum is ordered by pulling priority, with the group with lowest priority
  6918. * first so the group_type can simply be compared when selecting the busiest
  6919. * group. See update_sd_pick_busiest().
  6920. */
  6921. enum group_type {
  6922. /* The group has spare capacity that can be used to run more tasks. */
  6923. group_has_spare = 0,
  6924. /*
  6925. * The group is fully used and the tasks don't compete for more CPU
  6926. * cycles. Nevertheless, some tasks might wait before running.
  6927. */
  6928. group_fully_busy,
  6929. /*
  6930. * One task doesn't fit with CPU's capacity and must be migrated to a
  6931. * more powerful CPU.
  6932. */
  6933. group_misfit_task,
  6934. /*
  6935. * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
  6936. * and the task should be migrated to it instead of running on the
  6937. * current CPU.
  6938. */
  6939. group_asym_packing,
  6940. /*
  6941. * The tasks' affinity constraints previously prevented the scheduler
  6942. * from balancing the load across the system.
  6943. */
  6944. group_imbalanced,
  6945. /*
  6946. * The CPU is overloaded and can't provide expected CPU cycles to all
  6947. * tasks.
  6948. */
  6949. group_overloaded
  6950. };
  6951. enum migration_type {
  6952. migrate_load = 0,
  6953. migrate_util,
  6954. migrate_task,
  6955. migrate_misfit
  6956. };
  6957. #define LBF_ALL_PINNED 0x01
  6958. #define LBF_NEED_BREAK 0x02
  6959. #define LBF_DST_PINNED 0x04
  6960. #define LBF_SOME_PINNED 0x08
  6961. #define LBF_ACTIVE_LB 0x10
  6962. struct lb_env {
  6963. struct sched_domain *sd;
  6964. struct rq *src_rq;
  6965. int src_cpu;
  6966. int dst_cpu;
  6967. struct rq *dst_rq;
  6968. struct cpumask *dst_grpmask;
  6969. int new_dst_cpu;
  6970. enum cpu_idle_type idle;
  6971. long imbalance;
  6972. /* The set of CPUs under consideration for load-balancing */
  6973. struct cpumask *cpus;
  6974. unsigned int flags;
  6975. unsigned int loop;
  6976. unsigned int loop_break;
  6977. unsigned int loop_max;
  6978. enum fbq_type fbq_type;
  6979. enum migration_type migration_type;
  6980. struct list_head tasks;
  6981. struct rq_flags *src_rq_rf;
  6982. };
  6983. /*
  6984. * Is this task likely cache-hot:
  6985. */
  6986. static int task_hot(struct task_struct *p, struct lb_env *env)
  6987. {
  6988. s64 delta;
  6989. lockdep_assert_rq_held(env->src_rq);
  6990. if (p->sched_class != &fair_sched_class)
  6991. return 0;
  6992. if (unlikely(task_has_idle_policy(p)))
  6993. return 0;
  6994. /* SMT siblings share cache */
  6995. if (env->sd->flags & SD_SHARE_CPUCAPACITY)
  6996. return 0;
  6997. /*
  6998. * Buddy candidates are cache hot:
  6999. */
  7000. if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
  7001. (&p->se == cfs_rq_of(&p->se)->next ||
  7002. &p->se == cfs_rq_of(&p->se)->last))
  7003. return 1;
  7004. if (sysctl_sched_migration_cost == -1)
  7005. return 1;
  7006. /*
  7007. * Don't migrate task if the task's cookie does not match
  7008. * with the destination CPU's core cookie.
  7009. */
  7010. if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
  7011. return 1;
  7012. if (sysctl_sched_migration_cost == 0)
  7013. return 0;
  7014. delta = rq_clock_task(env->src_rq) - p->se.exec_start;
  7015. return delta < (s64)sysctl_sched_migration_cost;
  7016. }
  7017. #ifdef CONFIG_NUMA_BALANCING
  7018. /*
  7019. * Returns 1, if task migration degrades locality
  7020. * Returns 0, if task migration improves locality i.e migration preferred.
  7021. * Returns -1, if task migration is not affected by locality.
  7022. */
  7023. static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
  7024. {
  7025. struct numa_group *numa_group = rcu_dereference(p->numa_group);
  7026. unsigned long src_weight, dst_weight;
  7027. int src_nid, dst_nid, dist;
  7028. if (!static_branch_likely(&sched_numa_balancing))
  7029. return -1;
  7030. if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
  7031. return -1;
  7032. src_nid = cpu_to_node(env->src_cpu);
  7033. dst_nid = cpu_to_node(env->dst_cpu);
  7034. if (src_nid == dst_nid)
  7035. return -1;
  7036. /* Migrating away from the preferred node is always bad. */
  7037. if (src_nid == p->numa_preferred_nid) {
  7038. if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
  7039. return 1;
  7040. else
  7041. return -1;
  7042. }
  7043. /* Encourage migration to the preferred node. */
  7044. if (dst_nid == p->numa_preferred_nid)
  7045. return 0;
  7046. /* Leaving a core idle is often worse than degrading locality. */
  7047. if (env->idle == CPU_IDLE)
  7048. return -1;
  7049. dist = node_distance(src_nid, dst_nid);
  7050. if (numa_group) {
  7051. src_weight = group_weight(p, src_nid, dist);
  7052. dst_weight = group_weight(p, dst_nid, dist);
  7053. } else {
  7054. src_weight = task_weight(p, src_nid, dist);
  7055. dst_weight = task_weight(p, dst_nid, dist);
  7056. }
  7057. return dst_weight < src_weight;
  7058. }
  7059. #else
  7060. static inline int migrate_degrades_locality(struct task_struct *p,
  7061. struct lb_env *env)
  7062. {
  7063. return -1;
  7064. }
  7065. #endif
  7066. /*
  7067. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  7068. */
  7069. static
  7070. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  7071. {
  7072. int tsk_cache_hot;
  7073. int can_migrate = 1;
  7074. lockdep_assert_rq_held(env->src_rq);
  7075. trace_android_rvh_can_migrate_task(p, env->dst_cpu, &can_migrate);
  7076. if (!can_migrate)
  7077. return 0;
  7078. /*
  7079. * We do not migrate tasks that are:
  7080. * 1) throttled_lb_pair, or
  7081. * 2) cannot be migrated to this CPU due to cpus_ptr, or
  7082. * 3) running (obviously), or
  7083. * 4) are cache-hot on their current CPU.
  7084. */
  7085. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  7086. return 0;
  7087. /* Disregard pcpu kthreads; they are where they need to be. */
  7088. if (kthread_is_per_cpu(p))
  7089. return 0;
  7090. if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
  7091. int cpu;
  7092. schedstat_inc(p->stats.nr_failed_migrations_affine);
  7093. env->flags |= LBF_SOME_PINNED;
  7094. /*
  7095. * Remember if this task can be migrated to any other CPU in
  7096. * our sched_group. We may want to revisit it if we couldn't
  7097. * meet load balance goals by pulling other tasks on src_cpu.
  7098. *
  7099. * Avoid computing new_dst_cpu
  7100. * - for NEWLY_IDLE
  7101. * - if we have already computed one in current iteration
  7102. * - if it's an active balance
  7103. */
  7104. if (env->idle == CPU_NEWLY_IDLE ||
  7105. env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
  7106. return 0;
  7107. /* Prevent to re-select dst_cpu via env's CPUs: */
  7108. for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
  7109. if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
  7110. env->flags |= LBF_DST_PINNED;
  7111. env->new_dst_cpu = cpu;
  7112. break;
  7113. }
  7114. }
  7115. return 0;
  7116. }
  7117. /* Record that we found at least one task that could run on dst_cpu */
  7118. env->flags &= ~LBF_ALL_PINNED;
  7119. if (task_on_cpu(env->src_rq, p)) {
  7120. schedstat_inc(p->stats.nr_failed_migrations_running);
  7121. return 0;
  7122. }
  7123. /*
  7124. * Aggressive migration if:
  7125. * 1) active balance
  7126. * 2) destination numa is preferred
  7127. * 3) task is cache cold, or
  7128. * 4) too many balance attempts have failed.
  7129. */
  7130. if (env->flags & LBF_ACTIVE_LB)
  7131. return 1;
  7132. tsk_cache_hot = migrate_degrades_locality(p, env);
  7133. if (tsk_cache_hot == -1)
  7134. tsk_cache_hot = task_hot(p, env);
  7135. if (tsk_cache_hot <= 0 ||
  7136. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  7137. if (tsk_cache_hot == 1) {
  7138. schedstat_inc(env->sd->lb_hot_gained[env->idle]);
  7139. schedstat_inc(p->stats.nr_forced_migrations);
  7140. }
  7141. return 1;
  7142. }
  7143. schedstat_inc(p->stats.nr_failed_migrations_hot);
  7144. return 0;
  7145. }
  7146. /*
  7147. * detach_task() -- detach the task for the migration specified in env
  7148. */
  7149. static void detach_task(struct task_struct *p, struct lb_env *env)
  7150. {
  7151. int detached = 0;
  7152. lockdep_assert_rq_held(env->src_rq);
  7153. /*
  7154. * The vendor hook may drop the lock temporarily, so
  7155. * pass the rq flags to unpin lock. We expect the
  7156. * rq lock to be held after return.
  7157. */
  7158. trace_android_rvh_migrate_queued_task(env->src_rq, env->src_rq_rf, p,
  7159. env->dst_cpu, &detached);
  7160. if (detached)
  7161. return;
  7162. deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
  7163. set_task_cpu(p, env->dst_cpu);
  7164. }
  7165. /*
  7166. * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
  7167. * part of active balancing operations within "domain".
  7168. *
  7169. * Returns a task if successful and NULL otherwise.
  7170. */
  7171. static struct task_struct *detach_one_task(struct lb_env *env)
  7172. {
  7173. struct task_struct *p;
  7174. lockdep_assert_rq_held(env->src_rq);
  7175. list_for_each_entry_reverse(p,
  7176. &env->src_rq->cfs_tasks, se.group_node) {
  7177. if (!can_migrate_task(p, env))
  7178. continue;
  7179. detach_task(p, env);
  7180. /*
  7181. * Right now, this is only the second place where
  7182. * lb_gained[env->idle] is updated (other is detach_tasks)
  7183. * so we can safely collect stats here rather than
  7184. * inside detach_tasks().
  7185. */
  7186. schedstat_inc(env->sd->lb_gained[env->idle]);
  7187. return p;
  7188. }
  7189. return NULL;
  7190. }
  7191. /*
  7192. * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
  7193. * busiest_rq, as part of a balancing operation within domain "sd".
  7194. *
  7195. * Returns number of detached tasks if successful and 0 otherwise.
  7196. */
  7197. static int detach_tasks(struct lb_env *env)
  7198. {
  7199. struct list_head *tasks = &env->src_rq->cfs_tasks;
  7200. unsigned long util, load;
  7201. struct task_struct *p;
  7202. int detached = 0;
  7203. lockdep_assert_rq_held(env->src_rq);
  7204. /*
  7205. * Source run queue has been emptied by another CPU, clear
  7206. * LBF_ALL_PINNED flag as we will not test any task.
  7207. */
  7208. if (env->src_rq->nr_running <= 1) {
  7209. env->flags &= ~LBF_ALL_PINNED;
  7210. return 0;
  7211. }
  7212. if (env->imbalance <= 0)
  7213. return 0;
  7214. while (!list_empty(tasks)) {
  7215. /*
  7216. * We don't want to steal all, otherwise we may be treated likewise,
  7217. * which could at worst lead to a livelock crash.
  7218. */
  7219. if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
  7220. break;
  7221. env->loop++;
  7222. /*
  7223. * We've more or less seen every task there is, call it quits
  7224. * unless we haven't found any movable task yet.
  7225. */
  7226. if (env->loop > env->loop_max &&
  7227. !(env->flags & LBF_ALL_PINNED))
  7228. break;
  7229. /* take a breather every nr_migrate tasks */
  7230. if (env->loop > env->loop_break) {
  7231. env->loop_break += SCHED_NR_MIGRATE_BREAK;
  7232. env->flags |= LBF_NEED_BREAK;
  7233. break;
  7234. }
  7235. p = list_last_entry(tasks, struct task_struct, se.group_node);
  7236. if (!can_migrate_task(p, env))
  7237. goto next;
  7238. switch (env->migration_type) {
  7239. case migrate_load:
  7240. /*
  7241. * Depending of the number of CPUs and tasks and the
  7242. * cgroup hierarchy, task_h_load() can return a null
  7243. * value. Make sure that env->imbalance decreases
  7244. * otherwise detach_tasks() will stop only after
  7245. * detaching up to loop_max tasks.
  7246. */
  7247. load = max_t(unsigned long, task_h_load(p), 1);
  7248. if (sched_feat(LB_MIN) &&
  7249. load < 16 && !env->sd->nr_balance_failed)
  7250. goto next;
  7251. /*
  7252. * Make sure that we don't migrate too much load.
  7253. * Nevertheless, let relax the constraint if
  7254. * scheduler fails to find a good waiting task to
  7255. * migrate.
  7256. */
  7257. if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
  7258. goto next;
  7259. env->imbalance -= load;
  7260. break;
  7261. case migrate_util:
  7262. util = task_util_est(p);
  7263. if (util > env->imbalance)
  7264. goto next;
  7265. env->imbalance -= util;
  7266. break;
  7267. case migrate_task:
  7268. env->imbalance--;
  7269. break;
  7270. case migrate_misfit:
  7271. /* This is not a misfit task */
  7272. if (task_fits_cpu(p, env->src_cpu))
  7273. goto next;
  7274. env->imbalance = 0;
  7275. break;
  7276. }
  7277. detach_task(p, env);
  7278. list_add(&p->se.group_node, &env->tasks);
  7279. detached++;
  7280. #ifdef CONFIG_PREEMPTION
  7281. /*
  7282. * NEWIDLE balancing is a source of latency, so preemptible
  7283. * kernels will stop after the first task is detached to minimize
  7284. * the critical section.
  7285. */
  7286. if (env->idle == CPU_NEWLY_IDLE)
  7287. break;
  7288. #endif
  7289. /*
  7290. * We only want to steal up to the prescribed amount of
  7291. * load/util/tasks.
  7292. */
  7293. if (env->imbalance <= 0)
  7294. break;
  7295. continue;
  7296. next:
  7297. list_move(&p->se.group_node, tasks);
  7298. }
  7299. /*
  7300. * Right now, this is one of only two places we collect this stat
  7301. * so we can safely collect detach_one_task() stats here rather
  7302. * than inside detach_one_task().
  7303. */
  7304. schedstat_add(env->sd->lb_gained[env->idle], detached);
  7305. return detached;
  7306. }
  7307. /*
  7308. * attach_task() -- attach the task detached by detach_task() to its new rq.
  7309. */
  7310. static void attach_task(struct rq *rq, struct task_struct *p)
  7311. {
  7312. lockdep_assert_rq_held(rq);
  7313. WARN_ON_ONCE(task_rq(p) != rq);
  7314. activate_task(rq, p, ENQUEUE_NOCLOCK);
  7315. check_preempt_curr(rq, p, 0);
  7316. }
  7317. /*
  7318. * attach_one_task() -- attaches the task returned from detach_one_task() to
  7319. * its new rq.
  7320. */
  7321. static void attach_one_task(struct rq *rq, struct task_struct *p)
  7322. {
  7323. struct rq_flags rf;
  7324. rq_lock(rq, &rf);
  7325. update_rq_clock(rq);
  7326. attach_task(rq, p);
  7327. rq_unlock(rq, &rf);
  7328. }
  7329. /*
  7330. * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
  7331. * new rq.
  7332. */
  7333. static void attach_tasks(struct lb_env *env)
  7334. {
  7335. struct list_head *tasks = &env->tasks;
  7336. struct task_struct *p;
  7337. struct rq_flags rf;
  7338. rq_lock(env->dst_rq, &rf);
  7339. update_rq_clock(env->dst_rq);
  7340. while (!list_empty(tasks)) {
  7341. p = list_first_entry(tasks, struct task_struct, se.group_node);
  7342. list_del_init(&p->se.group_node);
  7343. attach_task(env->dst_rq, p);
  7344. }
  7345. rq_unlock(env->dst_rq, &rf);
  7346. }
  7347. #ifdef CONFIG_NO_HZ_COMMON
  7348. static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
  7349. {
  7350. if (cfs_rq->avg.load_avg)
  7351. return true;
  7352. if (cfs_rq->avg.util_avg)
  7353. return true;
  7354. return false;
  7355. }
  7356. static inline bool others_have_blocked(struct rq *rq)
  7357. {
  7358. if (READ_ONCE(rq->avg_rt.util_avg))
  7359. return true;
  7360. if (READ_ONCE(rq->avg_dl.util_avg))
  7361. return true;
  7362. if (thermal_load_avg(rq))
  7363. return true;
  7364. #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
  7365. if (READ_ONCE(rq->avg_irq.util_avg))
  7366. return true;
  7367. #endif
  7368. return false;
  7369. }
  7370. static inline void update_blocked_load_tick(struct rq *rq)
  7371. {
  7372. WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
  7373. }
  7374. static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
  7375. {
  7376. if (!has_blocked)
  7377. rq->has_blocked_load = 0;
  7378. }
  7379. #else
  7380. static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
  7381. static inline bool others_have_blocked(struct rq *rq) { return false; }
  7382. static inline void update_blocked_load_tick(struct rq *rq) {}
  7383. static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
  7384. #endif
  7385. static bool __update_blocked_others(struct rq *rq, bool *done)
  7386. {
  7387. const struct sched_class *curr_class;
  7388. u64 now = rq_clock_pelt(rq);
  7389. unsigned long thermal_pressure;
  7390. bool decayed;
  7391. /*
  7392. * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
  7393. * DL and IRQ signals have been updated before updating CFS.
