1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Deadline Scheduling Class (SCHED_DEADLINE)
- *
- * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
- *
- * Tasks that periodically executes their instances for less than their
- * runtime won't miss any of their deadlines.
- * Tasks that are not periodic or sporadic or that tries to execute more
- * than their reserved bandwidth will be slowed down (and may potentially
- * miss some of their deadlines), and won't affect any other task.
- *
- * Copyright (C) 2012 Dario Faggioli <[email protected]>,
- * Juri Lelli <[email protected]>,
- * Michael Trimarchi <[email protected]>,
- * Fabio Checconi <[email protected]>
- */
- #include <linux/cpuset.h>
- /*
- * Default limits for DL period; on the top end we guard against small util
- * tasks still getting ridiculously long effective runtimes, on the bottom end we
- * guard against timer DoS.
- */
- static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
- static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
- #ifdef CONFIG_SYSCTL
- static struct ctl_table sched_dl_sysctls[] = {
- {
- .procname = "sched_deadline_period_max_us",
- .data = &sysctl_sched_dl_period_max,
- .maxlen = sizeof(unsigned int),
- .mode = 0644,
- .proc_handler = proc_douintvec_minmax,
- .extra1 = (void *)&sysctl_sched_dl_period_min,
- },
- {
- .procname = "sched_deadline_period_min_us",
- .data = &sysctl_sched_dl_period_min,
- .maxlen = sizeof(unsigned int),
- .mode = 0644,
- .proc_handler = proc_douintvec_minmax,
- .extra2 = (void *)&sysctl_sched_dl_period_max,
- },
- {}
- };
- static int __init sched_dl_sysctl_init(void)
- {
- register_sysctl_init("kernel", sched_dl_sysctls);
- return 0;
- }
- late_initcall(sched_dl_sysctl_init);
- #endif
- static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
- {
- return container_of(dl_se, struct task_struct, dl);
- }
- static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
- {
- return container_of(dl_rq, struct rq, dl);
- }
- static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
- {
- struct task_struct *p = dl_task_of(dl_se);
- struct rq *rq = task_rq(p);
- return &rq->dl;
- }
- static inline int on_dl_rq(struct sched_dl_entity *dl_se)
- {
- return !RB_EMPTY_NODE(&dl_se->rb_node);
- }
- #ifdef CONFIG_RT_MUTEXES
- static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
- {
- return dl_se->pi_se;
- }
- static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
- {
- return pi_of(dl_se) != dl_se;
- }
- #else
- static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
- {
- return dl_se;
- }
- static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
- {
- return false;
- }
- #endif
- #ifdef CONFIG_SMP
- static inline struct dl_bw *dl_bw_of(int i)
- {
- RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
- "sched RCU must be held");
- return &cpu_rq(i)->rd->dl_bw;
- }
- static inline int dl_bw_cpus(int i)
- {
- struct root_domain *rd = cpu_rq(i)->rd;
- int cpus;
- RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
- "sched RCU must be held");
- if (cpumask_subset(rd->span, cpu_active_mask))
- return cpumask_weight(rd->span);
- cpus = 0;
- for_each_cpu_and(i, rd->span, cpu_active_mask)
- cpus++;
- return cpus;
- }
- static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
- {
- unsigned long cap = 0;
- int i;
- for_each_cpu_and(i, mask, cpu_active_mask)
- cap += capacity_orig_of(i);
- return cap;
- }
- /*
- * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
- * of the CPU the task is running on rather rd's \Sum CPU capacity.
- */
- static inline unsigned long dl_bw_capacity(int i)
- {
- if (!sched_asym_cpucap_active() &&
- capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
- return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
- } else {
- RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
- "sched RCU must be held");
- return __dl_bw_capacity(cpu_rq(i)->rd->span);
- }
- }
- static inline bool dl_bw_visited(int cpu, u64 gen)
- {
- struct root_domain *rd = cpu_rq(cpu)->rd;
- if (rd->visit_gen == gen)
- return true;
- rd->visit_gen = gen;
- return false;
- }
- static inline
- void __dl_update(struct dl_bw *dl_b, s64 bw)
- {
- struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
- int i;
- RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
- "sched RCU must be held");
- for_each_cpu_and(i, rd->span, cpu_active_mask) {
- struct rq *rq = cpu_rq(i);
- rq->dl.extra_bw += bw;
- }
- }
- #else
- static inline struct dl_bw *dl_bw_of(int i)
- {
- return &cpu_rq(i)->dl.dl_bw;
- }
- static inline int dl_bw_cpus(int i)
- {
- return 1;
- }
- static inline unsigned long dl_bw_capacity(int i)
- {
- return SCHED_CAPACITY_SCALE;
- }
- static inline bool dl_bw_visited(int cpu, u64 gen)
- {
- return false;
- }
- static inline
- void __dl_update(struct dl_bw *dl_b, s64 bw)
- {
- struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
- dl->extra_bw += bw;
- }
- #endif
- static inline
- void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
- {
- dl_b->total_bw -= tsk_bw;
- __dl_update(dl_b, (s32)tsk_bw / cpus);
- }
- static inline
- void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
- {
- dl_b->total_bw += tsk_bw;
- __dl_update(dl_b, -((s32)tsk_bw / cpus));
- }
- static inline bool
- __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
- {
- return dl_b->bw != -1 &&
- cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
- }
- static inline
- void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
- {
- u64 old = dl_rq->running_bw;
- lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
- dl_rq->running_bw += dl_bw;
- SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
- SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
- /* kick cpufreq (see the comment in kernel/sched/sched.h). */
- cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
- }
- static inline
- void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
- {
- u64 old = dl_rq->running_bw;
- lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
- dl_rq->running_bw -= dl_bw;
- SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
- if (dl_rq->running_bw > old)
- dl_rq->running_bw = 0;
- /* kick cpufreq (see the comment in kernel/sched/sched.h). */
- cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
- }
- static inline
- void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
- {
- u64 old = dl_rq->this_bw;
- lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
- dl_rq->this_bw += dl_bw;
- SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
- }
- static inline
- void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
- {
- u64 old = dl_rq->this_bw;
- lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
- dl_rq->this_bw -= dl_bw;
- SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
- if (dl_rq->this_bw > old)
- dl_rq->this_bw = 0;
- SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
- }
- static inline
- void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
- {
- if (!dl_entity_is_special(dl_se))
- __add_rq_bw(dl_se->dl_bw, dl_rq);
- }
- static inline
- void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
- {
- if (!dl_entity_is_special(dl_se))
- __sub_rq_bw(dl_se->dl_bw, dl_rq);
- }
- static inline
- void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
- {
- if (!dl_entity_is_special(dl_se))
- __add_running_bw(dl_se->dl_bw, dl_rq);
- }
- static inline
- void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
- {
- if (!dl_entity_is_special(dl_se))
- __sub_running_bw(dl_se->dl_bw, dl_rq);
- }
- static void dl_change_utilization(struct task_struct *p, u64 new_bw)
- {
- struct rq *rq;
- WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
- if (task_on_rq_queued(p))
- return;
- rq = task_rq(p);
- if (p->dl.dl_non_contending) {
- sub_running_bw(&p->dl, &rq->dl);
- p->dl.dl_non_contending = 0;
- /*
- * If the timer handler is currently running and the
- * timer cannot be canceled, inactive_task_timer()
- * will see that dl_not_contending is not set, and
- * will not touch the rq's active utilization,
- * so we are still safe.
- */
- if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
- put_task_struct(p);
- }
- __sub_rq_bw(p->dl.dl_bw, &rq->dl);
- __add_rq_bw(new_bw, &rq->dl);
- }
- /*
- * The utilization of a task cannot be immediately removed from
- * the rq active utilization (running_bw) when the task blocks.
- * Instead, we have to wait for the so called "0-lag time".
- *
- * If a task blocks before the "0-lag time", a timer (the inactive
- * timer) is armed, and running_bw is decreased when the timer
- * fires.
- *
- * If the task wakes up again before the inactive timer fires,
- * the timer is canceled, whereas if the task wakes up after the
- * inactive timer fired (and running_bw has been decreased) the
- * task's utilization has to be added to running_bw again.
- * A flag in the deadline scheduling entity (dl_non_contending)
- * is used to avoid race conditions between the inactive timer handler
- * and task wakeups.
- *
- * The following diagram shows how running_bw is updated. A task is
- * "ACTIVE" when its utilization contributes to running_bw; an
- * "ACTIVE contending" task is in the TASK_RUNNING state, while an
- * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
- * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
- * time already passed, which does not contribute to running_bw anymore.
- * +------------------+
- * wakeup | ACTIVE |
- * +------------------>+ contending |
- * | add_running_bw | |
- * | +----+------+------+
- * | | ^
- * | dequeue | |
- * +--------+-------+ | |
- * | | t >= 0-lag | | wakeup
- * | INACTIVE |<---------------+ |
- * | | sub_running_bw | |
- * +--------+-------+ | |
- * ^ | |
- * | t < 0-lag | |
- * | | |
- * | V |
- * | +----+------+------+
- * | sub_running_bw | ACTIVE |
- * +-------------------+ |
- * inactive timer | non contending |
- * fired +------------------+
- *
- * The task_non_contending() function is invoked when a task
- * blocks, and checks if the 0-lag time already passed or
- * not (in the first case, it directly updates running_bw;
- * in the second case, it arms the inactive timer).
- *
- * The task_contending() function is invoked when a task wakes
- * up, and checks if the task is still in the "ACTIVE non contending"
- * state or not (in the second case, it updates running_bw).
