123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Copyright (C) 2018-2020 Christoph Hellwig.
- *
- * DMA operations that map physical memory directly without using an IOMMU.
- */
- #include <linux/memblock.h> /* for max_pfn */
- #include <linux/export.h>
- #include <linux/mm.h>
- #include <linux/dma-map-ops.h>
- #include <linux/scatterlist.h>
- #include <linux/pfn.h>
- #include <linux/vmalloc.h>
- #include <linux/set_memory.h>
- #include <linux/slab.h>
- #include "direct.h"
- /*
- * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
- * it for entirely different regions. In that case the arch code needs to
- * override the variable below for dma-direct to work properly.
- */
- unsigned int zone_dma_bits __ro_after_init = 24;
- static inline dma_addr_t phys_to_dma_direct(struct device *dev,
- phys_addr_t phys)
- {
- if (force_dma_unencrypted(dev))
- return phys_to_dma_unencrypted(dev, phys);
- return phys_to_dma(dev, phys);
- }
- static inline struct page *dma_direct_to_page(struct device *dev,
- dma_addr_t dma_addr)
- {
- return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
- }
- u64 dma_direct_get_required_mask(struct device *dev)
- {
- phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
- u64 max_dma = phys_to_dma_direct(dev, phys);
- return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
- }
- EXPORT_SYMBOL_GPL(dma_direct_get_required_mask);
- static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
- u64 *phys_limit)
- {
- u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
- /*
- * Optimistically try the zone that the physical address mask falls
- * into first. If that returns memory that isn't actually addressable
- * we will fallback to the next lower zone and try again.
- *
- * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
- * zones.
- */
- *phys_limit = dma_to_phys(dev, dma_limit);
- if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
- return GFP_DMA;
- if (*phys_limit <= DMA_BIT_MASK(32) &&
- !zone_dma32_are_empty())
- return GFP_DMA32;
- return 0;
- }
- static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
- {
- dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
- if (dma_addr == DMA_MAPPING_ERROR)
- return false;
- return dma_addr + size - 1 <=
- min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
- }
- static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
- {
- if (!force_dma_unencrypted(dev))
- return 0;
- return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
- }
- static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
- {
- int ret;
- if (!force_dma_unencrypted(dev))
- return 0;
- ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
- if (ret)
- pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
- return ret;
- }
- static void __dma_direct_free_pages(struct device *dev, struct page *page,
- size_t size)
- {
- if (swiotlb_free(dev, page, size))
- return;
- dma_free_contiguous(dev, page, size);
- }
- static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
- {
- struct page *page = swiotlb_alloc(dev, size);
- if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
- swiotlb_free(dev, page, size);
- return NULL;
- }
- return page;
- }
- static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
- gfp_t gfp, bool allow_highmem)
- {
- int node = dev_to_node(dev);
- struct page *page = NULL;
- u64 phys_limit;
- WARN_ON_ONCE(!PAGE_ALIGNED(size));
- if (is_swiotlb_for_alloc(dev))
- return dma_direct_alloc_swiotlb(dev, size);
- gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
- &phys_limit);
- page = dma_alloc_contiguous(dev, size, gfp);
- if (page) {
- if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
- (!allow_highmem && PageHighMem(page))) {
- dma_free_contiguous(dev, page, size);
- page = NULL;
- }
- }
- again:
- if (!page)
- page = alloc_pages_node(node, gfp, get_order(size));
- if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
- dma_free_contiguous(dev, page, size);
- page = NULL;
- if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
- phys_limit < DMA_BIT_MASK(64) &&
- !(gfp & (GFP_DMA32 | GFP_DMA)) &&
- !zone_dma32_are_empty()) {
- gfp |= GFP_DMA32;
- goto again;
- }
- if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
- gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
- goto again;
- }
- }
- return page;
- }
- /*
- * Check if a potentially blocking operations needs to dip into the atomic
- * pools for the given device/gfp.
