123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Copyright (C) 2016 Thomas Gleixner.
- * Copyright (C) 2016-2017 Christoph Hellwig.
- */
- #include <linux/interrupt.h>
- #include <linux/kernel.h>
- #include <linux/slab.h>
- #include <linux/cpu.h>
- #include <linux/sort.h>
- static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
- unsigned int cpus_per_vec)
- {
- const struct cpumask *siblmsk;
- int cpu, sibl;
- for ( ; cpus_per_vec > 0; ) {
- cpu = cpumask_first(nmsk);
- /* Should not happen, but I'm too lazy to think about it */
- if (cpu >= nr_cpu_ids)
- return;
- cpumask_clear_cpu(cpu, nmsk);
- cpumask_set_cpu(cpu, irqmsk);
- cpus_per_vec--;
- /* If the cpu has siblings, use them first */
- siblmsk = topology_sibling_cpumask(cpu);
- for (sibl = -1; cpus_per_vec > 0; ) {
- sibl = cpumask_next(sibl, siblmsk);
- if (sibl >= nr_cpu_ids)
- break;
- if (!cpumask_test_and_clear_cpu(sibl, nmsk))
- continue;
- cpumask_set_cpu(sibl, irqmsk);
- cpus_per_vec--;
- }
- }
- }
- static cpumask_var_t *alloc_node_to_cpumask(void)
- {
- cpumask_var_t *masks;
- int node;
- masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
- if (!masks)
- return NULL;
- for (node = 0; node < nr_node_ids; node++) {
- if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
- goto out_unwind;
- }
- return masks;
- out_unwind:
- while (--node >= 0)
- free_cpumask_var(masks[node]);
- kfree(masks);
- return NULL;
- }
- static void free_node_to_cpumask(cpumask_var_t *masks)
- {
- int node;
- for (node = 0; node < nr_node_ids; node++)
- free_cpumask_var(masks[node]);
- kfree(masks);
- }
- static void build_node_to_cpumask(cpumask_var_t *masks)
- {
- int cpu;
- for_each_possible_cpu(cpu)
- cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
- }
- static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
- const struct cpumask *mask, nodemask_t *nodemsk)
- {
- int n, nodes = 0;
- /* Calculate the number of nodes in the supplied affinity mask */
- for_each_node(n) {
- if (cpumask_intersects(mask, node_to_cpumask[n])) {
- node_set(n, *nodemsk);
- nodes++;
- }
- }
- return nodes;
- }
- struct node_vectors {
- unsigned id;
- union {
- unsigned nvectors;
- unsigned ncpus;
- };
- };
- static int ncpus_cmp_func(const void *l, const void *r)
- {
- const struct node_vectors *ln = l;
- const struct node_vectors *rn = r;
- return ln->ncpus - rn->ncpus;
- }
- /*
- * Allocate vector number for each node, so that for each node:
- *
- * 1) the allocated number is >= 1
- *
- * 2) the allocated numbver is <= active CPU number of this node
- *
- * The actual allocated total vectors may be less than @numvecs when
- * active total CPU number is less than @numvecs.
- *
- * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
- * for each node.
- */
- static void alloc_nodes_vectors(unsigned int numvecs,
- cpumask_var_t *node_to_cpumask,
- const struct cpumask *cpu_mask,
- const nodemask_t nodemsk,
- struct cpumask *nmsk,
- struct node_vectors *node_vectors)
- {
- unsigned n, remaining_ncpus = 0;
- for (n = 0; n < nr_node_ids; n++) {
- node_vectors[n].id = n;
- node_vectors[n].ncpus = UINT_MAX;
- }
- for_each_node_mask(n, nodemsk) {
- unsigned ncpus;
- cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
- ncpus = cpumask_weight(nmsk);
- if (!ncpus)
- continue;
- remaining_ncpus += ncpus;
- node_vectors[n].ncpus = ncpus;
- }
- numvecs = min_t(unsigned, remaining_ncpus, numvecs);
- sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]),
- ncpus_cmp_func, NULL);
- /*
- * Allocate vectors for each node according to the ratio of this
- * node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is
- * bigger than number of active numa nodes. Always start the
- * allocation from the node with minimized nr_cpus.
- *
- * This way guarantees that each active node gets allocated at
- * least one vector, and the theory is simple: over-allocation
- * is only done when this node is assigned by one vector, so
- * other nodes will be allocated >= 1 vector, since 'numvecs' is
- * bigger than number of numa nodes.