- */
- static void task_non_contending(struct task_struct *p)
- {
- struct sched_dl_entity *dl_se = &p->dl;
- struct hrtimer *timer = &dl_se->inactive_timer;
- struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
- struct rq *rq = rq_of_dl_rq(dl_rq);
- s64 zerolag_time;
- /*
- * If this is a non-deadline task that has been boosted,
- * do nothing
- */
- if (dl_se->dl_runtime == 0)
- return;
- if (dl_entity_is_special(dl_se))
- return;
- WARN_ON(dl_se->dl_non_contending);
- zerolag_time = dl_se->deadline -
- div64_long((dl_se->runtime * dl_se->dl_period),
- dl_se->dl_runtime);
- /*
- * Using relative times instead of the absolute "0-lag time"
- * allows to simplify the code
- */
- zerolag_time -= rq_clock(rq);
- /*
- * If the "0-lag time" already passed, decrease the active
- * utilization now, instead of starting a timer
- */
- if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
- if (dl_task(p))
- sub_running_bw(dl_se, dl_rq);
- if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
- struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
- if (READ_ONCE(p->__state) == TASK_DEAD)
- sub_rq_bw(&p->dl, &rq->dl);
- raw_spin_lock(&dl_b->lock);
- __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
- raw_spin_unlock(&dl_b->lock);
- __dl_clear_params(p);
- }
- return;
- }
- dl_se->dl_non_contending = 1;
- get_task_struct(p);
- hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
- }
- static void task_contending(struct sched_dl_entity *dl_se, int flags)
- {
- struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
- /*
- * If this is a non-deadline task that has been boosted,
- * do nothing
- */
- if (dl_se->dl_runtime == 0)
- return;
- if (flags & ENQUEUE_MIGRATED)
- add_rq_bw(dl_se, dl_rq);
- if (dl_se->dl_non_contending) {
- dl_se->dl_non_contending = 0;
- /*
- * If the timer handler is currently running and the
- * timer cannot be canceled, inactive_task_timer()
- * will see that dl_not_contending is not set, and
- * will not touch the rq's active utilization,
- * so we are still safe.
- */
- if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
- put_task_struct(dl_task_of(dl_se));
- } else {
- /*
- * Since "dl_non_contending" is not set, the
- * task's utilization has already been removed from
- * active utilization (either when the task blocked,
- * when the "inactive timer" fired).
- * So, add it back.
- */
- add_running_bw(dl_se, dl_rq);
- }
- }
- static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
- {
- struct sched_dl_entity *dl_se = &p->dl;
- return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
- }
- static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
- void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
- {
- raw_spin_lock_init(&dl_b->dl_runtime_lock);
- dl_b->dl_period = period;
- dl_b->dl_runtime = runtime;
- }
- void init_dl_bw(struct dl_bw *dl_b)
- {
- raw_spin_lock_init(&dl_b->lock);
- if (global_rt_runtime() == RUNTIME_INF)
- dl_b->bw = -1;
- else
- dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
- dl_b->total_bw = 0;
- }
- void init_dl_rq(struct dl_rq *dl_rq)
- {
- dl_rq->root = RB_ROOT_CACHED;
- #ifdef CONFIG_SMP
- /* zero means no -deadline tasks */
- dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
- dl_rq->dl_nr_migratory = 0;
- dl_rq->overloaded = 0;
- dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
- #else
- init_dl_bw(&dl_rq->dl_bw);
- #endif
- dl_rq->running_bw = 0;
- dl_rq->this_bw = 0;
- init_dl_rq_bw_ratio(dl_rq);
- }
- #ifdef CONFIG_SMP
- static inline int dl_overloaded(struct rq *rq)
- {
- return atomic_read(&rq->rd->dlo_count);
- }
- static inline void dl_set_overload(struct rq *rq)
- {
- if (!rq->online)
- return;
- cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
- /*
- * Must be visible before the overload count is
- * set (as in sched_rt.c).
- *
- * Matched by the barrier in pull_dl_task().
- */
- smp_wmb();
- atomic_inc(&rq->rd->dlo_count);
- }
- static inline void dl_clear_overload(struct rq *rq)
- {
- if (!rq->online)
- return;
- atomic_dec(&rq->rd->dlo_count);
- cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
- }
- static void update_dl_migration(struct dl_rq *dl_rq)
- {
- if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
- if (!dl_rq->overloaded) {
- dl_set_overload(rq_of_dl_rq(dl_rq));
- dl_rq->overloaded = 1;
- }
- } else if (dl_rq->overloaded) {
- dl_clear_overload(rq_of_dl_rq(dl_rq));
- dl_rq->overloaded = 0;
- }
- }
- static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
- {
- struct task_struct *p = dl_task_of(dl_se);
- if (p->nr_cpus_allowed > 1)
- dl_rq->dl_nr_migratory++;
- update_dl_migration(dl_rq);
- }
- static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
- {
- struct task_struct *p = dl_task_of(dl_se);
- if (p->nr_cpus_allowed > 1)
- dl_rq->dl_nr_migratory--;
- update_dl_migration(dl_rq);
- }
- #define __node_2_pdl(node) \
- rb_entry((node), struct task_struct, pushable_dl_tasks)
- static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
- {
- return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
- }
- /*
- * The list of pushable -deadline task is not a plist, like in
- * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
- */
- static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
- {
- struct rb_node *leftmost;
- WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
- leftmost = rb_add_cached(&p->pushable_dl_tasks,
- &rq->dl.pushable_dl_tasks_root,
- __pushable_less);
- if (leftmost)
- rq->dl.earliest_dl.next = p->dl.deadline;
- }
- static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
- {
- struct dl_rq *dl_rq = &rq->dl;
- struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
- struct rb_node *leftmost;
- if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
- return;
- leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
- if (leftmost)
- dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
- RB_CLEAR_NODE(&p->pushable_dl_tasks);
- }
- static inline int has_pushable_dl_tasks(struct rq *rq)
- {
- return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
- }
- static int push_dl_task(struct rq *rq);
- static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
- {
- return rq->online && dl_task(prev);
- }
- static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
- static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
- static void push_dl_tasks(struct rq *);
- static void pull_dl_task(struct rq *);
- static inline void deadline_queue_push_tasks(struct rq *rq)
- {
- if (!has_pushable_dl_tasks(rq))
- return;
- queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
- }
- static inline void deadline_queue_pull_task(struct rq *rq)
- {
- queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
- }
- static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
- static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
- {
- struct rq *later_rq = NULL;
- struct dl_bw *dl_b;
- later_rq = find_lock_later_rq(p, rq);
- if (!later_rq) {
- int cpu;
- /*
- * If we cannot preempt any rq, fall back to pick any
- * online CPU:
- */
- cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
- if (cpu >= nr_cpu_ids) {
- /*
- * Failed to find any suitable CPU.
- * The task will never come back!
- */
- WARN_ON_ONCE(dl_bandwidth_enabled());
- /*
- * If admission control is disabled we
- * try a little harder to let the task
- * run.
- */
- cpu = cpumask_any(cpu_active_mask);
- }
- later_rq = cpu_rq(cpu);
- double_lock_balance(rq, later_rq);
- }
- if (p->dl.dl_non_contending || p->dl.dl_throttled) {
- /*
- * Inactive timer is armed (or callback is running, but
- * waiting for us to release rq locks). In any case, when it
- * will fire (or continue), it will see running_bw of this
- * task migrated to later_rq (and correctly handle it).
- */
- sub_running_bw(&p->dl, &rq->dl);
- sub_rq_bw(&p->dl, &rq->dl);
- add_rq_bw(&p->dl, &later_rq->dl);
- add_running_bw(&p->dl, &later_rq->dl);
- } else {
- sub_rq_bw(&p->dl, &rq->dl);
- add_rq_bw(&p->dl, &later_rq->dl);
- }
- /*
- * And we finally need to fixup root_domain(s) bandwidth accounting,
- * since p is still hanging out in the old (now moved to default) root
- * domain.
- */
- dl_b = &rq->rd->dl_bw;
- raw_spin_lock(&dl_b->lock);
- __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
- raw_spin_unlock(&dl_b->lock);
- dl_b = &later_rq->rd->dl_bw;
- raw_spin_lock(&dl_b->lock);
- __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
- raw_spin_unlock(&dl_b->lock);
- set_task_cpu(p, later_rq->cpu);
- double_unlock_balance(later_rq, rq);
- return later_rq;
- }
- #else
- static inline
- void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
- {
- }
- static inline
- void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
- {
- }
- static inline
- void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
- {
- }
- static inline
- void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
- {
- }
- static inline void deadline_queue_push_tasks(struct rq *rq)
- {
- }
- static inline void deadline_queue_pull_task(struct rq *rq)
- {
- }
- #endif /* CONFIG_SMP */
- static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
- static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
- static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
- static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
- struct rq *rq)
- {
- /* for non-boosted task, pi_of(dl_se) == dl_se */
- dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
- dl_se->runtime = pi_of(dl_se)->dl_runtime;
- }
- /*
- * We are being explicitly informed that a new instance is starting,
- * and this means that:
- * - the absolute deadline of the entity has to be placed at
- * current time + relative deadline;
- * - the runtime of the entity has to be set to the maximum value.
- *
- * The capability of specifying such event is useful whenever a -deadline
- * entity wants to (try to!) synchronize its behaviour with the scheduler's
- * one, and to (try to!) reconcile itself with its own scheduling
- * parameters.
- */
- static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
- {
- struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
- struct rq *rq = rq_of_dl_rq(dl_rq);
- WARN_ON(is_dl_boosted(dl_se));
- WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
- /*
- * We are racing with the deadline timer. So, do nothing because
- * the deadline timer handler will take care of properly recharging
- * the runtime and postponing the deadline
- */
- if (dl_se->dl_throttled)
- return;
- /*
- * We use the regular wall clock time to set deadlines in the
- * future; in fact, we must consider execution overheads (time
- * spent on hardirq context, etc.).
- */
- replenish_dl_new_period(dl_se, rq);
- }
- /*
- * Pure Earliest Deadline First (EDF) scheduling does not deal with the
- * possibility of a entity lasting more than what it declared, and thus
- * exhausting its runtime.
- *
- * Here we are interested in making runtime overrun possible, but we do
- * not want a entity which is misbehaving to affect the scheduling of all
- * other entities.
- * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
- * is used, in order to confine each entity within its own bandwidth.
- *
- * This function deals exactly with that, and ensures that when the runtime
- * of a entity is replenished, its deadline is also postponed. That ensures
- * the overrunning entity can't interfere with other entity in the system and
- * can't make them miss their deadlines. Reasons why this kind of overruns
- * could happen are, typically, a entity voluntarily trying to overcome its
- * runtime, or it just underestimated it during sched_setattr().