  7394. */
  7395. curr_class = rq->curr->sched_class;
  7396. thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
  7397. decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
  7398. update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
  7399. update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
  7400. update_irq_load_avg(rq, 0);
  7401. if (others_have_blocked(rq))
  7402. *done = false;
  7403. return decayed;
  7404. }
  7405. #ifdef CONFIG_FAIR_GROUP_SCHED
  7406. static bool __update_blocked_fair(struct rq *rq, bool *done)
  7407. {
  7408. struct cfs_rq *cfs_rq, *pos;
  7409. bool decayed = false;
  7410. int cpu = cpu_of(rq);
  7411. trace_android_rvh_update_blocked_fair(rq);
  7412. /*
  7413. * Iterates the task_group tree in a bottom up fashion, see
  7414. * list_add_leaf_cfs_rq() for details.
  7415. */
  7416. for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
  7417. struct sched_entity *se;
  7418. if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
  7419. update_tg_load_avg(cfs_rq);
  7420. if (cfs_rq->nr_running == 0)
  7421. update_idle_cfs_rq_clock_pelt(cfs_rq);
  7422. if (cfs_rq == &rq->cfs)
  7423. decayed = true;
  7424. }
  7425. /* Propagate pending load changes to the parent, if any: */
  7426. se = cfs_rq->tg->se[cpu];
  7427. if (se && !skip_blocked_update(se))
  7428. update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
  7429. /*
  7430. * There can be a lot of idle CPU cgroups. Don't let fully
  7431. * decayed cfs_rqs linger on the list.
  7432. */
  7433. if (cfs_rq_is_decayed(cfs_rq))
  7434. list_del_leaf_cfs_rq(cfs_rq);
  7435. /* Don't need periodic decay once load/util_avg are null */
  7436. if (cfs_rq_has_blocked(cfs_rq))
  7437. *done = false;
  7438. }
  7439. return decayed;
  7440. }
  7441. /*
  7442. * Compute the hierarchical load factor for cfs_rq and all its ascendants.
  7443. * This needs to be done in a top-down fashion because the load of a child
  7444. * group is a fraction of its parents load.
  7445. */
  7446. static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
  7447. {
  7448. struct rq *rq = rq_of(cfs_rq);
  7449. struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
  7450. unsigned long now = jiffies;
  7451. unsigned long load;
  7452. if (cfs_rq->last_h_load_update == now)
  7453. return;
  7454. WRITE_ONCE(cfs_rq->h_load_next, NULL);
  7455. for_each_sched_entity(se) {
  7456. cfs_rq = cfs_rq_of(se);
  7457. WRITE_ONCE(cfs_rq->h_load_next, se);
  7458. if (cfs_rq->last_h_load_update == now)
  7459. break;
  7460. }
  7461. if (!se) {
  7462. cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
  7463. cfs_rq->last_h_load_update = now;
  7464. }
  7465. while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
  7466. load = cfs_rq->h_load;
  7467. load = div64_ul(load * se->avg.load_avg,
  7468. cfs_rq_load_avg(cfs_rq) + 1);
  7469. cfs_rq = group_cfs_rq(se);
  7470. cfs_rq->h_load = load;
  7471. cfs_rq->last_h_load_update = now;
  7472. }
  7473. }
  7474. static unsigned long task_h_load(struct task_struct *p)
  7475. {
  7476. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  7477. update_cfs_rq_h_load(cfs_rq);
  7478. return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
  7479. cfs_rq_load_avg(cfs_rq) + 1);
  7480. }
  7481. #else
  7482. static bool __update_blocked_fair(struct rq *rq, bool *done)
  7483. {
  7484. struct cfs_rq *cfs_rq = &rq->cfs;
  7485. bool decayed;
  7486. decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
  7487. if (cfs_rq_has_blocked(cfs_rq))
  7488. *done = false;
  7489. return decayed;
  7490. }
  7491. static unsigned long task_h_load(struct task_struct *p)
  7492. {
  7493. return p->se.avg.load_avg;
  7494. }
  7495. #endif
  7496. static void update_blocked_averages(int cpu)
  7497. {
  7498. bool decayed = false, done = true;
  7499. struct rq *rq = cpu_rq(cpu);
  7500. struct rq_flags rf;
  7501. rq_lock_irqsave(rq, &rf);
  7502. update_blocked_load_tick(rq);
  7503. update_rq_clock(rq);
  7504. decayed |= __update_blocked_others(rq, &done);
  7505. decayed |= __update_blocked_fair(rq, &done);
  7506. update_blocked_load_status(rq, !done);
  7507. if (decayed)
  7508. cpufreq_update_util(rq, 0);
  7509. rq_unlock_irqrestore(rq, &rf);
  7510. }
  7511. /********** Helpers for find_busiest_group ************************/
  7512. /*
  7513. * sg_lb_stats - stats of a sched_group required for load_balancing
  7514. */
  7515. struct sg_lb_stats {
  7516. unsigned long avg_load; /*Avg load across the CPUs of the group */
  7517. unsigned long group_load; /* Total load over the CPUs of the group */
  7518. unsigned long group_capacity;
  7519. unsigned long group_util; /* Total utilization over the CPUs of the group */
  7520. unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
  7521. unsigned int sum_nr_running; /* Nr of tasks running in the group */
  7522. unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
  7523. unsigned int idle_cpus;
  7524. unsigned int group_weight;
  7525. enum group_type group_type;
  7526. unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
  7527. unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
  7528. #ifdef CONFIG_NUMA_BALANCING
  7529. unsigned int nr_numa_running;
  7530. unsigned int nr_preferred_running;
  7531. #endif
  7532. };
  7533. /*
  7534. * sd_lb_stats - Structure to store the statistics of a sched_domain
  7535. * during load balancing.
  7536. */
  7537. struct sd_lb_stats {
  7538. struct sched_group *busiest; /* Busiest group in this sd */
  7539. struct sched_group *local; /* Local group in this sd */
  7540. unsigned long total_load; /* Total load of all groups in sd */
  7541. unsigned long total_capacity; /* Total capacity of all groups in sd */
  7542. unsigned long avg_load; /* Average load across all groups in sd */
  7543. unsigned int prefer_sibling; /* tasks should go to sibling first */
  7544. struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
  7545. struct sg_lb_stats local_stat; /* Statistics of the local group */
  7546. };
  7547. static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
  7548. {
  7549. /*
  7550. * Skimp on the clearing to avoid duplicate work. We can avoid clearing
  7551. * local_stat because update_sg_lb_stats() does a full clear/assignment.
  7552. * We must however set busiest_stat::group_type and
  7553. * busiest_stat::idle_cpus to the worst busiest group because
  7554. * update_sd_pick_busiest() reads these before assignment.
  7555. */
  7556. *sds = (struct sd_lb_stats){
  7557. .busiest = NULL,
  7558. .local = NULL,
  7559. .total_load = 0UL,
  7560. .total_capacity = 0UL,
  7561. .busiest_stat = {
  7562. .idle_cpus = UINT_MAX,
  7563. .group_type = group_has_spare,
  7564. },
  7565. };
  7566. }
  7567. static unsigned long scale_rt_capacity(int cpu)
  7568. {
  7569. struct rq *rq = cpu_rq(cpu);
  7570. unsigned long max = arch_scale_cpu_capacity(cpu);
  7571. unsigned long used, free;
  7572. unsigned long irq;
  7573. irq = cpu_util_irq(rq);
  7574. if (unlikely(irq >= max))
  7575. return 1;
  7576. /*
  7577. * avg_rt.util_avg and avg_dl.util_avg track binary signals
  7578. * (running and not running) with weights 0 and 1024 respectively.
  7579. * avg_thermal.load_avg tracks thermal pressure and the weighted
  7580. * average uses the actual delta max capacity(load).
  7581. */
  7582. used = READ_ONCE(rq->avg_rt.util_avg);
  7583. used += READ_ONCE(rq->avg_dl.util_avg);
  7584. used += thermal_load_avg(rq);
  7585. if (unlikely(used >= max))
  7586. return 1;
  7587. free = max - used;
  7588. return scale_irq_capacity(free, irq, max);
  7589. }
  7590. static void update_cpu_capacity(struct sched_domain *sd, int cpu)
  7591. {
  7592. unsigned long capacity = scale_rt_capacity(cpu);
  7593. struct sched_group *sdg = sd->groups;
  7594. cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
  7595. if (!capacity)
  7596. capacity = 1;
  7597. trace_android_rvh_update_cpu_capacity(cpu, &capacity);
  7598. cpu_rq(cpu)->cpu_capacity = capacity;
  7599. trace_sched_cpu_capacity_tp(cpu_rq(cpu));
  7600. sdg->sgc->capacity = capacity;
  7601. sdg->sgc->min_capacity = capacity;
  7602. sdg->sgc->max_capacity = capacity;
  7603. }
  7604. void update_group_capacity(struct sched_domain *sd, int cpu)
  7605. {
  7606. struct sched_domain *child = sd->child;
  7607. struct sched_group *group, *sdg = sd->groups;
  7608. unsigned long capacity, min_capacity, max_capacity;
  7609. unsigned long interval;
  7610. interval = msecs_to_jiffies(sd->balance_interval);
  7611. interval = clamp(interval, 1UL, max_load_balance_interval);
  7612. sdg->sgc->next_update = jiffies + interval;
  7613. if (!child) {
  7614. update_cpu_capacity(sd, cpu);
  7615. return;
  7616. }
  7617. capacity = 0;
  7618. min_capacity = ULONG_MAX;
  7619. max_capacity = 0;
  7620. if (child->flags & SD_OVERLAP) {
  7621. /*
  7622. * SD_OVERLAP domains cannot assume that child groups
  7623. * span the current group.
  7624. */
  7625. for_each_cpu(cpu, sched_group_span(sdg)) {
  7626. unsigned long cpu_cap = capacity_of(cpu);
  7627. capacity += cpu_cap;
  7628. min_capacity = min(cpu_cap, min_capacity);
  7629. max_capacity = max(cpu_cap, max_capacity);
  7630. }
  7631. } else {
  7632. /*
  7633. * !SD_OVERLAP domains can assume that child groups
  7634. * span the current group.
  7635. */
  7636. group = child->groups;
  7637. do {
  7638. struct sched_group_capacity *sgc = group->sgc;
  7639. capacity += sgc->capacity;
  7640. min_capacity = min(sgc->min_capacity, min_capacity);
  7641. max_capacity = max(sgc->max_capacity, max_capacity);
  7642. group = group->next;
  7643. } while (group != child->groups);
  7644. }
  7645. sdg->sgc->capacity = capacity;
  7646. sdg->sgc->min_capacity = min_capacity;
  7647. sdg->sgc->max_capacity = max_capacity;
  7648. }
  7649. /*
  7650. * Check whether the capacity of the rq has been noticeably reduced by side
  7651. * activity. The imbalance_pct is used for the threshold.
  7652. * Return true is the capacity is reduced
  7653. */
  7654. static inline int
  7655. check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
  7656. {
  7657. return ((rq->cpu_capacity * sd->imbalance_pct) <
  7658. (rq->cpu_capacity_orig * 100));
  7659. }
  7660. /*
  7661. * Check whether a rq has a misfit task and if it looks like we can actually
  7662. * help that task: we can migrate the task to a CPU of higher capacity, or
  7663. * the task's current CPU is heavily pressured.
  7664. */
  7665. static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
  7666. {
  7667. return rq->misfit_task_load &&
  7668. (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
  7669. check_cpu_capacity(rq, sd));
  7670. }
  7671. /*
  7672. * Group imbalance indicates (and tries to solve) the problem where balancing
  7673. * groups is inadequate due to ->cpus_ptr constraints.
  7674. *
  7675. * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
  7676. * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
  7677. * Something like:
  7678. *
  7679. * { 0 1 2 3 } { 4 5 6 7 }
  7680. * * * * *
  7681. *
  7682. * If we were to balance group-wise we'd place two tasks in the first group and
  7683. * two tasks in the second group. Clearly this is undesired as it will overload
  7684. * cpu 3 and leave one of the CPUs in the second group unused.
  7685. *
  7686. * The current solution to this issue is detecting the skew in the first group
  7687. * by noticing the lower domain failed to reach balance and had difficulty
  7688. * moving tasks due to affinity constraints.
  7689. *
  7690. * When this is so detected; this group becomes a candidate for busiest; see
  7691. * update_sd_pick_busiest(). And calculate_imbalance() and
  7692. * find_busiest_group() avoid some of the usual balance conditions to allow it
  7693. * to create an effective group imbalance.
  7694. *
  7695. * This is a somewhat tricky proposition since the next run might not find the
  7696. * group imbalance and decide the groups need to be balanced again. A most
  7697. * subtle and fragile situation.
  7698. */
  7699. static inline int sg_imbalanced(struct sched_group *group)
  7700. {
  7701. return group->sgc->imbalance;
  7702. }
  7703. /*
  7704. * group_has_capacity returns true if the group has spare capacity that could
  7705. * be used by some tasks.
  7706. * We consider that a group has spare capacity if the number of task is
  7707. * smaller than the number of CPUs or if the utilization is lower than the
  7708. * available capacity for CFS tasks.
  7709. * For the latter, we use a threshold to stabilize the state, to take into
  7710. * account the variance of the tasks' load and to return true if the available
  7711. * capacity in meaningful for the load balancer.
  7712. * As an example, an available capacity of 1% can appear but it doesn't make
  7713. * any benefit for the load balance.
  7714. */
  7715. static inline bool
  7716. group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
  7717. {
  7718. if (sgs->sum_nr_running < sgs->group_weight)
  7719. return true;
  7720. if ((sgs->group_capacity * imbalance_pct) <
  7721. (sgs->group_runnable * 100))
  7722. return false;
  7723. if ((sgs->group_capacity * 100) >
  7724. (sgs->group_util * imbalance_pct))
  7725. return true;
  7726. return false;
  7727. }
  7728. /*
  7729. * group_is_overloaded returns true if the group has more tasks than it can
  7730. * handle.
  7731. * group_is_overloaded is not equals to !group_has_capacity because a group
  7732. * with the exact right number of tasks, has no more spare capacity but is not
  7733. * overloaded so both group_has_capacity and group_is_overloaded return
  7734. * false.
  7735. */
  7736. static inline bool
  7737. group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
  7738. {
  7739. if (sgs->sum_nr_running <= sgs->group_weight)
  7740. return false;
  7741. if ((sgs->group_capacity * 100) <
  7742. (sgs->group_util * imbalance_pct))
  7743. return true;
  7744. if ((sgs->group_capacity * imbalance_pct) <
  7745. (sgs->group_runnable * 100))
  7746. return true;
  7747. return false;
  7748. }
  7749. static inline enum
  7750. group_type group_classify(unsigned int imbalance_pct,
  7751. struct sched_group *group,
  7752. struct sg_lb_stats *sgs)
  7753. {
  7754. if (group_is_overloaded(imbalance_pct, sgs))
  7755. return group_overloaded;
  7756. if (sg_imbalanced(group))
  7757. return group_imbalanced;
  7758. if (sgs->group_asym_packing)
  7759. return group_asym_packing;
  7760. if (sgs->group_misfit_task_load)
  7761. return group_misfit_task;
  7762. if (!group_has_capacity(imbalance_pct, sgs))
  7763. return group_fully_busy;
  7764. return group_has_spare;
  7765. }
  7766. /**
  7767. * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
  7768. * @dst_cpu: Destination CPU of the load balancing
  7769. * @sds: Load-balancing data with statistics of the local group
  7770. * @sgs: Load-balancing statistics of the candidate busiest group
  7771. * @sg: The candidate busiest group
  7772. *
  7773. * Check the state of the SMT siblings of both @sds::local and @sg and decide
  7774. * if @dst_cpu can pull tasks.
  7775. *
  7776. * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
  7777. * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
  7778. * only if @dst_cpu has higher priority.
  7779. *
  7780. * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
  7781. * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
  7782. * Bigger imbalances in the number of busy CPUs will be dealt with in
  7783. * update_sd_pick_busiest().
  7784. *
  7785. * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
  7786. * of @dst_cpu are idle and @sg has lower priority.
  7787. *
  7788. * Return: true if @dst_cpu can pull tasks, false otherwise.
  7789. */
  7790. static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
  7791. struct sg_lb_stats *sgs,
  7792. struct sched_group *sg)
  7793. {
  7794. #ifdef CONFIG_SCHED_SMT
  7795. bool local_is_smt, sg_is_smt;
  7796. int sg_busy_cpus;
  7797. local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
  7798. sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
  7799. sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
  7800. if (!local_is_smt) {
  7801. /*
  7802. * If we are here, @dst_cpu is idle and does not have SMT
  7803. * siblings. Pull tasks if candidate group has two or more
  7804. * busy CPUs.
  7805. */
  7806. if (sg_busy_cpus >= 2) /* implies sg_is_smt */
  7807. return true;
  7808. /*
  7809. * @dst_cpu does not have SMT siblings. @sg may have SMT
  7810. * siblings and only one is busy. In such case, @dst_cpu
  7811. * can help if it has higher priority and is idle (i.e.,
  7812. * it has no running tasks).
  7813. */
  7814. return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
  7815. }
  7816. /* @dst_cpu has SMT siblings. */
  7817. if (sg_is_smt) {
  7818. int local_busy_cpus = sds->local->group_weight -
  7819. sds->local_stat.idle_cpus;
  7820. int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
  7821. if (busy_cpus_delta == 1)
  7822. return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
  7823. return false;
  7824. }
  7825. /*
  7826. * @sg does not have SMT siblings. Ensure that @sds::local does not end
  7827. * up with more than one busy SMT sibling and only pull tasks if there
  7828. * are not busy CPUs (i.e., no CPU has running tasks).