- *
- * One perfect invariant is that number of allocated vectors for
- * each node is <= CPU count of this node:
- *
- * 1) suppose there are two nodes: A and B
- * ncpu(X) is CPU count of node X
- * vecs(X) is the vector count allocated to node X via this
- * algorithm
- *
- * ncpu(A) <= ncpu(B)
- * ncpu(A) + ncpu(B) = N
- * vecs(A) + vecs(B) = V
- *
- * vecs(A) = max(1, round_down(V * ncpu(A) / N))
- * vecs(B) = V - vecs(A)
- *
- * both N and V are integer, and 2 <= V <= N, suppose
- * V = N - delta, and 0 <= delta <= N - 2
- *
- * 2) obviously vecs(A) <= ncpu(A) because:
- *
- * if vecs(A) is 1, then vecs(A) <= ncpu(A) given
- * ncpu(A) >= 1
- *
- * otherwise,
- * vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N
- *
- * 3) prove how vecs(B) <= ncpu(B):
- *
- * if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be
- * over-allocated, so vecs(B) <= ncpu(B),
- *
- * otherwise:
- *
- * vecs(A) =
- * round_down(V * ncpu(A) / N) =
- * round_down((N - delta) * ncpu(A) / N) =
- * round_down((N * ncpu(A) - delta * ncpu(A)) / N) >=
- * round_down((N * ncpu(A) - delta * N) / N) =
- * cpu(A) - delta
- *
- * then:
- *
- * vecs(A) - V >= ncpu(A) - delta - V
- * =>
- * V - vecs(A) <= V + delta - ncpu(A)
- * =>
- * vecs(B) <= N - ncpu(A)
- * =>
- * vecs(B) <= cpu(B)
- *
- * For nodes >= 3, it can be thought as one node and another big
- * node given that is exactly what this algorithm is implemented,
- * and we always re-calculate 'remaining_ncpus' & 'numvecs', and
- * finally for each node X: vecs(X) <= ncpu(X).
- *
- */
- for (n = 0; n < nr_node_ids; n++) {
- unsigned nvectors, ncpus;
- if (node_vectors[n].ncpus == UINT_MAX)
- continue;
- WARN_ON_ONCE(numvecs == 0);
- ncpus = node_vectors[n].ncpus;
- nvectors = max_t(unsigned, 1,
- numvecs * ncpus / remaining_ncpus);
- WARN_ON_ONCE(nvectors > ncpus);
- node_vectors[n].nvectors = nvectors;
- remaining_ncpus -= ncpus;
- numvecs -= nvectors;
- }
- }
- static int __irq_build_affinity_masks(unsigned int startvec,
- unsigned int numvecs,
- unsigned int firstvec,
- cpumask_var_t *node_to_cpumask,
- const struct cpumask *cpu_mask,
- struct cpumask *nmsk,
- struct irq_affinity_desc *masks)
- {
- unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0;
- unsigned int last_affv = firstvec + numvecs;
- unsigned int curvec = startvec;
- nodemask_t nodemsk = NODE_MASK_NONE;
- struct node_vectors *node_vectors;
- if (cpumask_empty(cpu_mask))
- return 0;
- nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
- /*
- * If the number of nodes in the mask is greater than or equal the
- * number of vectors we just spread the vectors across the nodes.
- */
- if (numvecs <= nodes) {
- for_each_node_mask(n, nodemsk) {
- /* Ensure that only CPUs which are in both masks are set */
- cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
- cpumask_or(&masks[curvec].mask, &masks[curvec].mask, nmsk);
- if (++curvec == last_affv)
- curvec = firstvec;
- }
- return numvecs;
- }
- node_vectors = kcalloc(nr_node_ids,
- sizeof(struct node_vectors),
- GFP_KERNEL);
- if (!node_vectors)
- return -ENOMEM;
- /* allocate vector number for each node */
- alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
- nodemsk, nmsk, node_vectors);
- for (i = 0; i < nr_node_ids; i++) {
- unsigned int ncpus, v;
- struct node_vectors *nv = &node_vectors[i];
- if (nv->nvectors == UINT_MAX)
- continue;
- /* Get the cpus on this node which are in the mask */
- cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
- ncpus = cpumask_weight(nmsk);
- if (!ncpus)
- continue;
- WARN_ON_ONCE(nv->nvectors > ncpus);
- /* Account for rounding errors */
- extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors);
- /* Spread allocated vectors on CPUs of the current node */
- for (v = 0; v < nv->nvectors; v++, curvec++) {
- cpus_per_vec = ncpus / nv->nvectors;
- /* Account for extra vectors to compensate rounding errors */
- if (extra_vecs) {
- cpus_per_vec++;
- --extra_vecs;
- }
- /*
- * wrapping has to be considered given 'startvec'
- * may start anywhere
- */
- if (curvec >= last_affv)
- curvec = firstvec;
- irq_spread_init_one(&masks[curvec].mask, nmsk,
- cpus_per_vec);
- }
- done += nv->nvectors;
- }
- kfree(node_vectors);
- return done;
- }
- /*
- * build affinity in two stages:
- * 1) spread present CPU on these vectors
- * 2) spread other possible CPUs on these vectors
- */
- static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
- unsigned int firstvec,
- struct irq_affinity_desc *masks)
- {
- unsigned int curvec = startvec, nr_present = 0, nr_others = 0;
- cpumask_var_t *node_to_cpumask;
- cpumask_var_t nmsk, npresmsk;
- int ret = -ENOMEM;
- if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
- return ret;
- if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
- goto fail_nmsk;
- node_to_cpumask = alloc_node_to_cpumask();
- if (!node_to_cpumask)
- goto fail_npresmsk;
- /* Stabilize the cpumasks */
- cpus_read_lock();
- build_node_to_cpumask(node_to_cpumask);
- /* Spread on present CPUs starting from affd->pre_vectors */
- ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
- node_to_cpumask, cpu_present_mask,
- nmsk, masks);
- if (ret < 0)
- goto fail_build_affinity;
- nr_present = ret;
- /*
- * Spread on non present CPUs starting from the next vector to be
- * handled. If the spreading of present CPUs already exhausted the
- * vector space, assign the non present CPUs to the already spread
- * out vectors.