- */
- static void replenish_dl_entity(struct sched_dl_entity *dl_se)
- {
- struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
- struct rq *rq = rq_of_dl_rq(dl_rq);
- WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
- /*
- * This could be the case for a !-dl task that is boosted.
- * Just go with full inherited parameters.
- */
- if (dl_se->dl_deadline == 0)
- replenish_dl_new_period(dl_se, rq);
- if (dl_se->dl_yielded && dl_se->runtime > 0)
- dl_se->runtime = 0;
- /*
- * We keep moving the deadline away until we get some
- * available runtime for the entity. This ensures correct
- * handling of situations where the runtime overrun is
- * arbitrary large.
- */
- while (dl_se->runtime <= 0) {
- dl_se->deadline += pi_of(dl_se)->dl_period;
- dl_se->runtime += pi_of(dl_se)->dl_runtime;
- }
- /*
- * At this point, the deadline really should be "in
- * the future" with respect to rq->clock. If it's
- * not, we are, for some reason, lagging too much!
- * Anyway, after having warn userspace abut that,
- * we still try to keep the things running by
- * resetting the deadline and the budget of the
- * entity.
- */
- if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
- printk_deferred_once("sched: DL replenish lagged too much\n");
- replenish_dl_new_period(dl_se, rq);
- }
- if (dl_se->dl_yielded)
- dl_se->dl_yielded = 0;
- if (dl_se->dl_throttled)
- dl_se->dl_throttled = 0;
- }
- /*
- * Here we check if --at time t-- an entity (which is probably being
- * [re]activated or, in general, enqueued) can use its remaining runtime
- * and its current deadline _without_ exceeding the bandwidth it is
- * assigned (function returns true if it can't). We are in fact applying
- * one of the CBS rules: when a task wakes up, if the residual runtime
- * over residual deadline fits within the allocated bandwidth, then we
- * can keep the current (absolute) deadline and residual budget without
- * disrupting the schedulability of the system. Otherwise, we should
- * refill the runtime and set the deadline a period in the future,
- * because keeping the current (absolute) deadline of the task would
- * result in breaking guarantees promised to other tasks (refer to
- * Documentation/scheduler/sched-deadline.rst for more information).
- *
- * This function returns true if:
- *
- * runtime / (deadline - t) > dl_runtime / dl_deadline ,
- *
- * IOW we can't recycle current parameters.
- *
- * Notice that the bandwidth check is done against the deadline. For
- * task with deadline equal to period this is the same of using
- * dl_period instead of dl_deadline in the equation above.
- */
- static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
- {
- u64 left, right;
- /*
- * left and right are the two sides of the equation above,
- * after a bit of shuffling to use multiplications instead
- * of divisions.
- *
- * Note that none of the time values involved in the two
- * multiplications are absolute: dl_deadline and dl_runtime
- * are the relative deadline and the maximum runtime of each
- * instance, runtime is the runtime left for the last instance
- * and (deadline - t), since t is rq->clock, is the time left
- * to the (absolute) deadline. Even if overflowing the u64 type
- * is very unlikely to occur in both cases, here we scale down
- * as we want to avoid that risk at all. Scaling down by 10
- * means that we reduce granularity to 1us. We are fine with it,
- * since this is only a true/false check and, anyway, thinking
- * of anything below microseconds resolution is actually fiction
- * (but still we want to give the user that illusion >;).
- */
- left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
- right = ((dl_se->deadline - t) >> DL_SCALE) *
- (pi_of(dl_se)->dl_runtime >> DL_SCALE);
- return dl_time_before(right, left);
- }
- /*
- * Revised wakeup rule [1]: For self-suspending tasks, rather then
- * re-initializing task's runtime and deadline, the revised wakeup
- * rule adjusts the task's runtime to avoid the task to overrun its
- * density.
- *
- * Reasoning: a task may overrun the density if:
- * runtime / (deadline - t) > dl_runtime / dl_deadline
- *
- * Therefore, runtime can be adjusted to:
- * runtime = (dl_runtime / dl_deadline) * (deadline - t)
- *
- * In such way that runtime will be equal to the maximum density
- * the task can use without breaking any rule.
- *
- * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
- * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
- */
- static void
- update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
- {
- u64 laxity = dl_se->deadline - rq_clock(rq);
- /*
- * If the task has deadline < period, and the deadline is in the past,
- * it should already be throttled before this check.
- *
- * See update_dl_entity() comments for further details.
- */
- WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
- dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
- }
- /*
- * Regarding the deadline, a task with implicit deadline has a relative
- * deadline == relative period. A task with constrained deadline has a
- * relative deadline <= relative period.
- *
- * We support constrained deadline tasks. However, there are some restrictions
- * applied only for tasks which do not have an implicit deadline. See
- * update_dl_entity() to know more about such restrictions.
- *
- * The dl_is_implicit() returns true if the task has an implicit deadline.
- */
- static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
- {
- return dl_se->dl_deadline == dl_se->dl_period;
- }
- /*
- * When a deadline entity is placed in the runqueue, its runtime and deadline
- * might need to be updated. This is done by a CBS wake up rule. There are two
- * different rules: 1) the original CBS; and 2) the Revisited CBS.
- *
- * When the task is starting a new period, the Original CBS is used. In this
- * case, the runtime is replenished and a new absolute deadline is set.
- *
- * When a task is queued before the begin of the next period, using the
- * remaining runtime and deadline could make the entity to overflow, see
- * dl_entity_overflow() to find more about runtime overflow. When such case
- * is detected, the runtime and deadline need to be updated.
- *
- * If the task has an implicit deadline, i.e., deadline == period, the Original
- * CBS is applied. the runtime is replenished and a new absolute deadline is
- * set, as in the previous cases.
- *
- * However, the Original CBS does not work properly for tasks with
- * deadline < period, which are said to have a constrained deadline. By
- * applying the Original CBS, a constrained deadline task would be able to run
- * runtime/deadline in a period. With deadline < period, the task would
- * overrun the runtime/period allowed bandwidth, breaking the admission test.
- *
- * In order to prevent this misbehave, the Revisited CBS is used for
- * constrained deadline tasks when a runtime overflow is detected. In the
- * Revisited CBS, rather than replenishing & setting a new absolute deadline,
- * the remaining runtime of the task is reduced to avoid runtime overflow.
- * Please refer to the comments update_dl_revised_wakeup() function to find
- * more about the Revised CBS rule.
- */
- static void update_dl_entity(struct sched_dl_entity *dl_se)
- {
- struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
- struct rq *rq = rq_of_dl_rq(dl_rq);
- if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
- dl_entity_overflow(dl_se, rq_clock(rq))) {
- if (unlikely(!dl_is_implicit(dl_se) &&
- !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
- !is_dl_boosted(dl_se))) {
- update_dl_revised_wakeup(dl_se, rq);
- return;
- }
- replenish_dl_new_period(dl_se, rq);
- }
- }
- static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
- {
- return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
- }
- /*
- * If the entity depleted all its runtime, and if we want it to sleep
- * while waiting for some new execution time to become available, we
- * set the bandwidth replenishment timer to the replenishment instant
- * and try to activate it.
- *
- * Notice that it is important for the caller to know if the timer
- * actually started or not (i.e., the replenishment instant is in
- * the future or in the past).
- */
- static int start_dl_timer(struct task_struct *p)
- {
- struct sched_dl_entity *dl_se = &p->dl;
- struct hrtimer *timer = &dl_se->dl_timer;
- struct rq *rq = task_rq(p);
- ktime_t now, act;
- s64 delta;
- lockdep_assert_rq_held(rq);
- /*
- * We want the timer to fire at the deadline, but considering
- * that it is actually coming from rq->clock and not from
- * hrtimer's time base reading.
- */
- act = ns_to_ktime(dl_next_period(dl_se));
- now = hrtimer_cb_get_time(timer);
- delta = ktime_to_ns(now) - rq_clock(rq);
- act = ktime_add_ns(act, delta);
- /*
- * If the expiry time already passed, e.g., because the value
- * chosen as the deadline is too small, don't even try to
- * start the timer in the past!
- */
- if (ktime_us_delta(act, now) < 0)
- return 0;
- /*
- * !enqueued will guarantee another callback; even if one is already in
- * progress. This ensures a balanced {get,put}_task_struct().
- *
- * The race against __run_timer() clearing the enqueued state is
- * harmless because we're holding task_rq()->lock, therefore the timer
- * expiring after we've done the check will wait on its task_rq_lock()
- * and observe our state.
- */
- if (!hrtimer_is_queued(timer)) {
- get_task_struct(p);
- hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
- }
- return 1;
- }
- /*
- * This is the bandwidth enforcement timer callback. If here, we know
- * a task is not on its dl_rq, since the fact that the timer was running
- * means the task is throttled and needs a runtime replenishment.
- *
- * However, what we actually do depends on the fact the task is active,
- * (it is on its rq) or has been removed from there by a call to
- * dequeue_task_dl(). In the former case we must issue the runtime
- * replenishment and add the task back to the dl_rq; in the latter, we just
- * do nothing but clearing dl_throttled, so that runtime and deadline
- * updating (and the queueing back to dl_rq) will be done by the
- * next call to enqueue_task_dl().
- */
- static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
- {
- struct sched_dl_entity *dl_se = container_of(timer,
- struct sched_dl_entity,
- dl_timer);
- struct task_struct *p = dl_task_of(dl_se);
- struct rq_flags rf;
- struct rq *rq;
- rq = task_rq_lock(p, &rf);
- /*
- * The task might have changed its scheduling policy to something
- * different than SCHED_DEADLINE (through switched_from_dl()).
- */
- if (!dl_task(p))
- goto unlock;
- /*
- * The task might have been boosted by someone else and might be in the
- * boosting/deboosting path, its not throttled.
- */
- if (is_dl_boosted(dl_se))
- goto unlock;
- /*
- * Spurious timer due to start_dl_timer() race; or we already received
- * a replenishment from rt_mutex_setprio().