  7829. */
  7830. if (!sds->local_stat.sum_nr_running)
  7831. return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
  7832. return false;
  7833. #else
  7834. /* Always return false so that callers deal with non-SMT cases. */
  7835. return false;
  7836. #endif
  7837. }
  7838. static inline bool
  7839. sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
  7840. struct sched_group *group)
  7841. {
  7842. /* Only do SMT checks if either local or candidate have SMT siblings */
  7843. if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
  7844. (group->flags & SD_SHARE_CPUCAPACITY))
  7845. return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
  7846. return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
  7847. }
  7848. static inline bool
  7849. sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
  7850. {
  7851. /*
  7852. * When there is more than 1 task, the group_overloaded case already
  7853. * takes care of cpu with reduced capacity
  7854. */
  7855. if (rq->cfs.h_nr_running != 1)
  7856. return false;
  7857. return check_cpu_capacity(rq, sd);
  7858. }
  7859. /**
  7860. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  7861. * @env: The load balancing environment.
  7862. * @sds: Load-balancing data with statistics of the local group.
  7863. * @group: sched_group whose statistics are to be updated.
  7864. * @sgs: variable to hold the statistics for this group.
  7865. * @sg_status: Holds flag indicating the status of the sched_group
  7866. */
  7867. static inline void update_sg_lb_stats(struct lb_env *env,
  7868. struct sd_lb_stats *sds,
  7869. struct sched_group *group,
  7870. struct sg_lb_stats *sgs,
  7871. int *sg_status)
  7872. {
  7873. int i, nr_running, local_group;
  7874. memset(sgs, 0, sizeof(*sgs));
  7875. local_group = group == sds->local;
  7876. for_each_cpu_and(i, sched_group_span(group), env->cpus) {
  7877. struct rq *rq = cpu_rq(i);
  7878. unsigned long load = cpu_load(rq);
  7879. sgs->group_load += load;
  7880. sgs->group_util += cpu_util_cfs(i);
  7881. sgs->group_runnable += cpu_runnable(rq);
  7882. sgs->sum_h_nr_running += rq->cfs.h_nr_running;
  7883. nr_running = rq->nr_running;
  7884. sgs->sum_nr_running += nr_running;
  7885. if (nr_running > 1)
  7886. *sg_status |= SG_OVERLOAD;
  7887. if (cpu_overutilized(i))
  7888. *sg_status |= SG_OVERUTILIZED;
  7889. #ifdef CONFIG_NUMA_BALANCING
  7890. sgs->nr_numa_running += rq->nr_numa_running;
  7891. sgs->nr_preferred_running += rq->nr_preferred_running;
  7892. #endif
  7893. /*
  7894. * No need to call idle_cpu() if nr_running is not 0
  7895. */
  7896. if (!nr_running && idle_cpu(i)) {
  7897. sgs->idle_cpus++;
  7898. /* Idle cpu can't have misfit task */
  7899. continue;
  7900. }
  7901. if (local_group)
  7902. continue;
  7903. if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
  7904. /* Check for a misfit task on the cpu */
  7905. if (sgs->group_misfit_task_load < rq->misfit_task_load) {
  7906. sgs->group_misfit_task_load = rq->misfit_task_load;
  7907. *sg_status |= SG_OVERLOAD;
  7908. }
  7909. } else if ((env->idle != CPU_NOT_IDLE) &&
  7910. sched_reduced_capacity(rq, env->sd)) {
  7911. /* Check for a task running on a CPU with reduced capacity */
  7912. if (sgs->group_misfit_task_load < load)
  7913. sgs->group_misfit_task_load = load;
  7914. }
  7915. }
  7916. sgs->group_capacity = group->sgc->capacity;
  7917. sgs->group_weight = group->group_weight;
  7918. /* Check if dst CPU is idle and preferred to this group */
  7919. if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
  7920. env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
  7921. sched_asym(env, sds, sgs, group)) {
  7922. sgs->group_asym_packing = 1;
  7923. }
  7924. sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
  7925. /* Computing avg_load makes sense only when group is overloaded */
  7926. if (sgs->group_type == group_overloaded)
  7927. sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
  7928. sgs->group_capacity;
  7929. }
  7930. /**
  7931. * update_sd_pick_busiest - return 1 on busiest group
  7932. * @env: The load balancing environment.
  7933. * @sds: sched_domain statistics
  7934. * @sg: sched_group candidate to be checked for being the busiest
  7935. * @sgs: sched_group statistics
  7936. *
  7937. * Determine if @sg is a busier group than the previously selected
  7938. * busiest group.
  7939. *
  7940. * Return: %true if @sg is a busier group than the previously selected
  7941. * busiest group. %false otherwise.
  7942. */
  7943. static bool update_sd_pick_busiest(struct lb_env *env,
  7944. struct sd_lb_stats *sds,
  7945. struct sched_group *sg,
  7946. struct sg_lb_stats *sgs)
  7947. {
  7948. struct sg_lb_stats *busiest = &sds->busiest_stat;
  7949. /* Make sure that there is at least one task to pull */
  7950. if (!sgs->sum_h_nr_running)
  7951. return false;
  7952. /*
  7953. * Don't try to pull misfit tasks we can't help.
  7954. * We can use max_capacity here as reduction in capacity on some
  7955. * CPUs in the group should either be possible to resolve
  7956. * internally or be covered by avg_load imbalance (eventually).
  7957. */
  7958. if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
  7959. (sgs->group_type == group_misfit_task) &&
  7960. (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
  7961. sds->local_stat.group_type != group_has_spare))
  7962. return false;
  7963. if (sgs->group_type > busiest->group_type)
  7964. return true;
  7965. if (sgs->group_type < busiest->group_type)
  7966. return false;
  7967. /*
  7968. * The candidate and the current busiest group are the same type of
  7969. * group. Let check which one is the busiest according to the type.
  7970. */
  7971. switch (sgs->group_type) {
  7972. case group_overloaded:
  7973. /* Select the overloaded group with highest avg_load. */
  7974. if (sgs->avg_load <= busiest->avg_load)
  7975. return false;
  7976. break;
  7977. case group_imbalanced:
  7978. /*
  7979. * Select the 1st imbalanced group as we don't have any way to
  7980. * choose one more than another.
  7981. */
  7982. return false;
  7983. case group_asym_packing:
  7984. /* Prefer to move from lowest priority CPU's work */
  7985. if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
  7986. return false;
  7987. break;
  7988. case group_misfit_task:
  7989. /*
  7990. * If we have more than one misfit sg go with the biggest
  7991. * misfit.
  7992. */
  7993. if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
  7994. return false;
  7995. break;
  7996. case group_fully_busy:
  7997. /*
  7998. * Select the fully busy group with highest avg_load. In
  7999. * theory, there is no need to pull task from such kind of
  8000. * group because tasks have all compute capacity that they need
  8001. * but we can still improve the overall throughput by reducing
  8002. * contention when accessing shared HW resources.
  8003. *
  8004. * XXX for now avg_load is not computed and always 0 so we
  8005. * select the 1st one.
  8006. */
  8007. if (sgs->avg_load <= busiest->avg_load)
  8008. return false;
  8009. break;
  8010. case group_has_spare:
  8011. /*
  8012. * Select not overloaded group with lowest number of idle cpus
  8013. * and highest number of running tasks. We could also compare
  8014. * the spare capacity which is more stable but it can end up
  8015. * that the group has less spare capacity but finally more idle
  8016. * CPUs which means less opportunity to pull tasks.
  8017. */
  8018. if (sgs->idle_cpus > busiest->idle_cpus)
  8019. return false;
  8020. else if ((sgs->idle_cpus == busiest->idle_cpus) &&
  8021. (sgs->sum_nr_running <= busiest->sum_nr_running))
  8022. return false;
  8023. break;
  8024. }
  8025. /*
  8026. * Candidate sg has no more than one task per CPU and has higher
  8027. * per-CPU capacity. Migrating tasks to less capable CPUs may harm
  8028. * throughput. Maximize throughput, power/energy consequences are not
  8029. * considered.
  8030. */
  8031. if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
  8032. (sgs->group_type <= group_fully_busy) &&
  8033. (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
  8034. return false;
  8035. return true;
  8036. }
  8037. #ifdef CONFIG_NUMA_BALANCING
  8038. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  8039. {
  8040. if (sgs->sum_h_nr_running > sgs->nr_numa_running)
  8041. return regular;
  8042. if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
  8043. return remote;
  8044. return all;
  8045. }
  8046. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  8047. {
  8048. if (rq->nr_running > rq->nr_numa_running)
  8049. return regular;
  8050. if (rq->nr_running > rq->nr_preferred_running)
  8051. return remote;
  8052. return all;
  8053. }
  8054. #else
  8055. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  8056. {
  8057. return all;
  8058. }
  8059. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  8060. {
  8061. return regular;
  8062. }
  8063. #endif /* CONFIG_NUMA_BALANCING */
  8064. struct sg_lb_stats;
  8065. /*
  8066. * task_running_on_cpu - return 1 if @p is running on @cpu.
  8067. */
  8068. static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
  8069. {
  8070. /* Task has no contribution or is new */
  8071. if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
  8072. return 0;
  8073. if (task_on_rq_queued(p))
  8074. return 1;
  8075. return 0;
  8076. }
  8077. /**
  8078. * idle_cpu_without - would a given CPU be idle without p ?
  8079. * @cpu: the processor on which idleness is tested.
  8080. * @p: task which should be ignored.
  8081. *
  8082. * Return: 1 if the CPU would be idle. 0 otherwise.
  8083. */
  8084. static int idle_cpu_without(int cpu, struct task_struct *p)
  8085. {
  8086. struct rq *rq = cpu_rq(cpu);
  8087. if (rq->curr != rq->idle && rq->curr != p)
  8088. return 0;
  8089. /*
  8090. * rq->nr_running can't be used but an updated version without the
  8091. * impact of p on cpu must be used instead. The updated nr_running
  8092. * be computed and tested before calling idle_cpu_without().
  8093. */
  8094. #ifdef CONFIG_SMP
  8095. if (rq->ttwu_pending)
  8096. return 0;
  8097. #endif
  8098. return 1;
  8099. }
  8100. /*
  8101. * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
  8102. * @sd: The sched_domain level to look for idlest group.
  8103. * @group: sched_group whose statistics are to be updated.
  8104. * @sgs: variable to hold the statistics for this group.
  8105. * @p: The task for which we look for the idlest group/CPU.
  8106. */
  8107. static inline void update_sg_wakeup_stats(struct sched_domain *sd,
  8108. struct sched_group *group,
  8109. struct sg_lb_stats *sgs,
  8110. struct task_struct *p)
  8111. {
  8112. int i, nr_running;
  8113. memset(sgs, 0, sizeof(*sgs));
  8114. /* Assume that task can't fit any CPU of the group */
  8115. if (sd->flags & SD_ASYM_CPUCAPACITY)
  8116. sgs->group_misfit_task_load = 1;
  8117. for_each_cpu(i, sched_group_span(group)) {
  8118. struct rq *rq = cpu_rq(i);
  8119. unsigned int local;
  8120. sgs->group_load += cpu_load_without(rq, p);
  8121. sgs->group_util += cpu_util_without(i, p);
  8122. sgs->group_runnable += cpu_runnable_without(rq, p);
  8123. local = task_running_on_cpu(i, p);
  8124. sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
  8125. nr_running = rq->nr_running - local;
  8126. sgs->sum_nr_running += nr_running;
  8127. /*
  8128. * No need to call idle_cpu_without() if nr_running is not 0
  8129. */
  8130. if (!nr_running && idle_cpu_without(i, p))
  8131. sgs->idle_cpus++;
  8132. /* Check if task fits in the CPU */
  8133. if (sd->flags & SD_ASYM_CPUCAPACITY &&
  8134. sgs->group_misfit_task_load &&
  8135. task_fits_cpu(p, i))
  8136. sgs->group_misfit_task_load = 0;
  8137. }
  8138. sgs->group_capacity = group->sgc->capacity;
  8139. sgs->group_weight = group->group_weight;
  8140. sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
  8141. /*
  8142. * Computing avg_load makes sense only when group is fully busy or
  8143. * overloaded
  8144. */
  8145. if (sgs->group_type == group_fully_busy ||
  8146. sgs->group_type == group_overloaded)
  8147. sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
  8148. sgs->group_capacity;
  8149. }
  8150. static bool update_pick_idlest(struct sched_group *idlest,
  8151. struct sg_lb_stats *idlest_sgs,
  8152. struct sched_group *group,
  8153. struct sg_lb_stats *sgs)
  8154. {
  8155. if (sgs->group_type < idlest_sgs->group_type)
  8156. return true;
  8157. if (sgs->group_type > idlest_sgs->group_type)
  8158. return false;
  8159. /*
  8160. * The candidate and the current idlest group are the same type of
  8161. * group. Let check which one is the idlest according to the type.
  8162. */
  8163. switch (sgs->group_type) {
  8164. case group_overloaded:
  8165. case group_fully_busy:
  8166. /* Select the group with lowest avg_load. */
  8167. if (idlest_sgs->avg_load <= sgs->avg_load)
  8168. return false;
  8169. break;
  8170. case group_imbalanced:
  8171. case group_asym_packing:
  8172. /* Those types are not used in the slow wakeup path */
  8173. return false;
  8174. case group_misfit_task:
  8175. /* Select group with the highest max capacity */
  8176. if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
  8177. return false;
  8178. break;
  8179. case group_has_spare:
  8180. /* Select group with most idle CPUs */
  8181. if (idlest_sgs->idle_cpus > sgs->idle_cpus)
  8182. return false;
  8183. /* Select group with lowest group_util */
  8184. if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
  8185. idlest_sgs->group_util <= sgs->group_util)
  8186. return false;
  8187. break;
  8188. }
  8189. return true;
  8190. }
  8191. /*
  8192. * find_idlest_group() finds and returns the least busy CPU group within the
  8193. * domain.
  8194. *
  8195. * Assumes p is allowed on at least one CPU in sd.
  8196. */
  8197. static struct sched_group *
  8198. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  8199. {
  8200. struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
  8201. struct sg_lb_stats local_sgs, tmp_sgs;
  8202. struct sg_lb_stats *sgs;
  8203. unsigned long imbalance;
  8204. struct sg_lb_stats idlest_sgs = {
  8205. .avg_load = UINT_MAX,
  8206. .group_type = group_overloaded,
  8207. };
  8208. do {
  8209. int local_group;
  8210. /* Skip over this group if it has no CPUs allowed */
  8211. if (!cpumask_intersects(sched_group_span(group),
  8212. p->cpus_ptr))
  8213. continue;
  8214. /* Skip over this group if no cookie matched */
  8215. if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
  8216. continue;
  8217. local_group = cpumask_test_cpu(this_cpu,
  8218. sched_group_span(group));
  8219. if (local_group) {
  8220. sgs = &local_sgs;
  8221. local = group;
  8222. } else {
  8223. sgs = &tmp_sgs;
  8224. }
  8225. update_sg_wakeup_stats(sd, group, sgs, p);
  8226. if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
  8227. idlest = group;
  8228. idlest_sgs = *sgs;
  8229. }
  8230. } while (group = group->next, group != sd->groups);
  8231. /* There is no idlest group to push tasks to */
  8232. if (!idlest)
  8233. return NULL;
  8234. /* The local group has been skipped because of CPU affinity */
  8235. if (!local)
  8236. return idlest;
  8237. /*
  8238. * If the local group is idler than the selected idlest group
  8239. * don't try and push the task.
  8240. */
  8241. if (local_sgs.group_type < idlest_sgs.group_type)
  8242. return NULL;
  8243. /*
  8244. * If the local group is busier than the selected idlest group
  8245. * try and push the task.
  8246. */
  8247. if (local_sgs.group_type > idlest_sgs.group_type)
  8248. return idlest;
  8249. switch (local_sgs.group_type) {
  8250. case group_overloaded:
  8251. case group_fully_busy:
  8252. /* Calculate allowed imbalance based on load */
  8253. imbalance = scale_load_down(NICE_0_LOAD) *
  8254. (sd->imbalance_pct-100) / 100;
  8255. /*
  8256. * When comparing groups across NUMA domains, it's possible for
  8257. * the local domain to be very lightly loaded relative to the
  8258. * remote domains but "imbalance" skews the comparison making
  8259. * remote CPUs look much more favourable. When considering
  8260. * cross-domain, add imbalance to the load on the remote node
  8261. * and consider staying local.
  8262. */
  8263. if ((sd->flags & SD_NUMA) &&
  8264. ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
  8265. return NULL;
  8266. /*
  8267. * If the local group is less loaded than the selected
  8268. * idlest group don't try and push any tasks.
  8269. */
  8270. if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
  8271. return NULL;
  8272. if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
  8273. return NULL;
  8274. break;
  8275. case group_imbalanced:
  8276. case group_asym_packing:
  8277. /* Those type are not used in the slow wakeup path */
  8278. return NULL;
  8279. case group_misfit_task:
  8280. /* Select group with the highest max capacity */
  8281. if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
  8282. return NULL;
  8283. break;
  8284. case group_has_spare:
  8285. #ifdef CONFIG_NUMA
  8286. if (sd->flags & SD_NUMA) {
  8287. int imb_numa_nr = sd->imb_numa_nr;
  8288. #ifdef CONFIG_NUMA_BALANCING
  8289. int idlest_cpu;
  8290. /*
  8291. * If there is spare capacity at NUMA, try to select
  8292. * the preferred node
  8293. */
  8294. if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
  8295. return NULL;
  8296. idlest_cpu = cpumask_first(sched_group_span(idlest));
  8297. if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
  8298. return idlest;
  8299. #endif /* CONFIG_NUMA_BALANCING */
  8300. /*
  8301. * Otherwise, keep the task close to the wakeup source
  8302. * and improve locality if the number of running tasks
  8303. * would remain below threshold where an imbalance is
  8304. * allowed while accounting for the possibility the
  8305. * task is pinned to a subset of CPUs. If there is a
  8306. * real need of migration, periodic load balance will
  8307. * take care of it.