- */
- static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
- {
- return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
- }
- static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
- dma_addr_t *dma_handle, gfp_t gfp)
- {
- struct page *page;
- u64 phys_mask;
- void *ret;
- if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
- return NULL;
- gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
- &phys_mask);
- page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
- if (!page)
- return NULL;
- *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
- return ret;
- }
- static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
- dma_addr_t *dma_handle, gfp_t gfp)
- {
- struct page *page;
- page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
- if (!page)
- return NULL;
- /* remove any dirty cache lines on the kernel alias */
- if (!PageHighMem(page))
- arch_dma_prep_coherent(page, size);
- /* return the page pointer as the opaque cookie */
- *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
- return page;
- }
- void *dma_direct_alloc(struct device *dev, size_t size,
- dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
- {
- bool remap = false, set_uncached = false;
- struct page *page;
- void *ret;
- size = PAGE_ALIGN(size);
- if (attrs & DMA_ATTR_NO_WARN)
- gfp |= __GFP_NOWARN;
- if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
- !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
- return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
- if (!dev_is_dma_coherent(dev)) {
- /*
- * Fallback to the arch handler if it exists. This should
- * eventually go away.
- */
- if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
- !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
- !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
- !is_swiotlb_for_alloc(dev))
- return arch_dma_alloc(dev, size, dma_handle, gfp,
- attrs);
- /*
- * If there is a global pool, always allocate from it for
- * non-coherent devices.
- */
- if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
- return dma_alloc_from_global_coherent(dev, size,
- dma_handle);
- /*
- * Otherwise remap if the architecture is asking for it. But
- * given that remapping memory is a blocking operation we'll
- * instead have to dip into the atomic pools.
- */
- remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
- if (remap) {
- if (dma_direct_use_pool(dev, gfp))
- return dma_direct_alloc_from_pool(dev, size,
- dma_handle, gfp);
- } else {
- if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
- return NULL;
- set_uncached = true;
- }
- }
- /*
- * Decrypting memory may block, so allocate the memory from the atomic
- * pools if we can't block.
- */
- if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
- return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
- /* we always manually zero the memory once we are done */
- page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
- if (!page)
- return NULL;
- /*
- * dma_alloc_contiguous can return highmem pages depending on a
- * combination the cma= arguments and per-arch setup. These need to be
- * remapped to return a kernel virtual address.
- */
- if (PageHighMem(page)) {
- remap = true;
- set_uncached = false;
- }
- if (remap) {
- pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
- if (force_dma_unencrypted(dev))
- prot = pgprot_decrypted(prot);
- /* remove any dirty cache lines on the kernel alias */
- arch_dma_prep_coherent(page, size);
- /* create a coherent mapping */
- ret = dma_common_contiguous_remap(page, size, prot,
- __builtin_return_address(0));
- if (!ret)
- goto out_free_pages;
- } else {
- ret = page_address(page);
- if (dma_set_decrypted(dev, ret, size))
- goto out_free_pages;
- }
- memset(ret, 0, size);
- if (set_uncached) {
- arch_dma_prep_coherent(page, size);
- ret = arch_dma_set_uncached(ret, size);
- if (IS_ERR(ret))
- goto out_encrypt_pages;
- }
- *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
- return ret;
- out_encrypt_pages:
- if (dma_set_encrypted(dev, page_address(page), size))
- return NULL;
- out_free_pages:
- __dma_direct_free_pages(dev, page, size);
- return NULL;
- }
- EXPORT_SYMBOL_GPL(dma_direct_alloc);
- void dma_direct_free(struct device *dev, size_t size,
- void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
- {
- unsigned int page_order = get_order(size);
- if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
- !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
- /* cpu_addr is a struct page cookie, not a kernel address */
- dma_free_contiguous(dev, cpu_addr, size);