- */
- if (!dl_se->dl_throttled)
- goto unlock;
- sched_clock_tick();
- update_rq_clock(rq);
- /*
- * If the throttle happened during sched-out; like:
- *
- * schedule()
- * deactivate_task()
- * dequeue_task_dl()
- * update_curr_dl()
- * start_dl_timer()
- * __dequeue_task_dl()
- * prev->on_rq = 0;
- *
- * We can be both throttled and !queued. Replenish the counter
- * but do not enqueue -- wait for our wakeup to do that.
- */
- if (!task_on_rq_queued(p)) {
- replenish_dl_entity(dl_se);
- goto unlock;
- }
- #ifdef CONFIG_SMP
- if (unlikely(!rq->online)) {
- /*
- * If the runqueue is no longer available, migrate the
- * task elsewhere. This necessarily changes rq.
- */
- lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
- rq = dl_task_offline_migration(rq, p);
- rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
- update_rq_clock(rq);
- /*
- * Now that the task has been migrated to the new RQ and we
- * have that locked, proceed as normal and enqueue the task
- * there.
- */
- }
- #endif
- enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
- if (dl_task(rq->curr))
- check_preempt_curr_dl(rq, p, 0);
- else
- resched_curr(rq);
- #ifdef CONFIG_SMP
- /*
- * Queueing this task back might have overloaded rq, check if we need
- * to kick someone away.
- */
- if (has_pushable_dl_tasks(rq)) {
- /*
- * Nothing relies on rq->lock after this, so its safe to drop
- * rq->lock.
- */
- rq_unpin_lock(rq, &rf);
- push_dl_task(rq);
- rq_repin_lock(rq, &rf);
- }
- #endif
- unlock:
- task_rq_unlock(rq, p, &rf);
- /*
- * This can free the task_struct, including this hrtimer, do not touch
- * anything related to that after this.
- */
- put_task_struct(p);
- return HRTIMER_NORESTART;
- }
- void init_dl_task_timer(struct sched_dl_entity *dl_se)
- {
- struct hrtimer *timer = &dl_se->dl_timer;
- hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
- timer->function = dl_task_timer;
- }
- /*
- * During the activation, CBS checks if it can reuse the current task's
- * runtime and period. If the deadline of the task is in the past, CBS
- * cannot use the runtime, and so it replenishes the task. This rule
- * works fine for implicit deadline tasks (deadline == period), and the
- * CBS was designed for implicit deadline tasks. However, a task with
- * constrained deadline (deadline < period) might be awakened after the
- * deadline, but before the next period. In this case, replenishing the
- * task would allow it to run for runtime / deadline. As in this case
- * deadline < period, CBS enables a task to run for more than the
- * runtime / period. In a very loaded system, this can cause a domino
- * effect, making other tasks miss their deadlines.
- *
- * To avoid this problem, in the activation of a constrained deadline
- * task after the deadline but before the next period, throttle the
- * task and set the replenishing timer to the begin of the next period,
- * unless it is boosted.
- */
- static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
- {
- struct task_struct *p = dl_task_of(dl_se);
- struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
- if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
- dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
- if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
- return;
- dl_se->dl_throttled = 1;
- if (dl_se->runtime > 0)
- dl_se->runtime = 0;
- }
- }
- static
- int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
- {
- return (dl_se->runtime <= 0);
- }
- /*
- * This function implements the GRUB accounting rule:
- * according to the GRUB reclaiming algorithm, the runtime is
- * not decreased as "dq = -dt", but as
- * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
- * where u is the utilization of the task, Umax is the maximum reclaimable
- * utilization, Uinact is the (per-runqueue) inactive utilization, computed
- * as the difference between the "total runqueue utilization" and the
- * runqueue active utilization, and Uextra is the (per runqueue) extra
- * reclaimable utilization.
- * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
- * multiplied by 2^BW_SHIFT, the result has to be shifted right by
- * BW_SHIFT.
- * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT,
- * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
- * Since delta is a 64 bit variable, to have an overflow its value
- * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
- * So, overflow is not an issue here.
- */
- static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
- {
- u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
- u64 u_act;
- u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
- /*
- * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
- * we compare u_inact + rq->dl.extra_bw with
- * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
- * u_inact + rq->dl.extra_bw can be larger than
- * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
- * leading to wrong results)
- */
- if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
- u_act = u_act_min;
- else
- u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
- return (delta * u_act) >> BW_SHIFT;
- }
- /*
- * Update the current task's runtime statistics (provided it is still
- * a -deadline task and has not been removed from the dl_rq).
- */
- static void update_curr_dl(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- struct sched_dl_entity *dl_se = &curr->dl;
- u64 delta_exec, scaled_delta_exec;
- int cpu = cpu_of(rq);
- u64 now;
- if (!dl_task(curr) || !on_dl_rq(dl_se))
- return;
- /*
- * Consumed budget is computed considering the time as
- * observed by schedulable tasks (excluding time spent
- * in hardirq context, etc.). Deadlines are instead
- * computed using hard walltime. This seems to be the more
- * natural solution, but the full ramifications of this
- * approach need further study.
- */
- now = rq_clock_task(rq);
- delta_exec = now - curr->se.exec_start;
- if (unlikely((s64)delta_exec <= 0)) {
- if (unlikely(dl_se->dl_yielded))
- goto throttle;
- return;
- }
- schedstat_set(curr->stats.exec_max,
- max(curr->stats.exec_max, delta_exec));
- trace_sched_stat_runtime(curr, delta_exec, 0);
- update_current_exec_runtime(curr, now, delta_exec);
- if (dl_entity_is_special(dl_se))
- return;
- /*
- * For tasks that participate in GRUB, we implement GRUB-PA: the
- * spare reclaimed bandwidth is used to clock down frequency.
- *
- * For the others, we still need to scale reservation parameters
- * according to current frequency and CPU maximum capacity.
- */
- if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
- scaled_delta_exec = grub_reclaim(delta_exec,
- rq,
- &curr->dl);
- } else {
- unsigned long scale_freq = arch_scale_freq_capacity(cpu);
- unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
- scaled_delta_exec = cap_scale(delta_exec, scale_freq);
- scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
- }
- dl_se->runtime -= scaled_delta_exec;
- throttle:
- if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
- dl_se->dl_throttled = 1;
- /* If requested, inform the user about runtime overruns. */
- if (dl_runtime_exceeded(dl_se) &&
- (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
- dl_se->dl_overrun = 1;
- __dequeue_task_dl(rq, curr, 0);
- if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
- enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
- if (!is_leftmost(curr, &rq->dl))
- resched_curr(rq);
- }
- /*
- * Because -- for now -- we share the rt bandwidth, we need to
- * account our runtime there too, otherwise actual rt tasks
- * would be able to exceed the shared quota.
- *
- * Account to the root rt group for now.
- *
- * The solution we're working towards is having the RT groups scheduled
- * using deadline servers -- however there's a few nasties to figure
- * out before that can happen.
- */
- if (rt_bandwidth_enabled()) {
- struct rt_rq *rt_rq = &rq->rt;
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- /*
- * We'll let actual RT tasks worry about the overflow here, we
- * have our own CBS to keep us inline; only account when RT
- * bandwidth is relevant.
- */
- if (sched_rt_bandwidth_account(rt_rq))
- rt_rq->rt_time += delta_exec;
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- }
- }
- static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
- {
- struct sched_dl_entity *dl_se = container_of(timer,
- struct sched_dl_entity,
- inactive_timer);
- struct task_struct *p = dl_task_of(dl_se);
- struct rq_flags rf;
- struct rq *rq;
- rq = task_rq_lock(p, &rf);
- sched_clock_tick();
- update_rq_clock(rq);
- if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
- struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
- if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
- sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
- sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
- dl_se->dl_non_contending = 0;
- }
- raw_spin_lock(&dl_b->lock);
- __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
- raw_spin_unlock(&dl_b->lock);
- __dl_clear_params(p);
- goto unlock;
- }
- if (dl_se->dl_non_contending == 0)
- goto unlock;
- sub_running_bw(dl_se, &rq->dl);
- dl_se->dl_non_contending = 0;
- unlock:
- task_rq_unlock(rq, p, &rf);
- put_task_struct(p);
- return HRTIMER_NORESTART;
- }
- void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
- {
- struct hrtimer *timer = &dl_se->inactive_timer;
- hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
- timer->function = inactive_task_timer;
- }
- #define __node_2_dle(node) \
- rb_entry((node), struct sched_dl_entity, rb_node)
- #ifdef CONFIG_SMP
- static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
- {
- struct rq *rq = rq_of_dl_rq(dl_rq);
- if (dl_rq->earliest_dl.curr == 0 ||
- dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
- if (dl_rq->earliest_dl.curr == 0)
- cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
- dl_rq->earliest_dl.curr = deadline;
- cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
- }
- }
- static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
- {
- struct rq *rq = rq_of_dl_rq(dl_rq);
- /*
- * Since we may have removed our earliest (and/or next earliest)
- * task we must recompute them.