  8308. */
  8309. if (p->nr_cpus_allowed != NR_CPUS) {
  8310. struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
  8311. cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
  8312. imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
  8313. }
  8314. imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
  8315. if (!adjust_numa_imbalance(imbalance,
  8316. local_sgs.sum_nr_running + 1,
  8317. imb_numa_nr)) {
  8318. return NULL;
  8319. }
  8320. }
  8321. #endif /* CONFIG_NUMA */
  8322. /*
  8323. * Select group with highest number of idle CPUs. We could also
  8324. * compare the utilization which is more stable but it can end
  8325. * up that the group has less spare capacity but finally more
  8326. * idle CPUs which means more opportunity to run task.
  8327. */
  8328. if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
  8329. return NULL;
  8330. break;
  8331. }
  8332. return idlest;
  8333. }
  8334. static void update_idle_cpu_scan(struct lb_env *env,
  8335. unsigned long sum_util)
  8336. {
  8337. struct sched_domain_shared *sd_share;
  8338. int llc_weight, pct;
  8339. u64 x, y, tmp;
  8340. /*
  8341. * Update the number of CPUs to scan in LLC domain, which could
  8342. * be used as a hint in select_idle_cpu(). The update of sd_share
  8343. * could be expensive because it is within a shared cache line.
  8344. * So the write of this hint only occurs during periodic load
  8345. * balancing, rather than CPU_NEWLY_IDLE, because the latter
  8346. * can fire way more frequently than the former.
  8347. */
  8348. if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
  8349. return;
  8350. llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
  8351. if (env->sd->span_weight != llc_weight)
  8352. return;
  8353. sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
  8354. if (!sd_share)
  8355. return;
  8356. /*
  8357. * The number of CPUs to search drops as sum_util increases, when
  8358. * sum_util hits 85% or above, the scan stops.
  8359. * The reason to choose 85% as the threshold is because this is the
  8360. * imbalance_pct(117) when a LLC sched group is overloaded.
  8361. *
  8362. * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
  8363. * and y'= y / SCHED_CAPACITY_SCALE
  8364. *
  8365. * x is the ratio of sum_util compared to the CPU capacity:
  8366. * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
  8367. * y' is the ratio of CPUs to be scanned in the LLC domain,
  8368. * and the number of CPUs to scan is calculated by:
  8369. *
  8370. * nr_scan = llc_weight * y' [2]
  8371. *
  8372. * When x hits the threshold of overloaded, AKA, when
  8373. * x = 100 / pct, y drops to 0. According to [1],
  8374. * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
  8375. *
  8376. * Scale x by SCHED_CAPACITY_SCALE:
  8377. * x' = sum_util / llc_weight; [3]
  8378. *
  8379. * and finally [1] becomes:
  8380. * y = SCHED_CAPACITY_SCALE -
  8381. * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
  8382. *
  8383. */
  8384. /* equation [3] */
  8385. x = sum_util;
  8386. do_div(x, llc_weight);
  8387. /* equation [4] */
  8388. pct = env->sd->imbalance_pct;
  8389. tmp = x * x * pct * pct;
  8390. do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
  8391. tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
  8392. y = SCHED_CAPACITY_SCALE - tmp;
  8393. /* equation [2] */
  8394. y *= llc_weight;
  8395. do_div(y, SCHED_CAPACITY_SCALE);
  8396. if ((int)y != sd_share->nr_idle_scan)
  8397. WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
  8398. }
  8399. /**
  8400. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  8401. * @env: The load balancing environment.
  8402. * @sds: variable to hold the statistics for this sched_domain.
  8403. */
  8404. static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
  8405. {
  8406. struct sched_domain *child = env->sd->child;
  8407. struct sched_group *sg = env->sd->groups;
  8408. struct sg_lb_stats *local = &sds->local_stat;
  8409. struct sg_lb_stats tmp_sgs;
  8410. unsigned long sum_util = 0;
  8411. int sg_status = 0;
  8412. do {
  8413. struct sg_lb_stats *sgs = &tmp_sgs;
  8414. int local_group;
  8415. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
  8416. if (local_group) {
  8417. sds->local = sg;
  8418. sgs = local;
  8419. if (env->idle != CPU_NEWLY_IDLE ||
  8420. time_after_eq(jiffies, sg->sgc->next_update))
  8421. update_group_capacity(env->sd, env->dst_cpu);
  8422. }
  8423. update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
  8424. if (local_group)
  8425. goto next_group;
  8426. if (update_sd_pick_busiest(env, sds, sg, sgs)) {
  8427. sds->busiest = sg;
  8428. sds->busiest_stat = *sgs;
  8429. }
  8430. next_group:
  8431. /* Now, start updating sd_lb_stats */
  8432. sds->total_load += sgs->group_load;
  8433. sds->total_capacity += sgs->group_capacity;
  8434. sum_util += sgs->group_util;
  8435. sg = sg->next;
  8436. } while (sg != env->sd->groups);
  8437. /* Tag domain that child domain prefers tasks go to siblings first */
  8438. sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
  8439. if (env->sd->flags & SD_NUMA)
  8440. env->fbq_type = fbq_classify_group(&sds->busiest_stat);
  8441. if (!env->sd->parent) {
  8442. struct root_domain *rd = env->dst_rq->rd;
  8443. /* update overload indicator if we are at root domain */
  8444. WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
  8445. /* Update over-utilization (tipping point, U >= 0) indicator */
  8446. WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
  8447. trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
  8448. } else if (sg_status & SG_OVERUTILIZED) {
  8449. struct root_domain *rd = env->dst_rq->rd;
  8450. WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
  8451. trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
  8452. }
  8453. update_idle_cpu_scan(env, sum_util);
  8454. }
  8455. /**
  8456. * calculate_imbalance - Calculate the amount of imbalance present within the
  8457. * groups of a given sched_domain during load balance.
  8458. * @env: load balance environment
  8459. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  8460. */
  8461. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  8462. {
  8463. struct sg_lb_stats *local, *busiest;
  8464. local = &sds->local_stat;
  8465. busiest = &sds->busiest_stat;
  8466. if (busiest->group_type == group_misfit_task) {
  8467. if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
  8468. /* Set imbalance to allow misfit tasks to be balanced. */
  8469. env->migration_type = migrate_misfit;
  8470. env->imbalance = 1;
  8471. } else {
  8472. /*
  8473. * Set load imbalance to allow moving task from cpu
  8474. * with reduced capacity.
  8475. */
  8476. env->migration_type = migrate_load;
  8477. env->imbalance = busiest->group_misfit_task_load;
  8478. }
  8479. return;
  8480. }
  8481. if (busiest->group_type == group_asym_packing) {
  8482. /*
  8483. * In case of asym capacity, we will try to migrate all load to
  8484. * the preferred CPU.
  8485. */
  8486. env->migration_type = migrate_task;
  8487. env->imbalance = busiest->sum_h_nr_running;
  8488. return;
  8489. }
  8490. if (busiest->group_type == group_imbalanced) {
  8491. /*
  8492. * In the group_imb case we cannot rely on group-wide averages
  8493. * to ensure CPU-load equilibrium, try to move any task to fix
  8494. * the imbalance. The next load balance will take care of
  8495. * balancing back the system.
  8496. */
  8497. env->migration_type = migrate_task;
  8498. env->imbalance = 1;
  8499. return;
  8500. }
  8501. /*
  8502. * Try to use spare capacity of local group without overloading it or
  8503. * emptying busiest.
  8504. */
  8505. if (local->group_type == group_has_spare) {
  8506. if ((busiest->group_type > group_fully_busy) &&
  8507. !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
  8508. /*
  8509. * If busiest is overloaded, try to fill spare
  8510. * capacity. This might end up creating spare capacity
  8511. * in busiest or busiest still being overloaded but
  8512. * there is no simple way to directly compute the
  8513. * amount of load to migrate in order to balance the
  8514. * system.
  8515. */
  8516. env->migration_type = migrate_util;
  8517. env->imbalance = max(local->group_capacity, local->group_util) -
  8518. local->group_util;
  8519. /*
  8520. * In some cases, the group's utilization is max or even
  8521. * higher than capacity because of migrations but the
  8522. * local CPU is (newly) idle. There is at least one
  8523. * waiting task in this overloaded busiest group. Let's
  8524. * try to pull it.
  8525. */
  8526. if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
  8527. env->migration_type = migrate_task;
  8528. env->imbalance = 1;
  8529. }
  8530. return;
  8531. }
  8532. if (busiest->group_weight == 1 || sds->prefer_sibling) {
  8533. unsigned int nr_diff = busiest->sum_nr_running;
  8534. /*
  8535. * When prefer sibling, evenly spread running tasks on
  8536. * groups.
  8537. */
  8538. env->migration_type = migrate_task;
  8539. lsub_positive(&nr_diff, local->sum_nr_running);
  8540. env->imbalance = nr_diff;
  8541. } else {
  8542. /*
  8543. * If there is no overload, we just want to even the number of
  8544. * idle cpus.
  8545. */
  8546. env->migration_type = migrate_task;
  8547. env->imbalance = max_t(long, 0,
  8548. (local->idle_cpus - busiest->idle_cpus));
  8549. }
  8550. #ifdef CONFIG_NUMA
  8551. /* Consider allowing a small imbalance between NUMA groups */
  8552. if (env->sd->flags & SD_NUMA) {
  8553. env->imbalance = adjust_numa_imbalance(env->imbalance,
  8554. local->sum_nr_running + 1,
  8555. env->sd->imb_numa_nr);
  8556. }
  8557. #endif
  8558. /* Number of tasks to move to restore balance */
  8559. env->imbalance >>= 1;
  8560. return;
  8561. }
  8562. /*
  8563. * Local is fully busy but has to take more load to relieve the
  8564. * busiest group
  8565. */
  8566. if (local->group_type < group_overloaded) {
  8567. /*
  8568. * Local will become overloaded so the avg_load metrics are
  8569. * finally needed.
  8570. */
  8571. local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
  8572. local->group_capacity;
  8573. /*
  8574. * If the local group is more loaded than the selected
  8575. * busiest group don't try to pull any tasks.
  8576. */
  8577. if (local->avg_load >= busiest->avg_load) {
  8578. env->imbalance = 0;
  8579. return;
  8580. }
  8581. sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
  8582. sds->total_capacity;
  8583. /*
  8584. * If the local group is more loaded than the average system
  8585. * load, don't try to pull any tasks.
  8586. */
  8587. if (local->avg_load >= sds->avg_load) {
  8588. env->imbalance = 0;
  8589. return;
  8590. }
  8591. }
  8592. /*
  8593. * Both group are or will become overloaded and we're trying to get all
  8594. * the CPUs to the average_load, so we don't want to push ourselves
  8595. * above the average load, nor do we wish to reduce the max loaded CPU
  8596. * below the average load. At the same time, we also don't want to
  8597. * reduce the group load below the group capacity. Thus we look for
  8598. * the minimum possible imbalance.
  8599. */
  8600. env->migration_type = migrate_load;
  8601. env->imbalance = min(
  8602. (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
  8603. (sds->avg_load - local->avg_load) * local->group_capacity
  8604. ) / SCHED_CAPACITY_SCALE;
  8605. }
  8606. /******* find_busiest_group() helpers end here *********************/
  8607. /*
  8608. * Decision matrix according to the local and busiest group type:
  8609. *
  8610. * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
  8611. * has_spare nr_idle balanced N/A N/A balanced balanced
  8612. * fully_busy nr_idle nr_idle N/A N/A balanced balanced
  8613. * misfit_task force N/A N/A N/A N/A N/A
  8614. * asym_packing force force N/A N/A force force
  8615. * imbalanced force force N/A N/A force force
  8616. * overloaded force force N/A N/A force avg_load
  8617. *
  8618. * N/A : Not Applicable because already filtered while updating
  8619. * statistics.
  8620. * balanced : The system is balanced for these 2 groups.
  8621. * force : Calculate the imbalance as load migration is probably needed.
  8622. * avg_load : Only if imbalance is significant enough.
  8623. * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
  8624. * different in groups.
  8625. */
  8626. /**
  8627. * find_busiest_group - Returns the busiest group within the sched_domain
  8628. * if there is an imbalance.
  8629. * @env: The load balancing environment.
  8630. *
  8631. * Also calculates the amount of runnable load which should be moved
  8632. * to restore balance.
  8633. *
  8634. * Return: - The busiest group if imbalance exists.
  8635. */
  8636. static struct sched_group *find_busiest_group(struct lb_env *env)
  8637. {
  8638. struct sg_lb_stats *local, *busiest;
  8639. struct sd_lb_stats sds;
  8640. init_sd_lb_stats(&sds);
  8641. /*
  8642. * Compute the various statistics relevant for load balancing at
  8643. * this level.
  8644. */
  8645. update_sd_lb_stats(env, &sds);
  8646. /* There is no busy sibling group to pull tasks from */
  8647. if (!sds.busiest)
  8648. goto out_balanced;
  8649. busiest = &sds.busiest_stat;
  8650. /* Misfit tasks should be dealt with regardless of the avg load */
  8651. if (busiest->group_type == group_misfit_task)
  8652. goto force_balance;
  8653. if (sched_energy_enabled()) {
  8654. struct root_domain *rd = env->dst_rq->rd;
  8655. int out_balance = 1;
  8656. trace_android_rvh_find_busiest_group(sds.busiest, env->dst_rq,
  8657. &out_balance);
  8658. if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)
  8659. && out_balance)
  8660. goto out_balanced;
  8661. }
  8662. /* ASYM feature bypasses nice load balance check */
  8663. if (busiest->group_type == group_asym_packing)
  8664. goto force_balance;
  8665. /*
  8666. * If the busiest group is imbalanced the below checks don't
  8667. * work because they assume all things are equal, which typically
  8668. * isn't true due to cpus_ptr constraints and the like.
  8669. */
  8670. if (busiest->group_type == group_imbalanced)
  8671. goto force_balance;
  8672. local = &sds.local_stat;
  8673. /*
  8674. * If the local group is busier than the selected busiest group
  8675. * don't try and pull any tasks.
  8676. */
  8677. if (local->group_type > busiest->group_type)
  8678. goto out_balanced;
  8679. /*
  8680. * When groups are overloaded, use the avg_load to ensure fairness
  8681. * between tasks.
  8682. */
  8683. if (local->group_type == group_overloaded) {
  8684. /*
  8685. * If the local group is more loaded than the selected
  8686. * busiest group don't try to pull any tasks.
  8687. */
  8688. if (local->avg_load >= busiest->avg_load)
  8689. goto out_balanced;
  8690. /* XXX broken for overlapping NUMA groups */
  8691. sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
  8692. sds.total_capacity;
  8693. /*
  8694. * Don't pull any tasks if this group is already above the
  8695. * domain average load.
  8696. */
  8697. if (local->avg_load >= sds.avg_load)
  8698. goto out_balanced;
  8699. /*
  8700. * If the busiest group is more loaded, use imbalance_pct to be
  8701. * conservative.
  8702. */
  8703. if (100 * busiest->avg_load <=
  8704. env->sd->imbalance_pct * local->avg_load)
  8705. goto out_balanced;
  8706. }
  8707. /* Try to move all excess tasks to child's sibling domain */
  8708. if (sds.prefer_sibling && local->group_type == group_has_spare &&
  8709. busiest->sum_nr_running > local->sum_nr_running + 1)
  8710. goto force_balance;
  8711. if (busiest->group_type != group_overloaded) {
  8712. if (env->idle == CPU_NOT_IDLE)
  8713. /*
  8714. * If the busiest group is not overloaded (and as a
  8715. * result the local one too) but this CPU is already
  8716. * busy, let another idle CPU try to pull task.
  8717. */
  8718. goto out_balanced;
  8719. if (busiest->group_weight > 1 &&
  8720. local->idle_cpus <= (busiest->idle_cpus + 1))
  8721. /*
  8722. * If the busiest group is not overloaded
  8723. * and there is no imbalance between this and busiest
  8724. * group wrt idle CPUs, it is balanced. The imbalance
  8725. * becomes significant if the diff is greater than 1
  8726. * otherwise we might end up to just move the imbalance
  8727. * on another group. Of course this applies only if
  8728. * there is more than 1 CPU per group.
  8729. */
  8730. goto out_balanced;
  8731. if (busiest->sum_h_nr_running == 1)
  8732. /*
  8733. * busiest doesn't have any tasks waiting to run
  8734. */
  8735. goto out_balanced;
  8736. }
  8737. force_balance:
  8738. /* Looks like there is an imbalance. Compute it */
  8739. calculate_imbalance(env, &sds);
  8740. return env->imbalance ? sds.busiest : NULL;
  8741. out_balanced:
  8742. env->imbalance = 0;
  8743. return NULL;
  8744. }
  8745. /*
  8746. * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
  8747. */
  8748. static struct rq *find_busiest_queue(struct lb_env *env,
  8749. struct sched_group *group)
  8750. {
  8751. struct rq *busiest = NULL, *rq;
  8752. unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
  8753. unsigned int busiest_nr = 0;
  8754. int i, done = 0;
  8755. trace_android_rvh_find_busiest_queue(env->dst_cpu, group, env->cpus,
  8756. &busiest, &done);
  8757. if (done)
  8758. return busiest;
  8759. for_each_cpu_and(i, sched_group_span(group), env->cpus) {
  8760. unsigned long capacity, load, util;
  8761. unsigned int nr_running;
  8762. enum fbq_type rt;
  8763. rq = cpu_rq(i);
  8764. rt = fbq_classify_rq(rq);
  8765. /*
  8766. * We classify groups/runqueues into three groups:
  8767. * - regular: there are !numa tasks
  8768. * - remote: there are numa tasks that run on the 'wrong' node
  8769. * - all: there is no distinction
  8770. *
  8771. * In order to avoid migrating ideally placed numa tasks,
  8772. * ignore those when there's better options.
