direct.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2018-2020 Christoph Hellwig.
  4. *
  5. * DMA operations that map physical memory directly without using an IOMMU.
  6. */
  7. #include <linux/memblock.h> /* for max_pfn */
  8. #include <linux/export.h>
  9. #include <linux/mm.h>
  10. #include <linux/dma-map-ops.h>
  11. #include <linux/scatterlist.h>
  12. #include <linux/pfn.h>
  13. #include <linux/vmalloc.h>
  14. #include <linux/set_memory.h>
  15. #include <linux/slab.h>
  16. #include "direct.h"
  17. /*
  18. * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
  19. * it for entirely different regions. In that case the arch code needs to
  20. * override the variable below for dma-direct to work properly.
  21. */
  22. unsigned int zone_dma_bits __ro_after_init = 24;
  23. static inline dma_addr_t phys_to_dma_direct(struct device *dev,
  24. phys_addr_t phys)
  25. {
  26. if (force_dma_unencrypted(dev))
  27. return phys_to_dma_unencrypted(dev, phys);
  28. return phys_to_dma(dev, phys);
  29. }
  30. static inline struct page *dma_direct_to_page(struct device *dev,
  31. dma_addr_t dma_addr)
  32. {
  33. return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
  34. }
  35. u64 dma_direct_get_required_mask(struct device *dev)
  36. {
  37. phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
  38. u64 max_dma = phys_to_dma_direct(dev, phys);
  39. return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
  40. }
  41. EXPORT_SYMBOL_GPL(dma_direct_get_required_mask);
  42. static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
  43. u64 *phys_limit)
  44. {
  45. u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
  46. /*
  47. * Optimistically try the zone that the physical address mask falls
  48. * into first. If that returns memory that isn't actually addressable
  49. * we will fallback to the next lower zone and try again.
  50. *
  51. * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
  52. * zones.
  53. */
  54. *phys_limit = dma_to_phys(dev, dma_limit);
  55. if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
  56. return GFP_DMA;
  57. if (*phys_limit <= DMA_BIT_MASK(32) &&
  58. !zone_dma32_are_empty())
  59. return GFP_DMA32;
  60. return 0;
  61. }
  62. static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
  63. {
  64. dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
  65. if (dma_addr == DMA_MAPPING_ERROR)
  66. return false;
  67. return dma_addr + size - 1 <=
  68. min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
  69. }
  70. static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
  71. {
  72. if (!force_dma_unencrypted(dev))
  73. return 0;
  74. return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
  75. }
  76. static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
  77. {
  78. int ret;
  79. if (!force_dma_unencrypted(dev))
  80. return 0;
  81. ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
  82. if (ret)
  83. pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
  84. return ret;
  85. }
  86. static void __dma_direct_free_pages(struct device *dev, struct page *page,
  87. size_t size)
  88. {
  89. if (swiotlb_free(dev, page, size))
  90. return;
  91. dma_free_contiguous(dev, page, size);
  92. }
  93. static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
  94. {
  95. struct page *page = swiotlb_alloc(dev, size);
  96. if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
  97. swiotlb_free(dev, page, size);
  98. return NULL;
  99. }
  100. return page;
  101. }
  102. static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
  103. gfp_t gfp, bool allow_highmem)
  104. {
  105. int node = dev_to_node(dev);
  106. struct page *page = NULL;
  107. u64 phys_limit;
  108. WARN_ON_ONCE(!PAGE_ALIGNED(size));
  109. if (is_swiotlb_for_alloc(dev))
  110. return dma_direct_alloc_swiotlb(dev, size);
  111. gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
  112. &phys_limit);
  113. page = dma_alloc_contiguous(dev, size, gfp);
  114. if (page) {
  115. if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
  116. (!allow_highmem && PageHighMem(page))) {
  117. dma_free_contiguous(dev, page, size);
  118. page = NULL;
  119. }
  120. }
  121. again:
  122. if (!page)
  123. page = alloc_pages_node(node, gfp, get_order(size));
  124. if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
  125. dma_free_contiguous(dev, page, size);
  126. page = NULL;
  127. if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
  128. phys_limit < DMA_BIT_MASK(64) &&
  129. !(gfp & (GFP_DMA32 | GFP_DMA)) &&
  130. !zone_dma32_are_empty()) {
  131. gfp |= GFP_DMA32;
  132. goto again;
  133. }
  134. if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
  135. gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
  136. goto again;
  137. }
  138. }
  139. return page;
  140. }
  141. /*
  142. * Check if a potentially blocking operations needs to dip into the atomic
  143. * pools for the given device/gfp.