- */
- if (!dl_rq->dl_nr_running) {
- dl_rq->earliest_dl.curr = 0;
- dl_rq->earliest_dl.next = 0;
- cpudl_clear(&rq->rd->cpudl, rq->cpu);
- cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
- } else {
- struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
- struct sched_dl_entity *entry = __node_2_dle(leftmost);
- dl_rq->earliest_dl.curr = entry->deadline;
- cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
- }
- }
- #else
- static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
- static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
- #endif /* CONFIG_SMP */
- static inline
- void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
- {
- int prio = dl_task_of(dl_se)->prio;
- u64 deadline = dl_se->deadline;
- WARN_ON(!dl_prio(prio));
- dl_rq->dl_nr_running++;
- add_nr_running(rq_of_dl_rq(dl_rq), 1);
- inc_dl_deadline(dl_rq, deadline);
- inc_dl_migration(dl_se, dl_rq);
- }
- static inline
- void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
- {
- int prio = dl_task_of(dl_se)->prio;
- WARN_ON(!dl_prio(prio));
- WARN_ON(!dl_rq->dl_nr_running);
- dl_rq->dl_nr_running--;
- sub_nr_running(rq_of_dl_rq(dl_rq), 1);
- dec_dl_deadline(dl_rq, dl_se->deadline);
- dec_dl_migration(dl_se, dl_rq);
- }
- static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
- {
- return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
- }
- static inline struct sched_statistics *
- __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
- {
- return &dl_task_of(dl_se)->stats;
- }
- static inline void
- update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
- {
- struct sched_statistics *stats;
- if (!schedstat_enabled())
- return;
- stats = __schedstats_from_dl_se(dl_se);
- __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
- }
- static inline void
- update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
- {
- struct sched_statistics *stats;
- if (!schedstat_enabled())
- return;
- stats = __schedstats_from_dl_se(dl_se);
- __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
- }
- static inline void
- update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
- {
- struct sched_statistics *stats;
- if (!schedstat_enabled())
- return;
- stats = __schedstats_from_dl_se(dl_se);
- __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
- }
- static inline void
- update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
- int flags)
- {
- if (!schedstat_enabled())
- return;
- if (flags & ENQUEUE_WAKEUP)
- update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
- }
- static inline void
- update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
- int flags)
- {
- struct task_struct *p = dl_task_of(dl_se);
- if (!schedstat_enabled())
- return;
- if ((flags & DEQUEUE_SLEEP)) {
- unsigned int state;
- state = READ_ONCE(p->__state);
- if (state & TASK_INTERRUPTIBLE)
- __schedstat_set(p->stats.sleep_start,
- rq_clock(rq_of_dl_rq(dl_rq)));
- if (state & TASK_UNINTERRUPTIBLE)
- __schedstat_set(p->stats.block_start,
- rq_clock(rq_of_dl_rq(dl_rq)));
- }
- }
- static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
- {
- struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
- WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
- rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
- inc_dl_tasks(dl_se, dl_rq);
- }
- static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
- {
- struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
- if (RB_EMPTY_NODE(&dl_se->rb_node))
- return;
- rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
- RB_CLEAR_NODE(&dl_se->rb_node);
- dec_dl_tasks(dl_se, dl_rq);
- }
- static void
- enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
- {
- WARN_ON_ONCE(on_dl_rq(dl_se));
- update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
- /*
- * If this is a wakeup or a new instance, the scheduling
- * parameters of the task might need updating. Otherwise,
- * we want a replenishment of its runtime.
- */
- if (flags & ENQUEUE_WAKEUP) {
- task_contending(dl_se, flags);
- update_dl_entity(dl_se);
- } else if (flags & ENQUEUE_REPLENISH) {
- replenish_dl_entity(dl_se);
- } else if ((flags & ENQUEUE_RESTORE) &&
- dl_time_before(dl_se->deadline,
- rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
- setup_new_dl_entity(dl_se);
- }
- __enqueue_dl_entity(dl_se);
- }
- static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
- {
- __dequeue_dl_entity(dl_se);
- }
- static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
- {
- if (is_dl_boosted(&p->dl)) {
- /*
- * Because of delays in the detection of the overrun of a
- * thread's runtime, it might be the case that a thread
- * goes to sleep in a rt mutex with negative runtime. As
- * a consequence, the thread will be throttled.
- *
- * While waiting for the mutex, this thread can also be
- * boosted via PI, resulting in a thread that is throttled
- * and boosted at the same time.
- *
- * In this case, the boost overrides the throttle.
- */
- if (p->dl.dl_throttled) {
- /*
- * The replenish timer needs to be canceled. No
- * problem if it fires concurrently: boosted threads
- * are ignored in dl_task_timer().
- */
- hrtimer_try_to_cancel(&p->dl.dl_timer);
- p->dl.dl_throttled = 0;
- }
- } else if (!dl_prio(p->normal_prio)) {
- /*
- * Special case in which we have a !SCHED_DEADLINE task that is going
- * to be deboosted, but exceeds its runtime while doing so. No point in
- * replenishing it, as it's going to return back to its original
- * scheduling class after this. If it has been throttled, we need to
- * clear the flag, otherwise the task may wake up as throttled after
- * being boosted again with no means to replenish the runtime and clear
- * the throttle.
- */
- p->dl.dl_throttled = 0;
- if (!(flags & ENQUEUE_REPLENISH))
- printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
- task_pid_nr(p));
- return;
- }
- /*
- * Check if a constrained deadline task was activated
- * after the deadline but before the next period.
- * If that is the case, the task will be throttled and
- * the replenishment timer will be set to the next period.
- */
- if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
- dl_check_constrained_dl(&p->dl);
- if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
- add_rq_bw(&p->dl, &rq->dl);
- add_running_bw(&p->dl, &rq->dl);
- }
- /*
- * If p is throttled, we do not enqueue it. In fact, if it exhausted
- * its budget it needs a replenishment and, since it now is on
- * its rq, the bandwidth timer callback (which clearly has not
- * run yet) will take care of this.
- * However, the active utilization does not depend on the fact
- * that the task is on the runqueue or not (but depends on the
- * task's state - in GRUB parlance, "inactive" vs "active contending").
- * In other words, even if a task is throttled its utilization must
- * be counted in the active utilization; hence, we need to call
- * add_running_bw().
- */
- if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
- if (flags & ENQUEUE_WAKEUP)
- task_contending(&p->dl, flags);
- return;
- }
- check_schedstat_required();
- update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
- enqueue_dl_entity(&p->dl, flags);
- if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
- enqueue_pushable_dl_task(rq, p);
- }
- static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
- {
- update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
- dequeue_dl_entity(&p->dl);
- dequeue_pushable_dl_task(rq, p);
- }
- static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
- {
- update_curr_dl(rq);
- __dequeue_task_dl(rq, p, flags);
- if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
- sub_running_bw(&p->dl, &rq->dl);
- sub_rq_bw(&p->dl, &rq->dl);
- }
- /*
- * This check allows to start the inactive timer (or to immediately
- * decrease the active utilization, if needed) in two cases:
- * when the task blocks and when it is terminating
- * (p->state == TASK_DEAD). We can handle the two cases in the same
- * way, because from GRUB's point of view the same thing is happening
- * (the task moves from "active contending" to "active non contending"
- * or "inactive")
- */
- if (flags & DEQUEUE_SLEEP)
- task_non_contending(p);
- }
- /*
- * Yield task semantic for -deadline tasks is:
- *
- * get off from the CPU until our next instance, with
- * a new runtime. This is of little use now, since we
- * don't have a bandwidth reclaiming mechanism. Anyway,
- * bandwidth reclaiming is planned for the future, and
- * yield_task_dl will indicate that some spare budget
- * is available for other task instances to use it.
- */
- static void yield_task_dl(struct rq *rq)
- {
- /*
- * We make the task go to sleep until its current deadline by
- * forcing its runtime to zero. This way, update_curr_dl() stops
- * it and the bandwidth timer will wake it up and will give it
- * new scheduling parameters (thanks to dl_yielded=1).
- */
- rq->curr->dl.dl_yielded = 1;
- update_rq_clock(rq);
- update_curr_dl(rq);
- /*
- * Tell update_rq_clock() that we've just updated,
- * so we don't do microscopic update in schedule()
- * and double the fastpath cost.
- */
- rq_clock_skip_update(rq);
- }
- #ifdef CONFIG_SMP
- static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
- struct rq *rq)
- {
- return (!rq->dl.dl_nr_running ||
- dl_time_before(p->dl.deadline,
- rq->dl.earliest_dl.curr));
- }
- static int find_later_rq(struct task_struct *task);
- static int
- select_task_rq_dl(struct task_struct *p, int cpu, int flags)
- {
- struct task_struct *curr;
- bool select_rq;
- struct rq *rq;
- if (!(flags & WF_TTWU))
- goto out;
- rq = cpu_rq(cpu);
- rcu_read_lock();
- curr = READ_ONCE(rq->curr); /* unlocked access */
- /*
- * If we are dealing with a -deadline task, we must
- * decide where to wake it up.
- * If it has a later deadline and the current task
- * on this rq can't move (provided the waking task
- * can!) we prefer to send it somewhere else. On the
- * other hand, if it has a shorter deadline, we
- * try to make it stay here, it might be important.
- */
- select_rq = unlikely(dl_task(curr)) &&
- (curr->nr_cpus_allowed < 2 ||
- !dl_entity_preempt(&p->dl, &curr->dl)) &&
- p->nr_cpus_allowed > 1;
- /*
- * Take the capacity of the CPU into account to
- * ensure it fits the requirement of the task.
- */
- if (sched_asym_cpucap_active())
- select_rq |= !dl_task_fits_capacity(p, cpu);
- if (select_rq) {
- int target = find_later_rq(p);
- if (target != -1 &&
- dl_task_is_earliest_deadline(p, cpu_rq(target)))
- cpu = target;
- }
- rcu_read_unlock();
- out:
- return cpu;
- }
- static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
- {
- struct rq_flags rf;
- struct rq *rq;
- if (READ_ONCE(p->__state) != TASK_WAKING)
- return;
- rq = task_rq(p);
- /*
- * Since p->state == TASK_WAKING, set_task_cpu() has been called
- * from try_to_wake_up(). Hence, p->pi_lock is locked, but
- * rq->lock is not... So, lock it
- */
- rq_lock(rq, &rf);
- if (p->dl.dl_non_contending) {
- update_rq_clock(rq);
- sub_running_bw(&p->dl, &rq->dl);
- p->dl.dl_non_contending = 0;
- /*
- * If the timer handler is currently running and the
- * timer cannot be canceled, inactive_task_timer()
- * will see that dl_not_contending is not set, and
- * will not touch the rq's active utilization,
- * so we are still safe.
- */
- if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
- put_task_struct(p);
- }
- sub_rq_bw(&p->dl, &rq->dl);
- rq_unlock(rq, &rf);
- }
- static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
- {
- /*
- * Current can't be migrated, useless to reschedule,
- * let's hope p can move out.
- */
- if (rq->curr->nr_cpus_allowed == 1 ||
- !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
- return;
- /*
- * p is migratable, so let's not schedule it and
- * see if it is pushed or pulled somewhere else.