  8773. *
  8774. * If we ignore the actual busiest queue to migrate another
  8775. * task, the next balance pass can still reduce the busiest
  8776. * queue by moving tasks around inside the node.
  8777. *
  8778. * If we cannot move enough load due to this classification
  8779. * the next pass will adjust the group classification and
  8780. * allow migration of more tasks.
  8781. *
  8782. * Both cases only affect the total convergence complexity.
  8783. */
  8784. if (rt > env->fbq_type)
  8785. continue;
  8786. nr_running = rq->cfs.h_nr_running;
  8787. if (!nr_running)
  8788. continue;
  8789. capacity = capacity_of(i);
  8790. /*
  8791. * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
  8792. * eventually lead to active_balancing high->low capacity.
  8793. * Higher per-CPU capacity is considered better than balancing
  8794. * average load.
  8795. */
  8796. if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
  8797. !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
  8798. nr_running == 1)
  8799. continue;
  8800. /* Make sure we only pull tasks from a CPU of lower priority */
  8801. if ((env->sd->flags & SD_ASYM_PACKING) &&
  8802. sched_asym_prefer(i, env->dst_cpu) &&
  8803. nr_running == 1)
  8804. continue;
  8805. switch (env->migration_type) {
  8806. case migrate_load:
  8807. /*
  8808. * When comparing with load imbalance, use cpu_load()
  8809. * which is not scaled with the CPU capacity.
  8810. */
  8811. load = cpu_load(rq);
  8812. if (nr_running == 1 && load > env->imbalance &&
  8813. !check_cpu_capacity(rq, env->sd))
  8814. break;
  8815. /*
  8816. * For the load comparisons with the other CPUs,
  8817. * consider the cpu_load() scaled with the CPU
  8818. * capacity, so that the load can be moved away
  8819. * from the CPU that is potentially running at a
  8820. * lower capacity.
  8821. *
  8822. * Thus we're looking for max(load_i / capacity_i),
  8823. * crosswise multiplication to rid ourselves of the
  8824. * division works out to:
  8825. * load_i * capacity_j > load_j * capacity_i;
  8826. * where j is our previous maximum.
  8827. */
  8828. if (load * busiest_capacity > busiest_load * capacity) {
  8829. busiest_load = load;
  8830. busiest_capacity = capacity;
  8831. busiest = rq;
  8832. }
  8833. break;
  8834. case migrate_util:
  8835. util = cpu_util_cfs(i);
  8836. /*
  8837. * Don't try to pull utilization from a CPU with one
  8838. * running task. Whatever its utilization, we will fail
  8839. * detach the task.
  8840. */
  8841. if (nr_running <= 1)
  8842. continue;
  8843. if (busiest_util < util) {
  8844. busiest_util = util;
  8845. busiest = rq;
  8846. }
  8847. break;
  8848. case migrate_task:
  8849. if (busiest_nr < nr_running) {
  8850. busiest_nr = nr_running;
  8851. busiest = rq;
  8852. }
  8853. break;
  8854. case migrate_misfit:
  8855. /*
  8856. * For ASYM_CPUCAPACITY domains with misfit tasks we
  8857. * simply seek the "biggest" misfit task.
  8858. */
  8859. if (rq->misfit_task_load > busiest_load) {
  8860. busiest_load = rq->misfit_task_load;
  8861. busiest = rq;
  8862. }
  8863. break;
  8864. }
  8865. }
  8866. return busiest;
  8867. }
  8868. /*
  8869. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  8870. * so long as it is large enough.
  8871. */
  8872. #define MAX_PINNED_INTERVAL 512
  8873. static inline bool
  8874. asym_active_balance(struct lb_env *env)
  8875. {
  8876. /*
  8877. * ASYM_PACKING needs to force migrate tasks from busy but
  8878. * lower priority CPUs in order to pack all tasks in the
  8879. * highest priority CPUs.
  8880. */
  8881. return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
  8882. sched_asym_prefer(env->dst_cpu, env->src_cpu);
  8883. }
  8884. static inline bool
  8885. imbalanced_active_balance(struct lb_env *env)
  8886. {
  8887. struct sched_domain *sd = env->sd;
  8888. /*
  8889. * The imbalanced case includes the case of pinned tasks preventing a fair
  8890. * distribution of the load on the system but also the even distribution of the
  8891. * threads on a system with spare capacity
  8892. */
  8893. if ((env->migration_type == migrate_task) &&
  8894. (sd->nr_balance_failed > sd->cache_nice_tries+2))
  8895. return 1;
  8896. return 0;
  8897. }
  8898. static int need_active_balance(struct lb_env *env)
  8899. {
  8900. struct sched_domain *sd = env->sd;
  8901. if (asym_active_balance(env))
  8902. return 1;
  8903. if (imbalanced_active_balance(env))
  8904. return 1;
  8905. /*
  8906. * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
  8907. * It's worth migrating the task if the src_cpu's capacity is reduced
  8908. * because of other sched_class or IRQs if more capacity stays
  8909. * available on dst_cpu.
  8910. */
  8911. if ((env->idle != CPU_NOT_IDLE) &&
  8912. (env->src_rq->cfs.h_nr_running == 1)) {
  8913. if ((check_cpu_capacity(env->src_rq, sd)) &&
  8914. (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
  8915. return 1;
  8916. }
  8917. if (env->migration_type == migrate_misfit)
  8918. return 1;
  8919. return 0;
  8920. }
  8921. static int active_load_balance_cpu_stop(void *data);
  8922. static int should_we_balance(struct lb_env *env)
  8923. {
  8924. struct sched_group *sg = env->sd->groups;
  8925. int cpu;
  8926. /*
  8927. * Ensure the balancing environment is consistent; can happen
  8928. * when the softirq triggers 'during' hotplug.
  8929. */
  8930. if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
  8931. return 0;
  8932. /*
  8933. * In the newly idle case, we will allow all the CPUs
  8934. * to do the newly idle load balance.
  8935. *
  8936. * However, we bail out if we already have tasks or a wakeup pending,
  8937. * to optimize wakeup latency.
  8938. */
  8939. if (env->idle == CPU_NEWLY_IDLE) {
  8940. if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
  8941. return 0;
  8942. return 1;
  8943. }
  8944. /* Try to find first idle CPU */
  8945. for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
  8946. if (!idle_cpu(cpu))
  8947. continue;
  8948. /* Are we the first idle CPU? */
  8949. return cpu == env->dst_cpu;
  8950. }
  8951. /* Are we the first CPU of this group ? */
  8952. return group_balance_cpu(sg) == env->dst_cpu;
  8953. }
  8954. /*
  8955. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  8956. * tasks if there is an imbalance.
  8957. */
  8958. static int load_balance(int this_cpu, struct rq *this_rq,
  8959. struct sched_domain *sd, enum cpu_idle_type idle,
  8960. int *continue_balancing)
  8961. {
  8962. int ld_moved, cur_ld_moved, active_balance = 0;
  8963. struct sched_domain *sd_parent = sd->parent;
  8964. struct sched_group *group;
  8965. struct rq *busiest;
  8966. struct rq_flags rf;
  8967. struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
  8968. struct lb_env env = {
  8969. .sd = sd,
  8970. .dst_cpu = this_cpu,
  8971. .dst_rq = this_rq,
  8972. .dst_grpmask = group_balance_mask(sd->groups),
  8973. .idle = idle,
  8974. .loop_break = SCHED_NR_MIGRATE_BREAK,
  8975. .cpus = cpus,
  8976. .fbq_type = all,
  8977. .tasks = LIST_HEAD_INIT(env.tasks),
  8978. };
  8979. cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
  8980. schedstat_inc(sd->lb_count[idle]);
  8981. redo:
  8982. if (!should_we_balance(&env)) {
  8983. *continue_balancing = 0;
  8984. goto out_balanced;
  8985. }
  8986. group = find_busiest_group(&env);
  8987. if (!group) {
  8988. schedstat_inc(sd->lb_nobusyg[idle]);
  8989. goto out_balanced;
  8990. }
  8991. busiest = find_busiest_queue(&env, group);
  8992. if (!busiest) {
  8993. schedstat_inc(sd->lb_nobusyq[idle]);
  8994. goto out_balanced;
  8995. }
  8996. WARN_ON_ONCE(busiest == env.dst_rq);
  8997. schedstat_add(sd->lb_imbalance[idle], env.imbalance);
  8998. env.src_cpu = busiest->cpu;
  8999. env.src_rq = busiest;
  9000. ld_moved = 0;
  9001. /* Clear this flag as soon as we find a pullable task */
  9002. env.flags |= LBF_ALL_PINNED;
  9003. if (busiest->nr_running > 1) {
  9004. /*
  9005. * Attempt to move tasks. If find_busiest_group has found
  9006. * an imbalance but busiest->nr_running <= 1, the group is
  9007. * still unbalanced. ld_moved simply stays zero, so it is
  9008. * correctly treated as an imbalance.
  9009. */
  9010. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  9011. more_balance:
  9012. rq_lock_irqsave(busiest, &rf);
  9013. env.src_rq_rf = &rf;
  9014. update_rq_clock(busiest);
  9015. /*
  9016. * cur_ld_moved - load moved in current iteration
  9017. * ld_moved - cumulative load moved across iterations
  9018. */
  9019. cur_ld_moved = detach_tasks(&env);
  9020. /*
  9021. * We've detached some tasks from busiest_rq. Every
  9022. * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
  9023. * unlock busiest->lock, and we are able to be sure
  9024. * that nobody can manipulate the tasks in parallel.
  9025. * See task_rq_lock() family for the details.
  9026. */
  9027. rq_unlock(busiest, &rf);
  9028. if (cur_ld_moved) {
  9029. attach_tasks(&env);
  9030. ld_moved += cur_ld_moved;
  9031. }
  9032. local_irq_restore(rf.flags);
  9033. if (env.flags & LBF_NEED_BREAK) {
  9034. env.flags &= ~LBF_NEED_BREAK;
  9035. /* Stop if we tried all running tasks */
  9036. if (env.loop < busiest->nr_running)
  9037. goto more_balance;
  9038. }
  9039. /*
  9040. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  9041. * us and move them to an alternate dst_cpu in our sched_group
  9042. * where they can run. The upper limit on how many times we
  9043. * iterate on same src_cpu is dependent on number of CPUs in our
  9044. * sched_group.
  9045. *
  9046. * This changes load balance semantics a bit on who can move
  9047. * load to a given_cpu. In addition to the given_cpu itself
  9048. * (or a ilb_cpu acting on its behalf where given_cpu is
  9049. * nohz-idle), we now have balance_cpu in a position to move
  9050. * load to given_cpu. In rare situations, this may cause
  9051. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  9052. * _independently_ and at _same_ time to move some load to
  9053. * given_cpu) causing excess load to be moved to given_cpu.
  9054. * This however should not happen so much in practice and
  9055. * moreover subsequent load balance cycles should correct the
  9056. * excess load moved.
  9057. */
  9058. if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
  9059. /* Prevent to re-select dst_cpu via env's CPUs */
  9060. __cpumask_clear_cpu(env.dst_cpu, env.cpus);
  9061. env.dst_rq = cpu_rq(env.new_dst_cpu);
  9062. env.dst_cpu = env.new_dst_cpu;
  9063. env.flags &= ~LBF_DST_PINNED;
  9064. env.loop = 0;
  9065. env.loop_break = SCHED_NR_MIGRATE_BREAK;
  9066. /*
  9067. * Go back to "more_balance" rather than "redo" since we
  9068. * need to continue with same src_cpu.
  9069. */
  9070. goto more_balance;
  9071. }
  9072. /*
  9073. * We failed to reach balance because of affinity.
  9074. */
  9075. if (sd_parent) {
  9076. int *group_imbalance = &sd_parent->groups->sgc->imbalance;
  9077. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
  9078. *group_imbalance = 1;
  9079. }
  9080. /* All tasks on this runqueue were pinned by CPU affinity */
  9081. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  9082. __cpumask_clear_cpu(cpu_of(busiest), cpus);
  9083. /*
  9084. * Attempting to continue load balancing at the current
  9085. * sched_domain level only makes sense if there are
  9086. * active CPUs remaining as possible busiest CPUs to
  9087. * pull load from which are not contained within the
  9088. * destination group that is receiving any migrated
  9089. * load.
  9090. */
  9091. if (!cpumask_subset(cpus, env.dst_grpmask)) {
  9092. env.loop = 0;
  9093. env.loop_break = SCHED_NR_MIGRATE_BREAK;
  9094. goto redo;
  9095. }
  9096. goto out_all_pinned;
  9097. }
  9098. }
  9099. if (!ld_moved) {
  9100. schedstat_inc(sd->lb_failed[idle]);
  9101. /*
  9102. * Increment the failure counter only on periodic balance.
  9103. * We do not want newidle balance, which can be very
  9104. * frequent, pollute the failure counter causing
  9105. * excessive cache_hot migrations and active balances.
  9106. */
  9107. if (idle != CPU_NEWLY_IDLE)
  9108. sd->nr_balance_failed++;
  9109. if (need_active_balance(&env)) {
  9110. unsigned long flags;
  9111. raw_spin_rq_lock_irqsave(busiest, flags);
  9112. /*
  9113. * Don't kick the active_load_balance_cpu_stop,
  9114. * if the curr task on busiest CPU can't be
  9115. * moved to this_cpu:
  9116. */
  9117. if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
  9118. raw_spin_rq_unlock_irqrestore(busiest, flags);
  9119. goto out_one_pinned;
  9120. }
  9121. /* Record that we found at least one task that could run on this_cpu */
  9122. env.flags &= ~LBF_ALL_PINNED;
  9123. /*
  9124. * ->active_balance synchronizes accesses to
  9125. * ->active_balance_work. Once set, it's cleared
  9126. * only after active load balance is finished.
  9127. */
  9128. if (!busiest->active_balance) {
  9129. busiest->active_balance = 1;
  9130. busiest->push_cpu = this_cpu;
  9131. active_balance = 1;
  9132. }
  9133. preempt_disable();
  9134. raw_spin_rq_unlock_irqrestore(busiest, flags);
  9135. if (active_balance) {
  9136. stop_one_cpu_nowait(cpu_of(busiest),
  9137. active_load_balance_cpu_stop, busiest,
  9138. &busiest->active_balance_work);
  9139. }
  9140. preempt_enable();
  9141. }
  9142. } else {
  9143. sd->nr_balance_failed = 0;
  9144. }
  9145. if (likely(!active_balance) || need_active_balance(&env)) {
  9146. /* We were unbalanced, so reset the balancing interval */
  9147. sd->balance_interval = sd->min_interval;
  9148. }
  9149. goto out;
  9150. out_balanced:
  9151. /*
  9152. * We reach balance although we may have faced some affinity
  9153. * constraints. Clear the imbalance flag only if other tasks got
  9154. * a chance to move and fix the imbalance.
  9155. */
  9156. if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
  9157. int *group_imbalance = &sd_parent->groups->sgc->imbalance;
  9158. if (*group_imbalance)
  9159. *group_imbalance = 0;
  9160. }
  9161. out_all_pinned:
  9162. /*
  9163. * We reach balance because all tasks are pinned at this level so
  9164. * we can't migrate them. Let the imbalance flag set so parent level
  9165. * can try to migrate them.
  9166. */
  9167. schedstat_inc(sd->lb_balanced[idle]);
  9168. sd->nr_balance_failed = 0;
  9169. out_one_pinned:
  9170. ld_moved = 0;
  9171. /*
  9172. * newidle_balance() disregards balance intervals, so we could
  9173. * repeatedly reach this code, which would lead to balance_interval
  9174. * skyrocketing in a short amount of time. Skip the balance_interval
  9175. * increase logic to avoid that.
  9176. */
  9177. if (env.idle == CPU_NEWLY_IDLE)
  9178. goto out;
  9179. /* tune up the balancing interval */
  9180. if ((env.flags & LBF_ALL_PINNED &&
  9181. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  9182. sd->balance_interval < sd->max_interval)
  9183. sd->balance_interval *= 2;
  9184. out:
  9185. return ld_moved;
  9186. }
  9187. static inline unsigned long
  9188. get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
  9189. {
  9190. unsigned long interval = sd->balance_interval;
  9191. if (cpu_busy)
  9192. interval *= sd->busy_factor;
  9193. /* scale ms to jiffies */
  9194. interval = msecs_to_jiffies(interval);
  9195. /*
  9196. * Reduce likelihood of busy balancing at higher domains racing with
  9197. * balancing at lower domains by preventing their balancing periods
  9198. * from being multiples of each other.