- return;
- }
- if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
- !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
- !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
- !dev_is_dma_coherent(dev) &&
- !is_swiotlb_for_alloc(dev)) {
- arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
- return;
- }
- if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
- !dev_is_dma_coherent(dev)) {
- if (!dma_release_from_global_coherent(page_order, cpu_addr))
- WARN_ON_ONCE(1);
- return;
- }
- /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
- if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
- dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
- return;
- if (is_vmalloc_addr(cpu_addr)) {
- vunmap(cpu_addr);
- } else {
- if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
- arch_dma_clear_uncached(cpu_addr, size);
- if (dma_set_encrypted(dev, cpu_addr, size))
- return;
- }
- __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
- }
- EXPORT_SYMBOL_GPL(dma_direct_free);
- struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
- dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
- {
- struct page *page;
- void *ret;
- if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
- return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
- page = __dma_direct_alloc_pages(dev, size, gfp, false);
- if (!page)
- return NULL;
- ret = page_address(page);
- if (dma_set_decrypted(dev, ret, size))
- goto out_free_pages;
- memset(ret, 0, size);
- *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
- return page;
- out_free_pages:
- __dma_direct_free_pages(dev, page, size);
- return NULL;
- }
- void dma_direct_free_pages(struct device *dev, size_t size,
- struct page *page, dma_addr_t dma_addr,
- enum dma_data_direction dir)
- {
- void *vaddr = page_address(page);
- /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
- if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
- dma_free_from_pool(dev, vaddr, size))
- return;
- if (dma_set_encrypted(dev, vaddr, size))
- return;
- __dma_direct_free_pages(dev, page, size);
- }
- #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
- defined(CONFIG_SWIOTLB)
- void dma_direct_sync_sg_for_device(struct device *dev,
- struct scatterlist *sgl, int nents, enum dma_data_direction dir)
- {
- struct scatterlist *sg;
- int i;
- for_each_sg(sgl, sg, nents, i) {
- phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
- if (unlikely(is_swiotlb_buffer(dev, paddr)))
- swiotlb_sync_single_for_device(dev, paddr, sg->length,
- dir);
- if (!dev_is_dma_coherent(dev))
- arch_sync_dma_for_device(paddr, sg->length,
- dir);
- }
- }
- #endif
- #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
- defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
- defined(CONFIG_SWIOTLB)
- void dma_direct_sync_sg_for_cpu(struct device *dev,
- struct scatterlist *sgl, int nents, enum dma_data_direction dir)
- {
- struct scatterlist *sg;
- int i;
- for_each_sg(sgl, sg, nents, i) {
- phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
- if (!dev_is_dma_coherent(dev))
- arch_sync_dma_for_cpu(paddr, sg->length, dir);
- if (unlikely(is_swiotlb_buffer(dev, paddr)))
- swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
- dir);
- if (dir == DMA_FROM_DEVICE)
- arch_dma_mark_clean(paddr, sg->length);
- }
- if (!dev_is_dma_coherent(dev))
- arch_sync_dma_for_cpu_all();
- }
- /*
- * Unmaps segments, except for ones marked as pci_p2pdma which do not
- * require any further action as they contain a bus address.
- */
- void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
- int nents, enum dma_data_direction dir, unsigned long attrs)
- {
- struct scatterlist *sg;
- int i;
- for_each_sg(sgl, sg, nents, i) {
- if (sg_is_dma_bus_address(sg))
- sg_dma_unmark_bus_address(sg);
- else
- dma_direct_unmap_page(dev, sg->dma_address,
- sg_dma_len(sg), dir, attrs);
- }
- }
- #endif
- int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
- enum dma_data_direction dir, unsigned long attrs)
- {
- struct pci_p2pdma_map_state p2pdma_state = {};
- enum pci_p2pdma_map_type map;
- struct scatterlist *sg;
- int i, ret;
- for_each_sg(sgl, sg, nents, i) {
- if (is_pci_p2pdma_page(sg_page(sg))) {
- map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
- switch (map) {
- case PCI_P2PDMA_MAP_BUS_ADDR:
- continue;
- case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
- /*
- * Any P2P mapping that traverses the PCI
- * host bridge must be mapped with CPU physical
- * address and not PCI bus addresses. This is
- * done with dma_direct_map_page() below.