- */
- if (p->nr_cpus_allowed != 1 &&
- cpudl_find(&rq->rd->cpudl, p, NULL))
- return;
- resched_curr(rq);
- }
- static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
- {
- if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
- /*
- * This is OK, because current is on_cpu, which avoids it being
- * picked for load-balance and preemption/IRQs are still
- * disabled avoiding further scheduler activity on it and we've
- * not yet started the picking loop.
- */
- rq_unpin_lock(rq, rf);
- pull_dl_task(rq);
- rq_repin_lock(rq, rf);
- }
- return sched_stop_runnable(rq) || sched_dl_runnable(rq);
- }
- #endif /* CONFIG_SMP */
- /*
- * Only called when both the current and waking task are -deadline
- * tasks.
- */
- static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
- int flags)
- {
- if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
- resched_curr(rq);
- return;
- }
- #ifdef CONFIG_SMP
- /*
- * In the unlikely case current and p have the same deadline
- * let us try to decide what's the best thing to do...
- */
- if ((p->dl.deadline == rq->curr->dl.deadline) &&
- !test_tsk_need_resched(rq->curr))
- check_preempt_equal_dl(rq, p);
- #endif /* CONFIG_SMP */
- }
- #ifdef CONFIG_SCHED_HRTICK
- static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
- {
- hrtick_start(rq, p->dl.runtime);
- }
- #else /* !CONFIG_SCHED_HRTICK */
- static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
- {
- }
- #endif
- static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
- {
- struct sched_dl_entity *dl_se = &p->dl;
- struct dl_rq *dl_rq = &rq->dl;
- p->se.exec_start = rq_clock_task(rq);
- if (on_dl_rq(&p->dl))
- update_stats_wait_end_dl(dl_rq, dl_se);
- /* You can't push away the running task */
- dequeue_pushable_dl_task(rq, p);
- if (!first)
- return;
- if (hrtick_enabled_dl(rq))
- start_hrtick_dl(rq, p);
- if (rq->curr->sched_class != &dl_sched_class)
- update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
- deadline_queue_push_tasks(rq);
- }
- static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
- {
- struct rb_node *left = rb_first_cached(&dl_rq->root);
- if (!left)
- return NULL;
- return __node_2_dle(left);
- }
- static struct task_struct *pick_task_dl(struct rq *rq)
- {
- struct sched_dl_entity *dl_se;
- struct dl_rq *dl_rq = &rq->dl;
- struct task_struct *p;
- if (!sched_dl_runnable(rq))
- return NULL;
- dl_se = pick_next_dl_entity(dl_rq);
- WARN_ON_ONCE(!dl_se);
- p = dl_task_of(dl_se);
- return p;
- }
- static struct task_struct *pick_next_task_dl(struct rq *rq)
- {
- struct task_struct *p;
- p = pick_task_dl(rq);
- if (p)
- set_next_task_dl(rq, p, true);
- return p;
- }
- static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
- {
- struct sched_dl_entity *dl_se = &p->dl;
- struct dl_rq *dl_rq = &rq->dl;
- if (on_dl_rq(&p->dl))
- update_stats_wait_start_dl(dl_rq, dl_se);
- update_curr_dl(rq);
- update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
- if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
- enqueue_pushable_dl_task(rq, p);
- }
- /*
- * scheduler tick hitting a task of our scheduling class.
- *
- * NOTE: This function can be called remotely by the tick offload that
- * goes along full dynticks. Therefore no local assumption can be made
- * and everything must be accessed through the @rq and @curr passed in
- * parameters.
- */
- static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
- {
- update_curr_dl(rq);
- update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
- /*
- * Even when we have runtime, update_curr_dl() might have resulted in us
- * not being the leftmost task anymore. In that case NEED_RESCHED will
- * be set and schedule() will start a new hrtick for the next task.
- */
- if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
- is_leftmost(p, &rq->dl))
- start_hrtick_dl(rq, p);
- }
- static void task_fork_dl(struct task_struct *p)
- {
- /*
- * SCHED_DEADLINE tasks cannot fork and this is achieved through
- * sched_fork()
- */
- }
- #ifdef CONFIG_SMP
- /* Only try algorithms three times */
- #define DL_MAX_TRIES 3
- static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
- {
- if (!task_on_cpu(rq, p) &&
- cpumask_test_cpu(cpu, &p->cpus_mask))
- return 1;
- return 0;
- }
- /*
- * Return the earliest pushable rq's task, which is suitable to be executed
- * on the CPU, NULL otherwise:
- */
- static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
- {
- struct task_struct *p = NULL;
- struct rb_node *next_node;
- if (!has_pushable_dl_tasks(rq))
- return NULL;
- next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
- next_node:
- if (next_node) {
- p = __node_2_pdl(next_node);
- if (pick_dl_task(rq, p, cpu))
- return p;
- next_node = rb_next(next_node);
- goto next_node;
- }
- return NULL;
- }
- static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
- static int find_later_rq(struct task_struct *task)
- {
- struct sched_domain *sd;
- struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
- int this_cpu = smp_processor_id();
- int cpu = task_cpu(task);
- /* Make sure the mask is initialized first */
- if (unlikely(!later_mask))
- return -1;
- if (task->nr_cpus_allowed == 1)
- return -1;
- /*
- * We have to consider system topology and task affinity
- * first, then we can look for a suitable CPU.
- */
- if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
- return -1;
- /*
- * If we are here, some targets have been found, including
- * the most suitable which is, among the runqueues where the
- * current tasks have later deadlines than the task's one, the
- * rq with the latest possible one.
- *
- * Now we check how well this matches with task's
- * affinity and system topology.
- *
- * The last CPU where the task run is our first
- * guess, since it is most likely cache-hot there.
- */
- if (cpumask_test_cpu(cpu, later_mask))
- return cpu;
- /*
- * Check if this_cpu is to be skipped (i.e., it is
- * not in the mask) or not.
- */
- if (!cpumask_test_cpu(this_cpu, later_mask))
- this_cpu = -1;
- rcu_read_lock();
- for_each_domain(cpu, sd) {
- if (sd->flags & SD_WAKE_AFFINE) {
- int best_cpu;
- /*
- * If possible, preempting this_cpu is
- * cheaper than migrating.
- */
- if (this_cpu != -1 &&
- cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
- rcu_read_unlock();
- return this_cpu;
- }
- best_cpu = cpumask_any_and_distribute(later_mask,
- sched_domain_span(sd));
- /*
- * Last chance: if a CPU being in both later_mask
- * and current sd span is valid, that becomes our
- * choice. Of course, the latest possible CPU is
- * already under consideration through later_mask.
- */
- if (best_cpu < nr_cpu_ids) {
- rcu_read_unlock();
- return best_cpu;
- }
- }
- }
- rcu_read_unlock();
- /*
- * At this point, all our guesses failed, we just return
- * 'something', and let the caller sort the things out.
- */
- if (this_cpu != -1)
- return this_cpu;
- cpu = cpumask_any_distribute(later_mask);
- if (cpu < nr_cpu_ids)
- return cpu;
- return -1;
- }
- /* Locks the rq it finds */
- static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
- {
- struct rq *later_rq = NULL;
- int tries;
- int cpu;
- for (tries = 0; tries < DL_MAX_TRIES; tries++) {
- cpu = find_later_rq(task);
- if ((cpu == -1) || (cpu == rq->cpu))
- break;
- later_rq = cpu_rq(cpu);
- if (!dl_task_is_earliest_deadline(task, later_rq)) {
- /*
- * Target rq has tasks of equal or earlier deadline,
- * retrying does not release any lock and is unlikely
- * to yield a different result.
- */
- later_rq = NULL;
- break;
- }
- /* Retry if something changed. */
- if (double_lock_balance(rq, later_rq)) {
- if (unlikely(task_rq(task) != rq ||
- !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
- task_on_cpu(rq, task) ||
- !dl_task(task) ||
- is_migration_disabled(task) ||
- !task_on_rq_queued(task))) {
- double_unlock_balance(rq, later_rq);
- later_rq = NULL;
- break;
- }
- }
- /*
- * If the rq we found has no -deadline task, or
- * its earliest one has a later deadline than our
- * task, the rq is a good one.
- */
- if (dl_task_is_earliest_deadline(task, later_rq))
- break;
- /* Otherwise we try again. */
- double_unlock_balance(rq, later_rq);
- later_rq = NULL;
- }
- return later_rq;
- }
- static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
- {
- struct task_struct *p;
- if (!has_pushable_dl_tasks(rq))
- return NULL;
- p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
- WARN_ON_ONCE(rq->cpu != task_cpu(p));
- WARN_ON_ONCE(task_current(rq, p));
- WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
- WARN_ON_ONCE(!task_on_rq_queued(p));
- WARN_ON_ONCE(!dl_task(p));
- return p;
- }
- /*
- * See if the non running -deadline tasks on this rq
- * can be sent to some other CPU where they can preempt
- * and start executing.
- */
- static int push_dl_task(struct rq *rq)
- {
- struct task_struct *next_task;
- struct rq *later_rq;
- int ret = 0;
- if (!rq->dl.overloaded)
- return 0;
- next_task = pick_next_pushable_dl_task(rq);
- if (!next_task)
- return 0;
- retry:
- /*
- * If next_task preempts rq->curr, and rq->curr
- * can move away, it makes sense to just reschedule
- * without going further in pushing next_task.
- */
- if (dl_task(rq->curr) &&
- dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
- rq->curr->nr_cpus_allowed > 1) {
- resched_curr(rq);
- return 0;
- }
- if (is_migration_disabled(next_task))
- return 0;
- if (WARN_ON(next_task == rq->curr))
- return 0;
- /* We might release rq lock */
- get_task_struct(next_task);
- /* Will lock the rq it'll find */
- later_rq = find_lock_later_rq(next_task, rq);
- if (!later_rq) {
- struct task_struct *task;
- /*
- * We must check all this again, since
- * find_lock_later_rq releases rq->lock and it is
- * then possible that next_task has migrated.
- */
- task = pick_next_pushable_dl_task(rq);
- if (task == next_task) {
- /*
- * The task is still there. We don't try
- * again, some other CPU will pull it when ready.