  9199. */
  9200. if (cpu_busy)
  9201. interval -= 1;
  9202. interval = clamp(interval, 1UL, max_load_balance_interval);
  9203. return interval;
  9204. }
  9205. static inline void
  9206. update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
  9207. {
  9208. unsigned long interval, next;
  9209. /* used by idle balance, so cpu_busy = 0 */
  9210. interval = get_sd_balance_interval(sd, 0);
  9211. next = sd->last_balance + interval;
  9212. if (time_after(*next_balance, next))
  9213. *next_balance = next;
  9214. }
  9215. /*
  9216. * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
  9217. * running tasks off the busiest CPU onto idle CPUs. It requires at
  9218. * least 1 task to be running on each physical CPU where possible, and
  9219. * avoids physical / logical imbalances.
  9220. */
  9221. static int active_load_balance_cpu_stop(void *data)
  9222. {
  9223. struct rq *busiest_rq = data;
  9224. int busiest_cpu = cpu_of(busiest_rq);
  9225. int target_cpu = busiest_rq->push_cpu;
  9226. struct rq *target_rq = cpu_rq(target_cpu);
  9227. struct sched_domain *sd;
  9228. struct task_struct *p = NULL;
  9229. struct rq_flags rf;
  9230. rq_lock_irq(busiest_rq, &rf);
  9231. /*
  9232. * Between queueing the stop-work and running it is a hole in which
  9233. * CPUs can become inactive. We should not move tasks from or to
  9234. * inactive CPUs.
  9235. */
  9236. if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
  9237. goto out_unlock;
  9238. /* Make sure the requested CPU hasn't gone down in the meantime: */
  9239. if (unlikely(busiest_cpu != smp_processor_id() ||
  9240. !busiest_rq->active_balance))
  9241. goto out_unlock;
  9242. /* Is there any task to move? */
  9243. if (busiest_rq->nr_running <= 1)
  9244. goto out_unlock;
  9245. /*
  9246. * This condition is "impossible", if it occurs
  9247. * we need to fix it. Originally reported by
  9248. * Bjorn Helgaas on a 128-CPU setup.
  9249. */
  9250. WARN_ON_ONCE(busiest_rq == target_rq);
  9251. /* Search for an sd spanning us and the target CPU. */
  9252. rcu_read_lock();
  9253. for_each_domain(target_cpu, sd) {
  9254. if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  9255. break;
  9256. }
  9257. if (likely(sd)) {
  9258. struct lb_env env = {
  9259. .sd = sd,
  9260. .dst_cpu = target_cpu,
  9261. .dst_rq = target_rq,
  9262. .src_cpu = busiest_rq->cpu,
  9263. .src_rq = busiest_rq,
  9264. .idle = CPU_IDLE,
  9265. .flags = LBF_ACTIVE_LB,
  9266. .src_rq_rf = &rf,
  9267. };
  9268. schedstat_inc(sd->alb_count);
  9269. update_rq_clock(busiest_rq);
  9270. p = detach_one_task(&env);
  9271. if (p) {
  9272. schedstat_inc(sd->alb_pushed);
  9273. /* Active balancing done, reset the failure counter. */
  9274. sd->nr_balance_failed = 0;
  9275. } else {
  9276. schedstat_inc(sd->alb_failed);
  9277. }
  9278. }
  9279. rcu_read_unlock();
  9280. out_unlock:
  9281. busiest_rq->active_balance = 0;
  9282. rq_unlock(busiest_rq, &rf);
  9283. if (p)
  9284. attach_one_task(target_rq, p);
  9285. local_irq_enable();
  9286. return 0;
  9287. }
  9288. static DEFINE_SPINLOCK(balancing);
  9289. /*
  9290. * Scale the max load_balance interval with the number of CPUs in the system.
  9291. * This trades load-balance latency on larger machines for less cross talk.
  9292. */
  9293. void update_max_interval(void)
  9294. {
  9295. max_load_balance_interval = HZ*num_online_cpus()/10;
  9296. }
  9297. static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
  9298. {
  9299. if (cost > sd->max_newidle_lb_cost) {
  9300. /*
  9301. * Track max cost of a domain to make sure to not delay the
  9302. * next wakeup on the CPU.
  9303. */
  9304. sd->max_newidle_lb_cost = cost;
  9305. sd->last_decay_max_lb_cost = jiffies;
  9306. } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
  9307. /*
  9308. * Decay the newidle max times by ~1% per second to ensure that
  9309. * it is not outdated and the current max cost is actually
  9310. * shorter.
  9311. */
  9312. sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
  9313. sd->last_decay_max_lb_cost = jiffies;
  9314. return true;
  9315. }
  9316. return false;
  9317. }
  9318. /*
  9319. * It checks each scheduling domain to see if it is due to be balanced,
  9320. * and initiates a balancing operation if so.
  9321. *
  9322. * Balancing parameters are set up in init_sched_domains.
  9323. */
  9324. static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
  9325. {
  9326. int continue_balancing = 1;
  9327. int cpu = rq->cpu;
  9328. int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
  9329. unsigned long interval;
  9330. struct sched_domain *sd;
  9331. /* Earliest time when we have to do rebalance again */
  9332. unsigned long next_balance = jiffies + 60*HZ;
  9333. int update_next_balance = 0;
  9334. int need_serialize, need_decay = 0;
  9335. u64 max_cost = 0;
  9336. trace_android_rvh_sched_rebalance_domains(rq, &continue_balancing);
  9337. if (!continue_balancing)
  9338. return;
  9339. rcu_read_lock();
  9340. for_each_domain(cpu, sd) {
  9341. /*
  9342. * Decay the newidle max times here because this is a regular
  9343. * visit to all the domains.
  9344. */
  9345. need_decay = update_newidle_cost(sd, 0);
  9346. max_cost += sd->max_newidle_lb_cost;
  9347. /*
  9348. * Stop the load balance at this level. There is another
  9349. * CPU in our sched group which is doing load balancing more
  9350. * actively.
  9351. */
  9352. if (!continue_balancing) {
  9353. if (need_decay)
  9354. continue;
  9355. break;
  9356. }
  9357. interval = get_sd_balance_interval(sd, busy);
  9358. need_serialize = sd->flags & SD_SERIALIZE;
  9359. if (need_serialize) {
  9360. if (!spin_trylock(&balancing))
  9361. goto out;
  9362. }
  9363. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  9364. if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
  9365. /*
  9366. * The LBF_DST_PINNED logic could have changed
  9367. * env->dst_cpu, so we can't know our idle
  9368. * state even if we migrated tasks. Update it.
  9369. */
  9370. idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
  9371. busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
  9372. }
  9373. sd->last_balance = jiffies;
  9374. interval = get_sd_balance_interval(sd, busy);
  9375. }
  9376. if (need_serialize)
  9377. spin_unlock(&balancing);
  9378. out:
  9379. if (time_after(next_balance, sd->last_balance + interval)) {
  9380. next_balance = sd->last_balance + interval;
  9381. update_next_balance = 1;
  9382. }
  9383. }
  9384. if (need_decay) {
  9385. /*
  9386. * Ensure the rq-wide value also decays but keep it at a
  9387. * reasonable floor to avoid funnies with rq->avg_idle.
  9388. */
  9389. rq->max_idle_balance_cost =
  9390. max((u64)sysctl_sched_migration_cost, max_cost);
  9391. }
  9392. rcu_read_unlock();
  9393. /*
  9394. * next_balance will be updated only when there is a need.
  9395. * When the cpu is attached to null domain for ex, it will not be
  9396. * updated.
  9397. */
  9398. if (likely(update_next_balance))
  9399. rq->next_balance = next_balance;
  9400. }
  9401. static inline int on_null_domain(struct rq *rq)
  9402. {
  9403. return unlikely(!rcu_dereference_sched(rq->sd));
  9404. }
  9405. #ifdef CONFIG_NO_HZ_COMMON
  9406. /*
  9407. * idle load balancing details
  9408. * - When one of the busy CPUs notice that there may be an idle rebalancing
  9409. * needed, they will kick the idle load balancer, which then does idle
  9410. * load balancing for all the idle CPUs.
  9411. * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
  9412. * anywhere yet.
  9413. */
  9414. static inline int find_new_ilb(void)
  9415. {
  9416. int ilb = -1;
  9417. const struct cpumask *hk_mask;
  9418. trace_android_rvh_find_new_ilb(nohz.idle_cpus_mask, &ilb);
  9419. if (ilb >= 0)
  9420. return ilb;
  9421. hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
  9422. for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
  9423. if (ilb == smp_processor_id())
  9424. continue;
  9425. if (idle_cpu(ilb))
  9426. return ilb;
  9427. }
  9428. return nr_cpu_ids;
  9429. }
  9430. /*
  9431. * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
  9432. * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
  9433. */
  9434. static void kick_ilb(unsigned int flags)
  9435. {
  9436. int ilb_cpu;
  9437. /*
  9438. * Increase nohz.next_balance only when if full ilb is triggered but
  9439. * not if we only update stats.
  9440. */
  9441. if (flags & NOHZ_BALANCE_KICK)
  9442. nohz.next_balance = jiffies+1;
  9443. ilb_cpu = find_new_ilb();
  9444. if (ilb_cpu >= nr_cpu_ids)
  9445. return;
  9446. /*
  9447. * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
  9448. * the first flag owns it; cleared by nohz_csd_func().
  9449. */
  9450. flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
  9451. if (flags & NOHZ_KICK_MASK)
  9452. return;
  9453. /*
  9454. * This way we generate an IPI on the target CPU which
  9455. * is idle. And the softirq performing nohz idle load balance
  9456. * will be run before returning from the IPI.
  9457. */
  9458. smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
  9459. }
  9460. /*
  9461. * Current decision point for kicking the idle load balancer in the presence
  9462. * of idle CPUs in the system.
  9463. */
  9464. static void nohz_balancer_kick(struct rq *rq)
  9465. {
  9466. unsigned long now = jiffies;
  9467. struct sched_domain_shared *sds;
  9468. struct sched_domain *sd;
  9469. int nr_busy, i, cpu = rq->cpu;
  9470. unsigned int flags = 0;
  9471. int done = 0;
  9472. if (unlikely(rq->idle_balance))
  9473. return;
  9474. /*
  9475. * We may be recently in ticked or tickless idle mode. At the first
  9476. * busy tick after returning from idle, we will update the busy stats.
  9477. */
  9478. nohz_balance_exit_idle(rq);
  9479. /*
  9480. * None are in tickless mode and hence no need for NOHZ idle load
  9481. * balancing.
  9482. */
  9483. if (likely(!atomic_read(&nohz.nr_cpus)))
  9484. return;
  9485. if (READ_ONCE(nohz.has_blocked) &&
  9486. time_after(now, READ_ONCE(nohz.next_blocked)))
  9487. flags = NOHZ_STATS_KICK;
  9488. if (time_before(now, nohz.next_balance))
  9489. goto out;
  9490. trace_android_rvh_sched_nohz_balancer_kick(rq, &flags, &done);
  9491. if (done)
  9492. goto out;
  9493. if (rq->nr_running >= 2) {
  9494. flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
  9495. goto out;
  9496. }
  9497. rcu_read_lock();
  9498. sd = rcu_dereference(rq->sd);
  9499. if (sd) {
  9500. /*
  9501. * If there's a CFS task and the current CPU has reduced
  9502. * capacity; kick the ILB to see if there's a better CPU to run
  9503. * on.
  9504. */
  9505. if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
  9506. flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
  9507. goto unlock;
  9508. }
  9509. }
  9510. sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
  9511. if (sd) {
  9512. /*
  9513. * When ASYM_PACKING; see if there's a more preferred CPU
  9514. * currently idle; in which case, kick the ILB to move tasks
  9515. * around.
  9516. */
  9517. for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
  9518. if (sched_asym_prefer(i, cpu)) {
  9519. flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
  9520. goto unlock;
  9521. }
  9522. }
  9523. }
  9524. sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
  9525. if (sd) {
  9526. /*
  9527. * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
  9528. * to run the misfit task on.
  9529. */
  9530. if (check_misfit_status(rq, sd)) {
  9531. flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
  9532. goto unlock;
  9533. }
  9534. /*
  9535. * For asymmetric systems, we do not want to nicely balance
  9536. * cache use, instead we want to embrace asymmetry and only
  9537. * ensure tasks have enough CPU capacity.
  9538. *
  9539. * Skip the LLC logic because it's not relevant in that case.
  9540. */
  9541. goto unlock;
  9542. }
  9543. sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
  9544. if (sds) {
  9545. /*
  9546. * If there is an imbalance between LLC domains (IOW we could
  9547. * increase the overall cache use), we need some less-loaded LLC
  9548. * domain to pull some load. Likewise, we may need to spread
  9549. * load within the current LLC domain (e.g. packed SMT cores but
  9550. * other CPUs are idle). We can't really know from here how busy
  9551. * the others are - so just get a nohz balance going if it looks
  9552. * like this LLC domain has tasks we could move.
  9553. */
  9554. nr_busy = atomic_read(&sds->nr_busy_cpus);
  9555. if (nr_busy > 1) {
  9556. flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
  9557. goto unlock;
  9558. }
  9559. }
  9560. unlock:
  9561. rcu_read_unlock();
  9562. out:
  9563. if (READ_ONCE(nohz.needs_update))
  9564. flags |= NOHZ_NEXT_KICK;
  9565. if (flags)
  9566. kick_ilb(flags);
  9567. }
  9568. static void set_cpu_sd_state_busy(int cpu)
  9569. {
  9570. struct sched_domain *sd;
  9571. rcu_read_lock();
  9572. sd = rcu_dereference(per_cpu(sd_llc, cpu));
  9573. if (!sd || !sd->nohz_idle)
  9574. goto unlock;
  9575. sd->nohz_idle = 0;
  9576. atomic_inc(&sd->shared->nr_busy_cpus);
  9577. unlock:
  9578. rcu_read_unlock();
  9579. }
  9580. void nohz_balance_exit_idle(struct rq *rq)
  9581. {
  9582. SCHED_WARN_ON(rq != this_rq());
  9583. if (likely(!rq->nohz_tick_stopped))
  9584. return;
  9585. rq->nohz_tick_stopped = 0;
  9586. cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
  9587. atomic_dec(&nohz.nr_cpus);
  9588. set_cpu_sd_state_busy(rq->cpu);
  9589. }
  9590. static void set_cpu_sd_state_idle(int cpu)
  9591. {
  9592. struct sched_domain *sd;
  9593. rcu_read_lock();
  9594. sd = rcu_dereference(per_cpu(sd_llc, cpu));
  9595. if (!sd || sd->nohz_idle)
  9596. goto unlock;
  9597. sd->nohz_idle = 1;
  9598. atomic_dec(&sd->shared->nr_busy_cpus);
  9599. unlock:
  9600. rcu_read_unlock();
  9601. }
  9602. /*
  9603. * This routine will record that the CPU is going idle with tick stopped.
  9604. * This info will be used in performing idle load balancing in the future.
  9605. */
  9606. void nohz_balance_enter_idle(int cpu)
  9607. {
  9608. struct rq *rq = cpu_rq(cpu);
  9609. SCHED_WARN_ON(cpu != smp_processor_id());
  9610. /* If this CPU is going down, then nothing needs to be done: */
  9611. if (!cpu_active(cpu))
  9612. return;
  9613. /* Spare idle load balancing on CPUs that don't want to be disturbed: */
  9614. if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
  9615. return;
  9616. /*
  9617. * Can be set safely without rq->lock held
  9618. * If a clear happens, it will have evaluated last additions because
  9619. * rq->lock is held during the check and the clear
  9620. */
  9621. rq->has_blocked_load = 1;
  9622. /*
  9623. * The tick is still stopped but load could have been added in the
  9624. * meantime. We set the nohz.has_blocked flag to trig a check of the
  9625. * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
  9626. * of nohz.has_blocked can only happen after checking the new load
  9627. */
  9628. if (rq->nohz_tick_stopped)
  9629. goto out;
  9630. /* If we're a completely isolated CPU, we don't play: */
  9631. if (on_null_domain(rq))
  9632. return;
  9633. rq->nohz_tick_stopped = 1;
  9634. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  9635. atomic_inc(&nohz.nr_cpus);
  9636. /*
  9637. * Ensures that if nohz_idle_balance() fails to observe our
  9638. * @idle_cpus_mask store, it must observe the @has_blocked
  9639. * and @needs_update stores.
  9640. */
  9641. smp_mb__after_atomic();
  9642. set_cpu_sd_state_idle(cpu);
  9643. WRITE_ONCE(nohz.needs_update, 1);
  9644. out:
  9645. /*
  9646. * Each time a cpu enter idle, we assume that it has blocked load and
  9647. * enable the periodic update of the load of idle cpus
  9648. */
  9649. WRITE_ONCE(nohz.has_blocked, 1);
  9650. }
  9651. static bool update_nohz_stats(struct rq *rq)
  9652. {
  9653. unsigned int cpu = rq->cpu;
  9654. if (!rq->has_blocked_load)
  9655. return false;
  9656. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  9657. return false;
  9658. if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
  9659. return true;
  9660. update_blocked_averages(cpu);
  9661. return rq->has_blocked_load;
  9662. }
  9663. /*
  9664. * Internal function that runs load balance for all idle cpus. The load balance
  9665. * can be a simple update of blocked load or a complete load balance with
  9666. * tasks movement depending of flags.
  9667. */
  9668. static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
  9669. {
  9670. /* Earliest time when we have to do rebalance again */
  9671. unsigned long now = jiffies;
  9672. unsigned long next_balance = now + 60*HZ;
  9673. bool has_blocked_load = false;
  9674. int update_next_balance = 0;
  9675. int this_cpu = this_rq->cpu;
  9676. int balance_cpu;
  9677. struct rq *rq;
  9678. SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
  9679. /*
  9680. * We assume there will be no idle load after this update and clear
  9681. * the has_blocked flag. If a cpu enters idle in the mean time, it will
  9682. * set the has_blocked flag and trigger another update of idle load.