- */
- if (nr_present >= numvecs)
- curvec = firstvec;
- else
- curvec = firstvec + nr_present;
- cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
- ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
- node_to_cpumask, npresmsk, nmsk,
- masks);
- if (ret >= 0)
- nr_others = ret;
- fail_build_affinity:
- cpus_read_unlock();
- if (ret >= 0)
- WARN_ON(nr_present + nr_others < numvecs);
- free_node_to_cpumask(node_to_cpumask);
- fail_npresmsk:
- free_cpumask_var(npresmsk);
- fail_nmsk:
- free_cpumask_var(nmsk);
- return ret < 0 ? ret : 0;
- }
- static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
- {
- affd->nr_sets = 1;
- affd->set_size[0] = affvecs;
- }
- /**
- * irq_create_affinity_masks - Create affinity masks for multiqueue spreading
- * @nvecs: The total number of vectors
- * @affd: Description of the affinity requirements
- *
- * Returns the irq_affinity_desc pointer or NULL if allocation failed.
- */
- struct irq_affinity_desc *
- irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd)
- {
- unsigned int affvecs, curvec, usedvecs, i;
- struct irq_affinity_desc *masks = NULL;
- /*
- * Determine the number of vectors which need interrupt affinities
- * assigned. If the pre/post request exhausts the available vectors
- * then nothing to do here except for invoking the calc_sets()
- * callback so the device driver can adjust to the situation.
- */
- if (nvecs > affd->pre_vectors + affd->post_vectors)
- affvecs = nvecs - affd->pre_vectors - affd->post_vectors;
- else
- affvecs = 0;
- /*
- * Simple invocations do not provide a calc_sets() callback. Install
- * the generic one.
- */
- if (!affd->calc_sets)
- affd->calc_sets = default_calc_sets;
- /* Recalculate the sets */
- affd->calc_sets(affd, affvecs);
- if (WARN_ON_ONCE(affd->nr_sets > IRQ_AFFINITY_MAX_SETS))
- return NULL;
- /* Nothing to assign? */
- if (!affvecs)
- return NULL;
- masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL);
- if (!masks)
- return NULL;
- /* Fill out vectors at the beginning that don't need affinity */
- for (curvec = 0; curvec < affd->pre_vectors; curvec++)
- cpumask_copy(&masks[curvec].mask, irq_default_affinity);
- /*
- * Spread on present CPUs starting from affd->pre_vectors. If we
- * have multiple sets, build each sets affinity mask separately.
- */
- for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) {
- unsigned int this_vecs = affd->set_size[i];
- int ret;
- ret = irq_build_affinity_masks(curvec, this_vecs,
- curvec, masks);
- if (ret) {
- kfree(masks);
- return NULL;
- }
- curvec += this_vecs;
- usedvecs += this_vecs;
- }
- /* Fill out vectors at the end that don't need affinity */
- if (usedvecs >= affvecs)
- curvec = affd->pre_vectors + affvecs;
- else
- curvec = affd->pre_vectors + usedvecs;
- for (; curvec < nvecs; curvec++)
- cpumask_copy(&masks[curvec].mask, irq_default_affinity);
- /* Mark the managed interrupts */
- for (i = affd->pre_vectors; i < nvecs - affd->post_vectors; i++)
- masks[i].is_managed = 1;
- return masks;
- }
- /**
- * irq_calc_affinity_vectors - Calculate the optimal number of vectors
- * @minvec: The minimum number of vectors available
- * @maxvec: The maximum number of vectors available
- * @affd: Description of the affinity requirements
- */
- unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec,
- const struct irq_affinity *affd)
- {
- unsigned int resv = affd->pre_vectors + affd->post_vectors;
- unsigned int set_vecs;
- if (resv > minvec)
- return 0;
- if (affd->calc_sets) {
- set_vecs = maxvec - resv;
- } else {
- cpus_read_lock();
- set_vecs = cpumask_weight(cpu_possible_mask);
- cpus_read_unlock();
- }
- return resv + min(set_vecs, maxvec - resv);
- }
|