  144. */
  145. static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
  146. {
  147. return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
  148. }
  149. static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
  150. dma_addr_t *dma_handle, gfp_t gfp)
  151. {
  152. struct page *page;
  153. u64 phys_mask;
  154. void *ret;
  155. if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
  156. return NULL;
  157. gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
  158. &phys_mask);
  159. page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
  160. if (!page)
  161. return NULL;
  162. *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
  163. return ret;
  164. }
  165. static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
  166. dma_addr_t *dma_handle, gfp_t gfp)
  167. {
  168. struct page *page;
  169. page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
  170. if (!page)
  171. return NULL;
  172. /* remove any dirty cache lines on the kernel alias */
  173. if (!PageHighMem(page))
  174. arch_dma_prep_coherent(page, size);
  175. /* return the page pointer as the opaque cookie */
  176. *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
  177. return page;
  178. }
  179. void *dma_direct_alloc(struct device *dev, size_t size,
  180. dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
  181. {
  182. bool remap = false, set_uncached = false;
  183. struct page *page;
  184. void *ret;
  185. size = PAGE_ALIGN(size);
  186. if (attrs & DMA_ATTR_NO_WARN)
  187. gfp |= __GFP_NOWARN;
  188. if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
  189. !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
  190. return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
  191. if (!dev_is_dma_coherent(dev)) {
  192. /*
  193. * Fallback to the arch handler if it exists. This should
  194. * eventually go away.
  195. */
  196. if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
  197. !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
  198. !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
  199. !is_swiotlb_for_alloc(dev))
  200. return arch_dma_alloc(dev, size, dma_handle, gfp,
  201. attrs);
  202. /*
  203. * If there is a global pool, always allocate from it for
  204. * non-coherent devices.
  205. */
  206. if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
  207. return dma_alloc_from_global_coherent(dev, size,
  208. dma_handle);
  209. /*
  210. * Otherwise remap if the architecture is asking for it. But
  211. * given that remapping memory is a blocking operation we'll
  212. * instead have to dip into the atomic pools.
  213. */
  214. remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
  215. if (remap) {
  216. if (dma_direct_use_pool(dev, gfp))
  217. return dma_direct_alloc_from_pool(dev, size,
  218. dma_handle, gfp);
  219. } else {
  220. if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
  221. return NULL;
  222. set_uncached = true;
  223. }
  224. }
  225. /*
  226. * Decrypting memory may block, so allocate the memory from the atomic
  227. * pools if we can't block.
  228. */
  229. if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
  230. return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
  231. /* we always manually zero the memory once we are done */
  232. page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
  233. if (!page)
  234. return NULL;
  235. /*
  236. * dma_alloc_contiguous can return highmem pages depending on a
  237. * combination the cma= arguments and per-arch setup. These need to be
  238. * remapped to return a kernel virtual address.
  239. */
  240. if (PageHighMem(page)) {
  241. remap = true;
  242. set_uncached = false;
  243. }
  244. if (remap) {
  245. pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
  246. if (force_dma_unencrypted(dev))
  247. prot = pgprot_decrypted(prot);
  248. /* remove any dirty cache lines on the kernel alias */
  249. arch_dma_prep_coherent(page, size);
  250. /* create a coherent mapping */
  251. ret = dma_common_contiguous_remap(page, size, prot,
  252. __builtin_return_address(0));
  253. if (!ret)
  254. goto out_free_pages;
  255. } else {
  256. ret = page_address(page);
  257. if (dma_set_decrypted(dev, ret, size))
  258. goto out_free_pages;
  259. }
  260. memset(ret, 0, size);
  261. if (set_uncached) {
  262. arch_dma_prep_coherent(page, size);
  263. ret = arch_dma_set_uncached(ret, size);
  264. if (IS_ERR(ret))
  265. goto out_encrypt_pages;
  266. }
  267. *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
  268. return ret;
  269. out_encrypt_pages:
  270. if (dma_set_encrypted(dev, page_address(page), size))
  271. return NULL;
  272. out_free_pages:
  273. __dma_direct_free_pages(dev, page, size);
  274. return NULL;
  275. }
  276. EXPORT_SYMBOL_GPL(dma_direct_alloc);
  277. void dma_direct_free(struct device *dev, size_t size,
  278. void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
  279. {
  280. unsigned int page_order = get_order(size);
  281. if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
  282. !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
  283. /* cpu_addr is a struct page cookie, not a kernel address */
  284. dma_free_contiguous(dev, cpu_addr, size);