  9683. * Because a cpu that becomes idle, is added to idle_cpus_mask before
  9684. * setting the flag, we are sure to not clear the state and not
  9685. * check the load of an idle cpu.
  9686. *
  9687. * Same applies to idle_cpus_mask vs needs_update.
  9688. */
  9689. if (flags & NOHZ_STATS_KICK)
  9690. WRITE_ONCE(nohz.has_blocked, 0);
  9691. if (flags & NOHZ_NEXT_KICK)
  9692. WRITE_ONCE(nohz.needs_update, 0);
  9693. /*
  9694. * Ensures that if we miss the CPU, we must see the has_blocked
  9695. * store from nohz_balance_enter_idle().
  9696. */
  9697. smp_mb();
  9698. /*
  9699. * Start with the next CPU after this_cpu so we will end with this_cpu and let a
  9700. * chance for other idle cpu to pull load.
  9701. */
  9702. for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
  9703. if (!idle_cpu(balance_cpu))
  9704. continue;
  9705. /*
  9706. * If this CPU gets work to do, stop the load balancing
  9707. * work being done for other CPUs. Next load
  9708. * balancing owner will pick it up.
  9709. */
  9710. if (need_resched()) {
  9711. if (flags & NOHZ_STATS_KICK)
  9712. has_blocked_load = true;
  9713. if (flags & NOHZ_NEXT_KICK)
  9714. WRITE_ONCE(nohz.needs_update, 1);
  9715. goto abort;
  9716. }
  9717. rq = cpu_rq(balance_cpu);
  9718. if (flags & NOHZ_STATS_KICK)
  9719. has_blocked_load |= update_nohz_stats(rq);
  9720. /*
  9721. * If time for next balance is due,
  9722. * do the balance.
  9723. */
  9724. if (time_after_eq(jiffies, rq->next_balance)) {
  9725. struct rq_flags rf;
  9726. rq_lock_irqsave(rq, &rf);
  9727. update_rq_clock(rq);
  9728. rq_unlock_irqrestore(rq, &rf);
  9729. if (flags & NOHZ_BALANCE_KICK)
  9730. rebalance_domains(rq, CPU_IDLE);
  9731. }
  9732. if (time_after(next_balance, rq->next_balance)) {
  9733. next_balance = rq->next_balance;
  9734. update_next_balance = 1;
  9735. }
  9736. }
  9737. /*
  9738. * next_balance will be updated only when there is a need.
  9739. * When the CPU is attached to null domain for ex, it will not be
  9740. * updated.
  9741. */
  9742. if (likely(update_next_balance))
  9743. nohz.next_balance = next_balance;
  9744. if (flags & NOHZ_STATS_KICK)
  9745. WRITE_ONCE(nohz.next_blocked,
  9746. now + msecs_to_jiffies(LOAD_AVG_PERIOD));
  9747. abort:
  9748. /* There is still blocked load, enable periodic update */
  9749. if (has_blocked_load)
  9750. WRITE_ONCE(nohz.has_blocked, 1);
  9751. }
  9752. /*
  9753. * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
  9754. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  9755. */
  9756. static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
  9757. {
  9758. unsigned int flags = this_rq->nohz_idle_balance;
  9759. if (!flags)
  9760. return false;
  9761. this_rq->nohz_idle_balance = 0;
  9762. if (idle != CPU_IDLE)
  9763. return false;
  9764. _nohz_idle_balance(this_rq, flags);
  9765. return true;
  9766. }
  9767. /*
  9768. * Check if we need to run the ILB for updating blocked load before entering
  9769. * idle state.
  9770. */
  9771. void nohz_run_idle_balance(int cpu)
  9772. {
  9773. unsigned int flags;
  9774. flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
  9775. /*
  9776. * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
  9777. * (ie NOHZ_STATS_KICK set) and will do the same.
  9778. */
  9779. if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
  9780. _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
  9781. }
  9782. static void nohz_newidle_balance(struct rq *this_rq)
  9783. {
  9784. int this_cpu = this_rq->cpu;
  9785. /*
  9786. * This CPU doesn't want to be disturbed by scheduler
  9787. * housekeeping
  9788. */
  9789. if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
  9790. return;
  9791. /* Will wake up very soon. No time for doing anything else*/
  9792. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  9793. return;
  9794. /* Don't need to update blocked load of idle CPUs*/
  9795. if (!READ_ONCE(nohz.has_blocked) ||
  9796. time_before(jiffies, READ_ONCE(nohz.next_blocked)))
  9797. return;
  9798. /*
  9799. * Set the need to trigger ILB in order to update blocked load
  9800. * before entering idle state.
  9801. */
  9802. atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
  9803. }
  9804. #else /* !CONFIG_NO_HZ_COMMON */
  9805. static inline void nohz_balancer_kick(struct rq *rq) { }
  9806. static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
  9807. {
  9808. return false;
  9809. }
  9810. static inline void nohz_newidle_balance(struct rq *this_rq) { }
  9811. #endif /* CONFIG_NO_HZ_COMMON */
  9812. /*
  9813. * newidle_balance is called by schedule() if this_cpu is about to become
  9814. * idle. Attempts to pull tasks from other CPUs.
  9815. *
  9816. * Returns:
  9817. * < 0 - we released the lock and there are !fair tasks present
  9818. * 0 - failed, no new tasks
  9819. * > 0 - success, new (fair) tasks present
  9820. */
  9821. static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
  9822. {
  9823. unsigned long next_balance = jiffies + HZ;
  9824. int this_cpu = this_rq->cpu;
  9825. u64 t0, t1, curr_cost = 0;
  9826. struct sched_domain *sd;
  9827. int pulled_task = 0;
  9828. int done = 0;
  9829. trace_android_rvh_sched_newidle_balance(this_rq, rf, &pulled_task, &done);
  9830. if (done)
  9831. return pulled_task;
  9832. update_misfit_status(NULL, this_rq);
  9833. /*
  9834. * There is a task waiting to run. No need to search for one.
  9835. * Return 0; the task will be enqueued when switching to idle.
  9836. */
  9837. if (this_rq->ttwu_pending)
  9838. return 0;
  9839. /*
  9840. * We must set idle_stamp _before_ calling idle_balance(), such that we
  9841. * measure the duration of idle_balance() as idle time.
  9842. */
  9843. this_rq->idle_stamp = rq_clock(this_rq);
  9844. /*
  9845. * Do not pull tasks towards !active CPUs...
  9846. */
  9847. if (!cpu_active(this_cpu))
  9848. return 0;
  9849. /*
  9850. * This is OK, because current is on_cpu, which avoids it being picked
  9851. * for load-balance and preemption/IRQs are still disabled avoiding
  9852. * further scheduler activity on it and we're being very careful to
  9853. * re-start the picking loop.
  9854. */
  9855. rq_unpin_lock(this_rq, rf);
  9856. rcu_read_lock();
  9857. sd = rcu_dereference_check_sched_domain(this_rq->sd);
  9858. if (!READ_ONCE(this_rq->rd->overload) ||
  9859. (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
  9860. if (sd)
  9861. update_next_balance(sd, &next_balance);
  9862. rcu_read_unlock();
  9863. goto out;
  9864. }
  9865. rcu_read_unlock();
  9866. raw_spin_rq_unlock(this_rq);
  9867. t0 = sched_clock_cpu(this_cpu);
  9868. update_blocked_averages(this_cpu);
  9869. rcu_read_lock();
  9870. for_each_domain(this_cpu, sd) {
  9871. int continue_balancing = 1;
  9872. u64 domain_cost;
  9873. update_next_balance(sd, &next_balance);
  9874. if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
  9875. break;
  9876. if (sd->flags & SD_BALANCE_NEWIDLE) {
  9877. pulled_task = load_balance(this_cpu, this_rq,
  9878. sd, CPU_NEWLY_IDLE,
  9879. &continue_balancing);
  9880. t1 = sched_clock_cpu(this_cpu);
  9881. domain_cost = t1 - t0;
  9882. update_newidle_cost(sd, domain_cost);
  9883. curr_cost += domain_cost;
  9884. t0 = t1;
  9885. }
  9886. /*
  9887. * Stop searching for tasks to pull if there are
  9888. * now runnable tasks on this rq.
  9889. */
  9890. if (pulled_task || this_rq->nr_running > 0 ||
  9891. this_rq->ttwu_pending)
  9892. break;
  9893. }
  9894. rcu_read_unlock();
  9895. raw_spin_rq_lock(this_rq);
  9896. if (curr_cost > this_rq->max_idle_balance_cost)
  9897. this_rq->max_idle_balance_cost = curr_cost;
  9898. /*
  9899. * While browsing the domains, we released the rq lock, a task could
  9900. * have been enqueued in the meantime. Since we're not going idle,
  9901. * pretend we pulled a task.
  9902. */
  9903. if (this_rq->cfs.h_nr_running && !pulled_task)
  9904. pulled_task = 1;
  9905. /* Is there a task of a high priority class? */
  9906. if (this_rq->nr_running != this_rq->cfs.h_nr_running)
  9907. pulled_task = -1;
  9908. out:
  9909. /* Move the next balance forward */
  9910. if (time_after(this_rq->next_balance, next_balance))
  9911. this_rq->next_balance = next_balance;
  9912. if (pulled_task)
  9913. this_rq->idle_stamp = 0;
  9914. else
  9915. nohz_newidle_balance(this_rq);
  9916. rq_repin_lock(this_rq, rf);
  9917. return pulled_task;
  9918. }
  9919. /*
  9920. * run_rebalance_domains is triggered when needed from the scheduler tick.
  9921. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  9922. */
  9923. static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
  9924. {
  9925. struct rq *this_rq = this_rq();
  9926. enum cpu_idle_type idle = this_rq->idle_balance ?
  9927. CPU_IDLE : CPU_NOT_IDLE;
  9928. /*
  9929. * If this CPU has a pending nohz_balance_kick, then do the
  9930. * balancing on behalf of the other idle CPUs whose ticks are
  9931. * stopped. Do nohz_idle_balance *before* rebalance_domains to
  9932. * give the idle CPUs a chance to load balance. Else we may
  9933. * load balance only within the local sched_domain hierarchy
  9934. * and abort nohz_idle_balance altogether if we pull some load.
  9935. */
  9936. if (nohz_idle_balance(this_rq, idle))
  9937. return;
  9938. /* normal load balance */
  9939. update_blocked_averages(this_rq->cpu);
  9940. rebalance_domains(this_rq, idle);
  9941. }
  9942. /*
  9943. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  9944. */
  9945. void trigger_load_balance(struct rq *rq)
  9946. {
  9947. /*
  9948. * Don't need to rebalance while attached to NULL domain or
  9949. * runqueue CPU is not active
  9950. */
  9951. if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
  9952. return;
  9953. if (time_after_eq(jiffies, rq->next_balance))
  9954. raise_softirq(SCHED_SOFTIRQ);
  9955. nohz_balancer_kick(rq);
  9956. }
  9957. static void rq_online_fair(struct rq *rq)
  9958. {
  9959. update_sysctl();
  9960. update_runtime_enabled(rq);
  9961. }
  9962. static void rq_offline_fair(struct rq *rq)
  9963. {
  9964. update_sysctl();
  9965. /* Ensure any throttled groups are reachable by pick_next_task */
  9966. unthrottle_offline_cfs_rqs(rq);
  9967. }
  9968. #endif /* CONFIG_SMP */
  9969. #ifdef CONFIG_SCHED_CORE
  9970. static inline bool
  9971. __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
  9972. {
  9973. u64 slice = sched_slice(cfs_rq_of(se), se);
  9974. u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  9975. return (rtime * min_nr_tasks > slice);
  9976. }
  9977. #define MIN_NR_TASKS_DURING_FORCEIDLE 2
  9978. static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
  9979. {
  9980. if (!sched_core_enabled(rq))
  9981. return;
  9982. /*
  9983. * If runqueue has only one task which used up its slice and
  9984. * if the sibling is forced idle, then trigger schedule to
  9985. * give forced idle task a chance.
  9986. *
  9987. * sched_slice() considers only this active rq and it gets the
  9988. * whole slice. But during force idle, we have siblings acting
  9989. * like a single runqueue and hence we need to consider runnable
  9990. * tasks on this CPU and the forced idle CPU. Ideally, we should
  9991. * go through the forced idle rq, but that would be a perf hit.
  9992. * We can assume that the forced idle CPU has at least
  9993. * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
  9994. * if we need to give up the CPU.
  9995. */
  9996. if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
  9997. __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
  9998. resched_curr(rq);
  9999. }
  10000. /*
  10001. * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
  10002. */
  10003. static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
  10004. {
  10005. for_each_sched_entity(se) {
  10006. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  10007. if (forceidle) {
  10008. if (cfs_rq->forceidle_seq == fi_seq)
  10009. break;
  10010. cfs_rq->forceidle_seq = fi_seq;
  10011. }
  10012. cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
  10013. }
  10014. }
  10015. void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
  10016. {
  10017. struct sched_entity *se = &p->se;
  10018. if (p->sched_class != &fair_sched_class)
  10019. return;
  10020. se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
  10021. }
  10022. bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
  10023. {
  10024. struct rq *rq = task_rq(a);
  10025. struct sched_entity *sea = &a->se;
  10026. struct sched_entity *seb = &b->se;
  10027. struct cfs_rq *cfs_rqa;
  10028. struct cfs_rq *cfs_rqb;
  10029. s64 delta;
  10030. SCHED_WARN_ON(task_rq(b)->core != rq->core);
  10031. #ifdef CONFIG_FAIR_GROUP_SCHED
  10032. /*
  10033. * Find an se in the hierarchy for tasks a and b, such that the se's
  10034. * are immediate siblings.
  10035. */
  10036. while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
  10037. int sea_depth = sea->depth;
  10038. int seb_depth = seb->depth;
  10039. if (sea_depth >= seb_depth)
  10040. sea = parent_entity(sea);
  10041. if (sea_depth <= seb_depth)
  10042. seb = parent_entity(seb);
  10043. }
  10044. se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
  10045. se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
  10046. cfs_rqa = sea->cfs_rq;
  10047. cfs_rqb = seb->cfs_rq;
  10048. #else
  10049. cfs_rqa = &task_rq(a)->cfs;
  10050. cfs_rqb = &task_rq(b)->cfs;
  10051. #endif
  10052. /*
  10053. * Find delta after normalizing se's vruntime with its cfs_rq's
  10054. * min_vruntime_fi, which would have been updated in prior calls
  10055. * to se_fi_update().
  10056. */
  10057. delta = (s64)(sea->vruntime - seb->vruntime) +
  10058. (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
  10059. return delta > 0;
  10060. }
  10061. #else
  10062. static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
  10063. #endif
  10064. /*
  10065. * scheduler tick hitting a task of our scheduling class.
  10066. *
  10067. * NOTE: This function can be called remotely by the tick offload that
  10068. * goes along full dynticks. Therefore no local assumption can be made
  10069. * and everything must be accessed through the @rq and @curr passed in
  10070. * parameters.
  10071. */
  10072. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  10073. {
  10074. struct cfs_rq *cfs_rq;
  10075. struct sched_entity *se = &curr->se;
  10076. for_each_sched_entity(se) {
  10077. cfs_rq = cfs_rq_of(se);
  10078. entity_tick(cfs_rq, se, queued);
  10079. }
  10080. if (static_branch_unlikely(&sched_numa_balancing))
  10081. task_tick_numa(rq, curr);
  10082. update_misfit_status(curr, rq);
  10083. update_overutilized_status(task_rq(curr));
  10084. task_tick_core(rq, curr);
  10085. }
  10086. /*
  10087. * called on fork with the child task as argument from the parent's context
  10088. * - child not yet on the tasklist
  10089. * - preemption disabled
  10090. */
  10091. static void task_fork_fair(struct task_struct *p)
  10092. {
  10093. struct cfs_rq *cfs_rq;
  10094. struct sched_entity *se = &p->se, *curr;
  10095. struct rq *rq = this_rq();
  10096. struct rq_flags rf;
  10097. rq_lock(rq, &rf);
  10098. update_rq_clock(rq);
  10099. cfs_rq = task_cfs_rq(current);
  10100. curr = cfs_rq->curr;
  10101. if (curr) {
  10102. update_curr(cfs_rq);
  10103. se->vruntime = curr->vruntime;
  10104. }
  10105. place_entity(cfs_rq, se, 1);
  10106. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  10107. /*
  10108. * Upon rescheduling, sched_class::put_prev_task() will place
  10109. * 'current' within the tree based on its new key value.
  10110. */
  10111. swap(curr->vruntime, se->vruntime);
  10112. resched_curr(rq);
  10113. }
  10114. se->vruntime -= cfs_rq->min_vruntime;
  10115. rq_unlock(rq, &rf);
  10116. }
  10117. /*
  10118. * Priority of the task has changed. Check to see if we preempt
  10119. * the current task.
  10120. */
  10121. static void
  10122. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  10123. {
  10124. if (!task_on_rq_queued(p))
  10125. return;
  10126. if (rq->cfs.nr_running == 1)
  10127. return;
  10128. /*
  10129. * Reschedule if we are currently running on this runqueue and
  10130. * our priority decreased, or if we are not currently running on
  10131. * this runqueue and our priority is higher than the current's
  10132. */
  10133. if (task_current(rq, p)) {
  10134. if (p->prio > oldprio)
  10135. resched_curr(rq);
  10136. } else
  10137. check_preempt_curr(rq, p, 0);
  10138. }
  10139. static inline bool vruntime_normalized(struct task_struct *p)
  10140. {
  10141. struct sched_entity *se = &p->se;
  10142. /*
  10143. * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
  10144. * the dequeue_entity(.flags=0) will already have normalized the
  10145. * vruntime.