- */
- goto out;
- }
- if (!task)
- /* No more tasks */
- goto out;
- put_task_struct(next_task);
- next_task = task;
- goto retry;
- }
- deactivate_task(rq, next_task, 0);
- set_task_cpu(next_task, later_rq->cpu);
- activate_task(later_rq, next_task, 0);
- ret = 1;
- resched_curr(later_rq);
- double_unlock_balance(rq, later_rq);
- out:
- put_task_struct(next_task);
- return ret;
- }
- static void push_dl_tasks(struct rq *rq)
- {
- /* push_dl_task() will return true if it moved a -deadline task */
- while (push_dl_task(rq))
- ;
- }
- static void pull_dl_task(struct rq *this_rq)
- {
- int this_cpu = this_rq->cpu, cpu;
- struct task_struct *p, *push_task;
- bool resched = false;
- struct rq *src_rq;
- u64 dmin = LONG_MAX;
- if (likely(!dl_overloaded(this_rq)))
- return;
- /*
- * Match the barrier from dl_set_overloaded; this guarantees that if we
- * see overloaded we must also see the dlo_mask bit.
- */
- smp_rmb();
- for_each_cpu(cpu, this_rq->rd->dlo_mask) {
- if (this_cpu == cpu)
- continue;
- src_rq = cpu_rq(cpu);
- /*
- * It looks racy, abd it is! However, as in sched_rt.c,
- * we are fine with this.
- */
- if (this_rq->dl.dl_nr_running &&
- dl_time_before(this_rq->dl.earliest_dl.curr,
- src_rq->dl.earliest_dl.next))
- continue;
- /* Might drop this_rq->lock */
- push_task = NULL;
- double_lock_balance(this_rq, src_rq);
- /*
- * If there are no more pullable tasks on the
- * rq, we're done with it.
- */
- if (src_rq->dl.dl_nr_running <= 1)
- goto skip;
- p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
- /*
- * We found a task to be pulled if:
- * - it preempts our current (if there's one),
- * - it will preempt the last one we pulled (if any).
- */
- if (p && dl_time_before(p->dl.deadline, dmin) &&
- dl_task_is_earliest_deadline(p, this_rq)) {
- WARN_ON(p == src_rq->curr);
- WARN_ON(!task_on_rq_queued(p));
- /*
- * Then we pull iff p has actually an earlier
- * deadline than the current task of its runqueue.
- */
- if (dl_time_before(p->dl.deadline,
- src_rq->curr->dl.deadline))
- goto skip;
- if (is_migration_disabled(p)) {
- push_task = get_push_task(src_rq);
- } else {
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
- dmin = p->dl.deadline;
- resched = true;
- }
- /* Is there any other task even earlier? */
- }
- skip:
- double_unlock_balance(this_rq, src_rq);
- if (push_task) {
- preempt_disable();
- raw_spin_rq_unlock(this_rq);
- stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
- push_task, &src_rq->push_work);
- preempt_enable();
- raw_spin_rq_lock(this_rq);
- }
- }
- if (resched)
- resched_curr(this_rq);
- }
- /*
- * Since the task is not running and a reschedule is not going to happen
- * anytime soon on its runqueue, we try pushing it away now.
- */
- static void task_woken_dl(struct rq *rq, struct task_struct *p)
- {
- if (!task_on_cpu(rq, p) &&
- !test_tsk_need_resched(rq->curr) &&
- p->nr_cpus_allowed > 1 &&
- dl_task(rq->curr) &&
- (rq->curr->nr_cpus_allowed < 2 ||
- !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
- push_dl_tasks(rq);
- }
- }
- static void set_cpus_allowed_dl(struct task_struct *p,
- const struct cpumask *new_mask,
- u32 flags)
- {
- struct root_domain *src_rd;
- struct rq *rq;
- WARN_ON_ONCE(!dl_task(p));
- rq = task_rq(p);
- src_rd = rq->rd;
- /*
- * Migrating a SCHED_DEADLINE task between exclusive
- * cpusets (different root_domains) entails a bandwidth
- * update. We already made space for us in the destination
- * domain (see cpuset_can_attach()).
- */
- if (!cpumask_intersects(src_rd->span, new_mask)) {
- struct dl_bw *src_dl_b;
- src_dl_b = dl_bw_of(cpu_of(rq));
- /*
- * We now free resources of the root_domain we are migrating
- * off. In the worst case, sched_setattr() may temporary fail
- * until we complete the update.
- */
- raw_spin_lock(&src_dl_b->lock);
- __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
- raw_spin_unlock(&src_dl_b->lock);
- }
- set_cpus_allowed_common(p, new_mask, flags);
- }
- /* Assumes rq->lock is held */
- static void rq_online_dl(struct rq *rq)
- {
- if (rq->dl.overloaded)
- dl_set_overload(rq);
- cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
- if (rq->dl.dl_nr_running > 0)
- cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
- }
- /* Assumes rq->lock is held */
- static void rq_offline_dl(struct rq *rq)
- {
- if (rq->dl.overloaded)
- dl_clear_overload(rq);
- cpudl_clear(&rq->rd->cpudl, rq->cpu);
- cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
- }
- void __init init_sched_dl_class(void)
- {
- unsigned int i;
- for_each_possible_cpu(i)
- zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
- GFP_KERNEL, cpu_to_node(i));
- }
- void dl_add_task_root_domain(struct task_struct *p)
- {
- struct rq_flags rf;
- struct rq *rq;
- struct dl_bw *dl_b;
- raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
- if (!dl_task(p)) {
- raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
- return;
- }
- rq = __task_rq_lock(p, &rf);
- dl_b = &rq->rd->dl_bw;
- raw_spin_lock(&dl_b->lock);
- __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
- raw_spin_unlock(&dl_b->lock);
- task_rq_unlock(rq, p, &rf);
- }
- void dl_clear_root_domain(struct root_domain *rd)
- {
- unsigned long flags;
- raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
- rd->dl_bw.total_bw = 0;
- raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
- }
- #endif /* CONFIG_SMP */
- static void switched_from_dl(struct rq *rq, struct task_struct *p)
- {
- /*
- * task_non_contending() can start the "inactive timer" (if the 0-lag
- * time is in the future). If the task switches back to dl before
- * the "inactive timer" fires, it can continue to consume its current
- * runtime using its current deadline. If it stays outside of
- * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
- * will reset the task parameters.
- */
- if (task_on_rq_queued(p) && p->dl.dl_runtime)
- task_non_contending(p);
- /*
- * In case a task is setscheduled out from SCHED_DEADLINE we need to
- * keep track of that on its cpuset (for correct bandwidth tracking).
- */
- dec_dl_tasks_cs(p);
- if (!task_on_rq_queued(p)) {
- /*
- * Inactive timer is armed. However, p is leaving DEADLINE and
- * might migrate away from this rq while continuing to run on
- * some other class. We need to remove its contribution from
- * this rq running_bw now, or sub_rq_bw (below) will complain.
- */
- if (p->dl.dl_non_contending)
- sub_running_bw(&p->dl, &rq->dl);
- sub_rq_bw(&p->dl, &rq->dl);
- }
- /*
- * We cannot use inactive_task_timer() to invoke sub_running_bw()
- * at the 0-lag time, because the task could have been migrated
- * while SCHED_OTHER in the meanwhile.
- */
- if (p->dl.dl_non_contending)
- p->dl.dl_non_contending = 0;
- /*
- * Since this might be the only -deadline task on the rq,
- * this is the right place to try to pull some other one
- * from an overloaded CPU, if any.
- */
- if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
- return;
- deadline_queue_pull_task(rq);
- }
- /*
- * When switching to -deadline, we may overload the rq, then
- * we try to push someone off, if possible.
- */
- static void switched_to_dl(struct rq *rq, struct task_struct *p)
- {
- if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
- put_task_struct(p);
- /*
- * In case a task is setscheduled to SCHED_DEADLINE we need to keep
- * track of that on its cpuset (for correct bandwidth tracking).
- */
- inc_dl_tasks_cs(p);
- /* If p is not queued we will update its parameters at next wakeup. */
- if (!task_on_rq_queued(p)) {
- add_rq_bw(&p->dl, &rq->dl);
- return;
- }
- if (rq->curr != p) {
- #ifdef CONFIG_SMP
- if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
- deadline_queue_push_tasks(rq);
- #endif
- if (dl_task(rq->curr))
- check_preempt_curr_dl(rq, p, 0);
- else
- resched_curr(rq);
- } else {
- update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
- }
- }
- /*
- * If the scheduling parameters of a -deadline task changed,
- * a push or pull operation might be needed.
- */
- static void prio_changed_dl(struct rq *rq, struct task_struct *p,
- int oldprio)
- {
- if (task_on_rq_queued(p) || task_current(rq, p)) {
- #ifdef CONFIG_SMP
- /*
- * This might be too much, but unfortunately
- * we don't have the old deadline value, and
- * we can't argue if the task is increasing
- * or lowering its prio, so...
- */
- if (!rq->dl.overloaded)
- deadline_queue_pull_task(rq);
- /*
- * If we now have a earlier deadline task than p,
- * then reschedule, provided p is still on this
- * runqueue.
- */
- if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
- resched_curr(rq);
- #else
- /*
- * Again, we don't know if p has a earlier
- * or later deadline, so let's blindly set a
- * (maybe not needed) rescheduling point.
- */
- resched_curr(rq);
- #endif /* CONFIG_SMP */
- }
- }
- DEFINE_SCHED_CLASS(dl) = {
- .enqueue_task = enqueue_task_dl,
- .dequeue_task = dequeue_task_dl,
- .yield_task = yield_task_dl,
- .check_preempt_curr = check_preempt_curr_dl,
- .pick_next_task = pick_next_task_dl,
- .put_prev_task = put_prev_task_dl,
- .set_next_task = set_next_task_dl,
- #ifdef CONFIG_SMP
- .balance = balance_dl,
- .pick_task = pick_task_dl,
- .select_task_rq = select_task_rq_dl,
- .migrate_task_rq = migrate_task_rq_dl,
- .set_cpus_allowed = set_cpus_allowed_dl,
- .rq_online = rq_online_dl,
- .rq_offline = rq_offline_dl,
- .task_woken = task_woken_dl,
- .find_lock_rq = find_lock_later_rq,
- #endif
- .task_tick = task_tick_dl,
- .task_fork = task_fork_dl,
- .prio_changed = prio_changed_dl,
- .switched_from = switched_from_dl,
- .switched_to = switched_to_dl,
- .update_curr = update_curr_dl,
- };
- /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
- static u64 dl_generation;
- int sched_dl_global_validate(void)
- {
- u64 runtime = global_rt_runtime();
- u64 period = global_rt_period();
- u64 new_bw = to_ratio(period, runtime);
- u64 gen = ++dl_generation;
- struct dl_bw *dl_b;
- int cpu, cpus, ret = 0;
- unsigned long flags;
- /*
- * Here we want to check the bandwidth not being set to some
- * value smaller than the currently allocated bandwidth in
- * any of the root_domains.