  285. return;
  286. }
  287. if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
  288. !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
  289. !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
  290. !dev_is_dma_coherent(dev) &&
  291. !is_swiotlb_for_alloc(dev)) {
  292. arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
  293. return;
  294. }
  295. if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
  296. !dev_is_dma_coherent(dev)) {
  297. if (!dma_release_from_global_coherent(page_order, cpu_addr))
  298. WARN_ON_ONCE(1);
  299. return;
  300. }
  301. /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
  302. if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
  303. dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
  304. return;
  305. if (is_vmalloc_addr(cpu_addr)) {
  306. vunmap(cpu_addr);
  307. } else {
  308. if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
  309. arch_dma_clear_uncached(cpu_addr, size);
  310. if (dma_set_encrypted(dev, cpu_addr, size))
  311. return;
  312. }
  313. __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
  314. }
  315. EXPORT_SYMBOL_GPL(dma_direct_free);
  316. struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
  317. dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
  318. {
  319. struct page *page;
  320. void *ret;
  321. if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
  322. return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
  323. page = __dma_direct_alloc_pages(dev, size, gfp, false);
  324. if (!page)
  325. return NULL;
  326. ret = page_address(page);
  327. if (dma_set_decrypted(dev, ret, size))
  328. goto out_free_pages;
  329. memset(ret, 0, size);
  330. *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
  331. return page;
  332. out_free_pages:
  333. __dma_direct_free_pages(dev, page, size);
  334. return NULL;
  335. }
  336. void dma_direct_free_pages(struct device *dev, size_t size,
  337. struct page *page, dma_addr_t dma_addr,
  338. enum dma_data_direction dir)
  339. {
  340. void *vaddr = page_address(page);
  341. /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
  342. if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
  343. dma_free_from_pool(dev, vaddr, size))
  344. return;
  345. if (dma_set_encrypted(dev, vaddr, size))
  346. return;
  347. __dma_direct_free_pages(dev, page, size);
  348. }
  349. #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
  350. defined(CONFIG_SWIOTLB)
  351. void dma_direct_sync_sg_for_device(struct device *dev,
  352. struct scatterlist *sgl, int nents, enum dma_data_direction dir)
  353. {
  354. struct scatterlist *sg;
  355. int i;
  356. for_each_sg(sgl, sg, nents, i) {
  357. phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
  358. if (unlikely(is_swiotlb_buffer(dev, paddr)))
  359. swiotlb_sync_single_for_device(dev, paddr, sg->length,
  360. dir);
  361. if (!dev_is_dma_coherent(dev))
  362. arch_sync_dma_for_device(paddr, sg->length,
  363. dir);
  364. }
  365. }
  366. #endif
  367. #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
  368. defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
  369. defined(CONFIG_SWIOTLB)
  370. void dma_direct_sync_sg_for_cpu(struct device *dev,
  371. struct scatterlist *sgl, int nents, enum dma_data_direction dir)
  372. {
  373. struct scatterlist *sg;
  374. int i;
  375. for_each_sg(sgl, sg, nents, i) {
  376. phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
  377. if (!dev_is_dma_coherent(dev))
  378. arch_sync_dma_for_cpu(paddr, sg->length, dir);
  379. if (unlikely(is_swiotlb_buffer(dev, paddr)))
  380. swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
  381. dir);
  382. if (dir == DMA_FROM_DEVICE)
  383. arch_dma_mark_clean(paddr, sg->length);
  384. }
  385. if (!dev_is_dma_coherent(dev))
  386. arch_sync_dma_for_cpu_all();
  387. }
  388. /*
  389. * Unmaps segments, except for ones marked as pci_p2pdma which do not
  390. * require any further action as they contain a bus address.
  391. */
  392. void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
  393. int nents, enum dma_data_direction dir, unsigned long attrs)
  394. {
  395. struct scatterlist *sg;
  396. int i;
  397. for_each_sg(sgl, sg, nents, i) {
  398. if (sg_is_dma_bus_address(sg))
  399. sg_dma_unmark_bus_address(sg);
  400. else
  401. dma_direct_unmap_page(dev, sg->dma_address,
  402. sg_dma_len(sg), dir, attrs);
  403. }
  404. }
  405. #endif
  406. int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
  407. enum dma_data_direction dir, unsigned long attrs)
  408. {
  409. struct pci_p2pdma_map_state p2pdma_state = {};
  410. enum pci_p2pdma_map_type map;
  411. struct scatterlist *sg;
  412. int i, ret;
  413. for_each_sg(sgl, sg, nents, i) {
  414. if (is_pci_p2pdma_page(sg_page(sg))) {
  415. map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
  416. switch (map) {
  417. case PCI_P2PDMA_MAP_BUS_ADDR:
  418. continue;
  419. case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
  420. /*
  421. * Any P2P mapping that traverses the PCI
  422. * host bridge must be mapped with CPU physical
  423. * address and not PCI bus addresses. This is
  424. * done with dma_direct_map_page() below.