- */
- break;
- default:
- ret = -EREMOTEIO;
- goto out_unmap;
- }
- }
- sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
- sg->offset, sg->length, dir, attrs);
- if (sg->dma_address == DMA_MAPPING_ERROR) {
- ret = -EIO;
- goto out_unmap;
- }
- sg_dma_len(sg) = sg->length;
- }
- return nents;
- out_unmap:
- dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
- return ret;
- }
- dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
- size_t size, enum dma_data_direction dir, unsigned long attrs)
- {
- dma_addr_t dma_addr = paddr;
- if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
- dev_err_once(dev,
- "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
- &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
- WARN_ON_ONCE(1);
- return DMA_MAPPING_ERROR;
- }
- return dma_addr;
- }
- int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
- void *cpu_addr, dma_addr_t dma_addr, size_t size,
- unsigned long attrs)
- {
- struct page *page = dma_direct_to_page(dev, dma_addr);
- int ret;
- ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
- if (!ret)
- sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
- return ret;
- }
- bool dma_direct_can_mmap(struct device *dev)
- {
- return dev_is_dma_coherent(dev) ||
- IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
- }
- int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
- void *cpu_addr, dma_addr_t dma_addr, size_t size,
- unsigned long attrs)
- {
- unsigned long user_count = vma_pages(vma);
- unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
- unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
- int ret = -ENXIO;
- vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
- if (force_dma_unencrypted(dev))
- vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
- if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
- return ret;
- if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
- return ret;
- if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
- return -ENXIO;
- return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
- user_count << PAGE_SHIFT, vma->vm_page_prot);
- }
- int dma_direct_supported(struct device *dev, u64 mask)
- {
- u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
- /*
- * Because 32-bit DMA masks are so common we expect every architecture
- * to be able to satisfy them - either by not supporting more physical
- * memory, or by providing a ZONE_DMA32. If neither is the case, the
- * architecture needs to use an IOMMU instead of the direct mapping.
- */
- if (mask >= DMA_BIT_MASK(32))
- return 1;
- /*
- * This check needs to be against the actual bit mask value, so use
- * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
- * part of the check.
- */
- if (IS_ENABLED(CONFIG_ZONE_DMA))
- min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
- return mask >= phys_to_dma_unencrypted(dev, min_mask);
- }
- size_t dma_direct_max_mapping_size(struct device *dev)
- {
- /* If SWIOTLB is active, use its maximum mapping size */
- if (is_swiotlb_active(dev) &&
- (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
- return swiotlb_max_mapping_size(dev);
- return SIZE_MAX;
- }
- bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
- {
- return !dev_is_dma_coherent(dev) ||
- is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
- }
- /**
- * dma_direct_set_offset - Assign scalar offset for a single DMA range.
- * @dev: device pointer; needed to "own" the alloced memory.
- * @cpu_start: beginning of memory region covered by this offset.
- * @dma_start: beginning of DMA/PCI region covered by this offset.
- * @size: size of the region.
- *
- * This is for the simple case of a uniform offset which cannot
- * be discovered by "dma-ranges".
- *
- * It returns -ENOMEM if out of memory, -EINVAL if a map
- * already exists, 0 otherwise.
- *
- * Note: any call to this from a driver is a bug. The mapping needs
- * to be described by the device tree or other firmware interfaces.
- */
- int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
- dma_addr_t dma_start, u64 size)
- {
- struct bus_dma_region *map;
- u64 offset = (u64)cpu_start - (u64)dma_start;
- if (dev->dma_range_map) {
- dev_err(dev, "attempt to add DMA range to existing map\n");
- return -EINVAL;
- }
- if (!offset)
- return 0;
- map = kcalloc(2, sizeof(*map), GFP_KERNEL);
- if (!map)
- return -ENOMEM;
- map[0].cpu_start = cpu_start;
- map[0].dma_start = dma_start;
- map[0].offset = offset;
- map[0].size = size;
- dev->dma_range_map = map;
- return 0;
- }
|