- */
- for_each_possible_cpu(cpu) {
- rcu_read_lock_sched();
- if (dl_bw_visited(cpu, gen))
- goto next;
- dl_b = dl_bw_of(cpu);
- cpus = dl_bw_cpus(cpu);
- raw_spin_lock_irqsave(&dl_b->lock, flags);
- if (new_bw * cpus < dl_b->total_bw)
- ret = -EBUSY;
- raw_spin_unlock_irqrestore(&dl_b->lock, flags);
- next:
- rcu_read_unlock_sched();
- if (ret)
- break;
- }
- return ret;
- }
- static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
- {
- if (global_rt_runtime() == RUNTIME_INF) {
- dl_rq->bw_ratio = 1 << RATIO_SHIFT;
- dl_rq->extra_bw = 1 << BW_SHIFT;
- } else {
- dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
- global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
- dl_rq->extra_bw = to_ratio(global_rt_period(),
- global_rt_runtime());
- }
- }
- void sched_dl_do_global(void)
- {
- u64 new_bw = -1;
- u64 gen = ++dl_generation;
- struct dl_bw *dl_b;
- int cpu;
- unsigned long flags;
- if (global_rt_runtime() != RUNTIME_INF)
- new_bw = to_ratio(global_rt_period(), global_rt_runtime());
- for_each_possible_cpu(cpu) {
- rcu_read_lock_sched();
- if (dl_bw_visited(cpu, gen)) {
- rcu_read_unlock_sched();
- continue;
- }
- dl_b = dl_bw_of(cpu);
- raw_spin_lock_irqsave(&dl_b->lock, flags);
- dl_b->bw = new_bw;
- raw_spin_unlock_irqrestore(&dl_b->lock, flags);
- rcu_read_unlock_sched();
- init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
- }
- }
- /*
- * We must be sure that accepting a new task (or allowing changing the
- * parameters of an existing one) is consistent with the bandwidth
- * constraints. If yes, this function also accordingly updates the currently
- * allocated bandwidth to reflect the new situation.
- *
- * This function is called while holding p's rq->lock.
- */
- int sched_dl_overflow(struct task_struct *p, int policy,
- const struct sched_attr *attr)
- {
- u64 period = attr->sched_period ?: attr->sched_deadline;
- u64 runtime = attr->sched_runtime;
- u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
- int cpus, err = -1, cpu = task_cpu(p);
- struct dl_bw *dl_b = dl_bw_of(cpu);
- unsigned long cap;
- if (attr->sched_flags & SCHED_FLAG_SUGOV)
- return 0;
- /* !deadline task may carry old deadline bandwidth */
- if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
- return 0;
- /*
- * Either if a task, enters, leave, or stays -deadline but changes
- * its parameters, we may need to update accordingly the total
- * allocated bandwidth of the container.
- */
- raw_spin_lock(&dl_b->lock);
- cpus = dl_bw_cpus(cpu);
- cap = dl_bw_capacity(cpu);
- if (dl_policy(policy) && !task_has_dl_policy(p) &&
- !__dl_overflow(dl_b, cap, 0, new_bw)) {
- if (hrtimer_active(&p->dl.inactive_timer))
- __dl_sub(dl_b, p->dl.dl_bw, cpus);
- __dl_add(dl_b, new_bw, cpus);
- err = 0;
- } else if (dl_policy(policy) && task_has_dl_policy(p) &&
- !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
- /*
- * XXX this is slightly incorrect: when the task
- * utilization decreases, we should delay the total
- * utilization change until the task's 0-lag point.
- * But this would require to set the task's "inactive
- * timer" when the task is not inactive.
- */
- __dl_sub(dl_b, p->dl.dl_bw, cpus);
- __dl_add(dl_b, new_bw, cpus);
- dl_change_utilization(p, new_bw);
- err = 0;
- } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
- /*
- * Do not decrease the total deadline utilization here,
- * switched_from_dl() will take care to do it at the correct
- * (0-lag) time.
- */
- err = 0;
- }
- raw_spin_unlock(&dl_b->lock);
- return err;
- }
- /*
- * This function initializes the sched_dl_entity of a newly becoming
- * SCHED_DEADLINE task.
- *
- * Only the static values are considered here, the actual runtime and the
- * absolute deadline will be properly calculated when the task is enqueued
- * for the first time with its new policy.
- */
- void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
- {
- struct sched_dl_entity *dl_se = &p->dl;
- dl_se->dl_runtime = attr->sched_runtime;
- dl_se->dl_deadline = attr->sched_deadline;
- dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
- dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
- dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
- dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
- }
- void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
- {
- struct sched_dl_entity *dl_se = &p->dl;
- attr->sched_priority = p->rt_priority;
- attr->sched_runtime = dl_se->dl_runtime;
- attr->sched_deadline = dl_se->dl_deadline;
- attr->sched_period = dl_se->dl_period;
- attr->sched_flags &= ~SCHED_DL_FLAGS;
- attr->sched_flags |= dl_se->flags;
- }
- /*
- * This function validates the new parameters of a -deadline task.
- * We ask for the deadline not being zero, and greater or equal
- * than the runtime, as well as the period of being zero or
- * greater than deadline. Furthermore, we have to be sure that
- * user parameters are above the internal resolution of 1us (we
- * check sched_runtime only since it is always the smaller one) and
- * below 2^63 ns (we have to check both sched_deadline and
- * sched_period, as the latter can be zero).
- */
- bool __checkparam_dl(const struct sched_attr *attr)
- {
- u64 period, max, min;
- /* special dl tasks don't actually use any parameter */
- if (attr->sched_flags & SCHED_FLAG_SUGOV)
- return true;
- /* deadline != 0 */
- if (attr->sched_deadline == 0)
- return false;
- /*
- * Since we truncate DL_SCALE bits, make sure we're at least
- * that big.
- */
- if (attr->sched_runtime < (1ULL << DL_SCALE))
- return false;
- /*
- * Since we use the MSB for wrap-around and sign issues, make
- * sure it's not set (mind that period can be equal to zero).
- */
- if (attr->sched_deadline & (1ULL << 63) ||
- attr->sched_period & (1ULL << 63))
- return false;
- period = attr->sched_period;
- if (!period)
- period = attr->sched_deadline;
- /* runtime <= deadline <= period (if period != 0) */
- if (period < attr->sched_deadline ||
- attr->sched_deadline < attr->sched_runtime)
- return false;
- max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
- min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
- if (period < min || period > max)
- return false;
- return true;
- }
- /*
- * This function clears the sched_dl_entity static params.
- */
- void __dl_clear_params(struct task_struct *p)
- {
- struct sched_dl_entity *dl_se = &p->dl;
- dl_se->dl_runtime = 0;
- dl_se->dl_deadline = 0;
- dl_se->dl_period = 0;
- dl_se->flags = 0;
- dl_se->dl_bw = 0;
- dl_se->dl_density = 0;
- dl_se->dl_throttled = 0;
- dl_se->dl_yielded = 0;
- dl_se->dl_non_contending = 0;
- dl_se->dl_overrun = 0;
- #ifdef CONFIG_RT_MUTEXES
- dl_se->pi_se = dl_se;
- #endif
- }
- bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
- {
- struct sched_dl_entity *dl_se = &p->dl;
- if (dl_se->dl_runtime != attr->sched_runtime ||
- dl_se->dl_deadline != attr->sched_deadline ||
- dl_se->dl_period != attr->sched_period ||
- dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
- return true;
- return false;
- }
- #ifdef CONFIG_SMP
- int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
- const struct cpumask *trial)
- {
- unsigned long flags, cap;
- struct dl_bw *cur_dl_b;
- int ret = 1;
- rcu_read_lock_sched();
- cur_dl_b = dl_bw_of(cpumask_any(cur));
- cap = __dl_bw_capacity(trial);
- raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
- if (__dl_overflow(cur_dl_b, cap, 0, 0))
- ret = 0;
- raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
- rcu_read_unlock_sched();
- return ret;
- }
- enum dl_bw_request {
- dl_bw_req_check_overflow = 0,
- dl_bw_req_alloc,
- dl_bw_req_free
- };
- static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
- {
- unsigned long flags;
- struct dl_bw *dl_b;
- bool overflow = 0;
- rcu_read_lock_sched();
- dl_b = dl_bw_of(cpu);
- raw_spin_lock_irqsave(&dl_b->lock, flags);
- if (req == dl_bw_req_free) {
- __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
- } else {
- unsigned long cap = dl_bw_capacity(cpu);
- overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
- if (req == dl_bw_req_alloc && !overflow) {
- /*
- * We reserve space in the destination
- * root_domain, as we can't fail after this point.
- * We will free resources in the source root_domain
- * later on (see set_cpus_allowed_dl()).
- */
- __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
- }
- }
- raw_spin_unlock_irqrestore(&dl_b->lock, flags);
- rcu_read_unlock_sched();
- return overflow ? -EBUSY : 0;
- }
- int dl_bw_check_overflow(int cpu)
- {
- return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
- }
- int dl_bw_alloc(int cpu, u64 dl_bw)
- {
- return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
- }
- void dl_bw_free(int cpu, u64 dl_bw)
- {
- dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
- }
- #endif
- #ifdef CONFIG_SCHED_DEBUG
- void print_dl_stats(struct seq_file *m, int cpu)
- {
- print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
- }
- #endif /* CONFIG_SCHED_DEBUG */
|