  425. */
  426. break;
  427. default:
  428. ret = -EREMOTEIO;
  429. goto out_unmap;
  430. }
  431. }
  432. sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
  433. sg->offset, sg->length, dir, attrs);
  434. if (sg->dma_address == DMA_MAPPING_ERROR) {
  435. ret = -EIO;
  436. goto out_unmap;
  437. }
  438. sg_dma_len(sg) = sg->length;
  439. }
  440. return nents;
  441. out_unmap:
  442. dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
  443. return ret;
  444. }
  445. dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
  446. size_t size, enum dma_data_direction dir, unsigned long attrs)
  447. {
  448. dma_addr_t dma_addr = paddr;
  449. if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
  450. dev_err_once(dev,
  451. "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
  452. &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
  453. WARN_ON_ONCE(1);
  454. return DMA_MAPPING_ERROR;
  455. }
  456. return dma_addr;
  457. }
  458. int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
  459. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  460. unsigned long attrs)
  461. {
  462. struct page *page = dma_direct_to_page(dev, dma_addr);
  463. int ret;
  464. ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
  465. if (!ret)
  466. sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
  467. return ret;
  468. }
  469. bool dma_direct_can_mmap(struct device *dev)
  470. {
  471. return dev_is_dma_coherent(dev) ||
  472. IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
  473. }
  474. int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
  475. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  476. unsigned long attrs)
  477. {
  478. unsigned long user_count = vma_pages(vma);
  479. unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  480. unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
  481. int ret = -ENXIO;
  482. vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
  483. if (force_dma_unencrypted(dev))
  484. vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
  485. if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
  486. return ret;
  487. if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
  488. return ret;
  489. if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
  490. return -ENXIO;
  491. return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
  492. user_count << PAGE_SHIFT, vma->vm_page_prot);
  493. }
  494. int dma_direct_supported(struct device *dev, u64 mask)
  495. {
  496. u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
  497. /*
  498. * Because 32-bit DMA masks are so common we expect every architecture
  499. * to be able to satisfy them - either by not supporting more physical
  500. * memory, or by providing a ZONE_DMA32. If neither is the case, the
  501. * architecture needs to use an IOMMU instead of the direct mapping.
  502. */
  503. if (mask >= DMA_BIT_MASK(32))
  504. return 1;
  505. /*
  506. * This check needs to be against the actual bit mask value, so use
  507. * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
  508. * part of the check.
  509. */
  510. if (IS_ENABLED(CONFIG_ZONE_DMA))
  511. min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
  512. return mask >= phys_to_dma_unencrypted(dev, min_mask);
  513. }
  514. size_t dma_direct_max_mapping_size(struct device *dev)
  515. {
  516. /* If SWIOTLB is active, use its maximum mapping size */
  517. if (is_swiotlb_active(dev) &&
  518. (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
  519. return swiotlb_max_mapping_size(dev);
  520. return SIZE_MAX;
  521. }
  522. bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
  523. {
  524. return !dev_is_dma_coherent(dev) ||
  525. is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
  526. }
  527. /**
  528. * dma_direct_set_offset - Assign scalar offset for a single DMA range.
  529. * @dev: device pointer; needed to "own" the alloced memory.
  530. * @cpu_start: beginning of memory region covered by this offset.
  531. * @dma_start: beginning of DMA/PCI region covered by this offset.
  532. * @size: size of the region.
  533. *
  534. * This is for the simple case of a uniform offset which cannot
  535. * be discovered by "dma-ranges".
  536. *
  537. * It returns -ENOMEM if out of memory, -EINVAL if a map
  538. * already exists, 0 otherwise.
  539. *
  540. * Note: any call to this from a driver is a bug. The mapping needs
  541. * to be described by the device tree or other firmware interfaces.
  542. */
  543. int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
  544. dma_addr_t dma_start, u64 size)
  545. {
  546. struct bus_dma_region *map;
  547. u64 offset = (u64)cpu_start - (u64)dma_start;
  548. if (dev->dma_range_map) {
  549. dev_err(dev, "attempt to add DMA range to existing map\n");
  550. return -EINVAL;
  551. }
  552. if (!offset)
  553. return 0;
  554. map = kcalloc(2, sizeof(*map), GFP_KERNEL);
  555. if (!map)
  556. return -ENOMEM;
  557. map[0].cpu_start = cpu_start;
  558. map[0].dma_start = dma_start;
  559. map[0].offset = offset;
  560. map[0].size = size;
  561. dev->dma_range_map = map;
  562. return 0;
  563. }