  10146. */
  10147. if (p->on_rq)
  10148. return true;
  10149. /*
  10150. * When !on_rq, vruntime of the task has usually NOT been normalized.
  10151. * But there are some cases where it has already been normalized:
  10152. *
  10153. * - A forked child which is waiting for being woken up by
  10154. * wake_up_new_task().
  10155. * - A task which has been woken up by try_to_wake_up() and
  10156. * waiting for actually being woken up by sched_ttwu_pending().
  10157. */
  10158. if (!se->sum_exec_runtime ||
  10159. (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
  10160. return true;
  10161. return false;
  10162. }
  10163. #ifdef CONFIG_FAIR_GROUP_SCHED
  10164. /*
  10165. * Propagate the changes of the sched_entity across the tg tree to make it
  10166. * visible to the root
  10167. */
  10168. static void propagate_entity_cfs_rq(struct sched_entity *se)
  10169. {
  10170. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  10171. if (cfs_rq_throttled(cfs_rq))
  10172. return;
  10173. if (!throttled_hierarchy(cfs_rq))
  10174. list_add_leaf_cfs_rq(cfs_rq);
  10175. /* Start to propagate at parent */
  10176. se = se->parent;
  10177. for_each_sched_entity(se) {
  10178. cfs_rq = cfs_rq_of(se);
  10179. update_load_avg(cfs_rq, se, UPDATE_TG);
  10180. if (cfs_rq_throttled(cfs_rq))
  10181. break;
  10182. if (!throttled_hierarchy(cfs_rq))
  10183. list_add_leaf_cfs_rq(cfs_rq);
  10184. }
  10185. }
  10186. #else
  10187. static void propagate_entity_cfs_rq(struct sched_entity *se) { }
  10188. #endif
  10189. static void detach_entity_cfs_rq(struct sched_entity *se)
  10190. {
  10191. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  10192. #ifdef CONFIG_SMP
  10193. /*
  10194. * In case the task sched_avg hasn't been attached:
  10195. * - A forked task which hasn't been woken up by wake_up_new_task().
  10196. * - A task which has been woken up by try_to_wake_up() but is
  10197. * waiting for actually being woken up by sched_ttwu_pending().
  10198. */
  10199. if (!se->avg.last_update_time)
  10200. return;
  10201. #endif
  10202. /* Catch up with the cfs_rq and remove our load when we leave */
  10203. update_load_avg(cfs_rq, se, 0);
  10204. detach_entity_load_avg(cfs_rq, se);
  10205. update_tg_load_avg(cfs_rq);
  10206. propagate_entity_cfs_rq(se);
  10207. }
  10208. static void attach_entity_cfs_rq(struct sched_entity *se)
  10209. {
  10210. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  10211. /* Synchronize entity with its cfs_rq */
  10212. update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
  10213. attach_entity_load_avg(cfs_rq, se);
  10214. update_tg_load_avg(cfs_rq);
  10215. propagate_entity_cfs_rq(se);
  10216. }
  10217. static void detach_task_cfs_rq(struct task_struct *p)
  10218. {
  10219. struct sched_entity *se = &p->se;
  10220. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  10221. if (!vruntime_normalized(p)) {
  10222. /*
  10223. * Fix up our vruntime so that the current sleep doesn't
  10224. * cause 'unlimited' sleep bonus.
  10225. */
  10226. place_entity(cfs_rq, se, 0);
  10227. se->vruntime -= cfs_rq->min_vruntime;
  10228. }
  10229. detach_entity_cfs_rq(se);
  10230. }
  10231. static void attach_task_cfs_rq(struct task_struct *p)
  10232. {
  10233. struct sched_entity *se = &p->se;
  10234. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  10235. attach_entity_cfs_rq(se);
  10236. if (!vruntime_normalized(p))
  10237. se->vruntime += cfs_rq->min_vruntime;
  10238. }
  10239. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  10240. {
  10241. detach_task_cfs_rq(p);
  10242. }
  10243. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  10244. {
  10245. attach_task_cfs_rq(p);
  10246. if (task_on_rq_queued(p)) {
  10247. /*
  10248. * We were most likely switched from sched_rt, so
  10249. * kick off the schedule if running, otherwise just see
  10250. * if we can still preempt the current task.
  10251. */
  10252. if (task_current(rq, p))
  10253. resched_curr(rq);
  10254. else
  10255. check_preempt_curr(rq, p, 0);
  10256. }
  10257. }
  10258. /* Account for a task changing its policy or group.
  10259. *
  10260. * This routine is mostly called to set cfs_rq->curr field when a task
  10261. * migrates between groups/classes.
  10262. */
  10263. static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
  10264. {
  10265. struct sched_entity *se = &p->se;
  10266. #ifdef CONFIG_SMP
  10267. if (task_on_rq_queued(p)) {
  10268. /*
  10269. * Move the next running task to the front of the list, so our
  10270. * cfs_tasks list becomes MRU one.
  10271. */
  10272. list_move(&se->group_node, &rq->cfs_tasks);
  10273. }
  10274. #endif
  10275. for_each_sched_entity(se) {
  10276. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  10277. set_next_entity(cfs_rq, se);
  10278. /* ensure bandwidth has been allocated on our new cfs_rq */
  10279. account_cfs_rq_runtime(cfs_rq, 0);
  10280. }
  10281. }
  10282. void init_cfs_rq(struct cfs_rq *cfs_rq)
  10283. {
  10284. cfs_rq->tasks_timeline = RB_ROOT_CACHED;
  10285. u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
  10286. #ifdef CONFIG_SMP
  10287. raw_spin_lock_init(&cfs_rq->removed.lock);
  10288. #endif
  10289. }
  10290. #ifdef CONFIG_FAIR_GROUP_SCHED
  10291. static void task_change_group_fair(struct task_struct *p)
  10292. {
  10293. /*
  10294. * We couldn't detach or attach a forked task which
  10295. * hasn't been woken up by wake_up_new_task().
  10296. */
  10297. if (READ_ONCE(p->__state) == TASK_NEW)
  10298. return;
  10299. detach_task_cfs_rq(p);
  10300. #ifdef CONFIG_SMP
  10301. /* Tell se's cfs_rq has been changed -- migrated */
  10302. p->se.avg.last_update_time = 0;
  10303. #endif
  10304. set_task_rq(p, task_cpu(p));
  10305. attach_task_cfs_rq(p);
  10306. }
  10307. void free_fair_sched_group(struct task_group *tg)
  10308. {
  10309. int i;
  10310. for_each_possible_cpu(i) {
  10311. if (tg->cfs_rq)
  10312. kfree(tg->cfs_rq[i]);
  10313. if (tg->se)
  10314. kfree(tg->se[i]);
  10315. }
  10316. kfree(tg->cfs_rq);
  10317. kfree(tg->se);
  10318. }
  10319. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  10320. {
  10321. struct sched_entity *se;
  10322. struct cfs_rq *cfs_rq;
  10323. int i;
  10324. tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
  10325. if (!tg->cfs_rq)
  10326. goto err;
  10327. tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
  10328. if (!tg->se)
  10329. goto err;
  10330. tg->shares = NICE_0_LOAD;
  10331. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  10332. for_each_possible_cpu(i) {
  10333. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  10334. GFP_KERNEL, cpu_to_node(i));
  10335. if (!cfs_rq)
  10336. goto err;
  10337. se = kzalloc_node(sizeof(struct sched_entity_stats),
  10338. GFP_KERNEL, cpu_to_node(i));
  10339. if (!se)
  10340. goto err_free_rq;
  10341. init_cfs_rq(cfs_rq);
  10342. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  10343. init_entity_runnable_average(se);
  10344. }
  10345. return 1;
  10346. err_free_rq:
  10347. kfree(cfs_rq);
  10348. err:
  10349. return 0;
  10350. }
  10351. void online_fair_sched_group(struct task_group *tg)
  10352. {
  10353. struct sched_entity *se;
  10354. struct rq_flags rf;
  10355. struct rq *rq;
  10356. int i;
  10357. for_each_possible_cpu(i) {
  10358. rq = cpu_rq(i);
  10359. se = tg->se[i];
  10360. rq_lock_irq(rq, &rf);
  10361. update_rq_clock(rq);
  10362. attach_entity_cfs_rq(se);
  10363. sync_throttle(tg, i);
  10364. rq_unlock_irq(rq, &rf);
  10365. }
  10366. }
  10367. void unregister_fair_sched_group(struct task_group *tg)
  10368. {
  10369. unsigned long flags;
  10370. struct rq *rq;
  10371. int cpu;
  10372. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  10373. for_each_possible_cpu(cpu) {
  10374. if (tg->se[cpu])
  10375. remove_entity_load_avg(tg->se[cpu]);
  10376. /*
  10377. * Only empty task groups can be destroyed; so we can speculatively
  10378. * check on_list without danger of it being re-added.
  10379. */
  10380. if (!tg->cfs_rq[cpu]->on_list)
  10381. continue;
  10382. rq = cpu_rq(cpu);
  10383. raw_spin_rq_lock_irqsave(rq, flags);
  10384. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  10385. raw_spin_rq_unlock_irqrestore(rq, flags);
  10386. }
  10387. }
  10388. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  10389. struct sched_entity *se, int cpu,
  10390. struct sched_entity *parent)
  10391. {
  10392. struct rq *rq = cpu_rq(cpu);
  10393. cfs_rq->tg = tg;
  10394. cfs_rq->rq = rq;
  10395. init_cfs_rq_runtime(cfs_rq);
  10396. tg->cfs_rq[cpu] = cfs_rq;
  10397. tg->se[cpu] = se;
  10398. /* se could be NULL for root_task_group */
  10399. if (!se)
  10400. return;
  10401. if (!parent) {
  10402. se->cfs_rq = &rq->cfs;
  10403. se->depth = 0;
  10404. } else {
  10405. se->cfs_rq = parent->my_q;
  10406. se->depth = parent->depth + 1;
  10407. }
  10408. se->my_q = cfs_rq;
  10409. /* guarantee group entities always have weight */
  10410. update_load_set(&se->load, NICE_0_LOAD);
  10411. se->parent = parent;
  10412. }
  10413. static DEFINE_MUTEX(shares_mutex);
  10414. static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
  10415. {
  10416. int i;
  10417. lockdep_assert_held(&shares_mutex);
  10418. /*
  10419. * We can't change the weight of the root cgroup.
  10420. */
  10421. if (!tg->se[0])
  10422. return -EINVAL;
  10423. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  10424. if (tg->shares == shares)
  10425. return 0;
  10426. tg->shares = shares;
  10427. for_each_possible_cpu(i) {
  10428. struct rq *rq = cpu_rq(i);
  10429. struct sched_entity *se = tg->se[i];
  10430. struct rq_flags rf;
  10431. /* Propagate contribution to hierarchy */
  10432. rq_lock_irqsave(rq, &rf);
  10433. update_rq_clock(rq);
  10434. for_each_sched_entity(se) {
  10435. update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
  10436. update_cfs_group(se);
  10437. }
  10438. rq_unlock_irqrestore(rq, &rf);
  10439. }
  10440. return 0;
  10441. }
  10442. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  10443. {
  10444. int ret;
  10445. mutex_lock(&shares_mutex);
  10446. if (tg_is_idle(tg))
  10447. ret = -EINVAL;
  10448. else
  10449. ret = __sched_group_set_shares(tg, shares);
  10450. mutex_unlock(&shares_mutex);
  10451. return ret;
  10452. }
  10453. int sched_group_set_idle(struct task_group *tg, long idle)
  10454. {
  10455. int i;
  10456. if (tg == &root_task_group)
  10457. return -EINVAL;
  10458. if (idle < 0 || idle > 1)
  10459. return -EINVAL;
  10460. mutex_lock(&shares_mutex);
  10461. if (tg->idle == idle) {
  10462. mutex_unlock(&shares_mutex);
  10463. return 0;
  10464. }
  10465. tg->idle = idle;
  10466. for_each_possible_cpu(i) {
  10467. struct rq *rq = cpu_rq(i);
  10468. struct sched_entity *se = tg->se[i];
  10469. struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
  10470. bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
  10471. long idle_task_delta;
  10472. struct rq_flags rf;
  10473. rq_lock_irqsave(rq, &rf);
  10474. grp_cfs_rq->idle = idle;
  10475. if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
  10476. goto next_cpu;
  10477. if (se->on_rq) {
  10478. parent_cfs_rq = cfs_rq_of(se);
  10479. if (cfs_rq_is_idle(grp_cfs_rq))
  10480. parent_cfs_rq->idle_nr_running++;
  10481. else
  10482. parent_cfs_rq->idle_nr_running--;
  10483. }
  10484. idle_task_delta = grp_cfs_rq->h_nr_running -
  10485. grp_cfs_rq->idle_h_nr_running;
  10486. if (!cfs_rq_is_idle(grp_cfs_rq))
  10487. idle_task_delta *= -1;
  10488. for_each_sched_entity(se) {
  10489. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  10490. if (!se->on_rq)
  10491. break;
  10492. cfs_rq->idle_h_nr_running += idle_task_delta;
  10493. /* Already accounted at parent level and above. */
  10494. if (cfs_rq_is_idle(cfs_rq))
  10495. break;
  10496. }
  10497. next_cpu:
  10498. rq_unlock_irqrestore(rq, &rf);
  10499. }
  10500. /* Idle groups have minimum weight. */
  10501. if (tg_is_idle(tg))
  10502. __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
  10503. else
  10504. __sched_group_set_shares(tg, NICE_0_LOAD);
  10505. mutex_unlock(&shares_mutex);
  10506. return 0;
  10507. }
  10508. #else /* CONFIG_FAIR_GROUP_SCHED */
  10509. void free_fair_sched_group(struct task_group *tg) { }
  10510. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  10511. {
  10512. return 1;
  10513. }
  10514. void online_fair_sched_group(struct task_group *tg) { }
  10515. void unregister_fair_sched_group(struct task_group *tg) { }
  10516. #endif /* CONFIG_FAIR_GROUP_SCHED */
  10517. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  10518. {
  10519. struct sched_entity *se = &task->se;
  10520. unsigned int rr_interval = 0;
  10521. /*
  10522. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  10523. * idle runqueue:
  10524. */
  10525. if (rq->cfs.load.weight)
  10526. rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  10527. return rr_interval;
  10528. }
  10529. /*
  10530. * All the scheduling class methods:
  10531. */
  10532. DEFINE_SCHED_CLASS(fair) = {
  10533. .enqueue_task = enqueue_task_fair,
  10534. .dequeue_task = dequeue_task_fair,
  10535. .yield_task = yield_task_fair,
  10536. .yield_to_task = yield_to_task_fair,
  10537. .check_preempt_curr = check_preempt_wakeup,
  10538. .pick_next_task = __pick_next_task_fair,
  10539. .put_prev_task = put_prev_task_fair,
  10540. .set_next_task = set_next_task_fair,
  10541. #ifdef CONFIG_SMP
  10542. .balance = balance_fair,
  10543. .pick_task = pick_task_fair,
  10544. .select_task_rq = select_task_rq_fair,
  10545. .migrate_task_rq = migrate_task_rq_fair,
  10546. .rq_online = rq_online_fair,
  10547. .rq_offline = rq_offline_fair,
  10548. .task_dead = task_dead_fair,
  10549. .set_cpus_allowed = set_cpus_allowed_common,
  10550. #endif
  10551. .task_tick = task_tick_fair,
  10552. .task_fork = task_fork_fair,
  10553. .prio_changed = prio_changed_fair,
  10554. .switched_from = switched_from_fair,
  10555. .switched_to = switched_to_fair,
  10556. .get_rr_interval = get_rr_interval_fair,
  10557. .update_curr = update_curr_fair,
  10558. #ifdef CONFIG_FAIR_GROUP_SCHED
  10559. .task_change_group = task_change_group_fair,
  10560. #endif
  10561. #ifdef CONFIG_UCLAMP_TASK
  10562. .uclamp_enabled = 1,
  10563. #endif
  10564. };
  10565. #ifdef CONFIG_SCHED_DEBUG
  10566. void print_cfs_stats(struct seq_file *m, int cpu)
  10567. {
  10568. struct cfs_rq *cfs_rq, *pos;
  10569. rcu_read_lock();
  10570. for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
  10571. print_cfs_rq(m, cpu, cfs_rq);
  10572. rcu_read_unlock();
  10573. }
  10574. #ifdef CONFIG_NUMA_BALANCING
  10575. void show_numa_stats(struct task_struct *p, struct seq_file *m)
  10576. {
  10577. int node;
  10578. unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
  10579. struct numa_group *ng;
  10580. rcu_read_lock();
  10581. ng = rcu_dereference(p->numa_group);
  10582. for_each_online_node(node) {
  10583. if (p->numa_faults) {
  10584. tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
  10585. tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
  10586. }
  10587. if (ng) {
  10588. gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
  10589. gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
  10590. }
  10591. print_numa_stats(m, node, tsf, tpf, gsf, gpf);
  10592. }
  10593. rcu_read_unlock();
  10594. }
  10595. #endif /* CONFIG_NUMA_BALANCING */
  10596. #endif /* CONFIG_SCHED_DEBUG */
  10597. __init void init_sched_fair_class(void)
  10598. {
  10599. #ifdef CONFIG_SMP
  10600. int i;
  10601. for_each_possible_cpu(i) {
  10602. zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
  10603. zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
  10604. }
  10605. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  10606. #ifdef CONFIG_NO_HZ_COMMON
  10607. nohz.next_balance = jiffies;
  10608. nohz.next_blocked = jiffies;
  10609. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  10610. #endif
  10611. #endif /* SMP */
  10612. }