123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765 |
- /* SPDX-License-Identifier: GPL-2.0 */
- /*
- * Written by Mark Hemment, 1996 ([email protected]).
- *
- * (C) SGI 2006, Christoph Lameter
- * Cleaned up and restructured to ease the addition of alternative
- * implementations of SLAB allocators.
- * (C) Linux Foundation 2008-2013
- * Unified interface for all slab allocators
- */
- #ifndef _LINUX_SLAB_H
- #define _LINUX_SLAB_H
- #include <linux/gfp.h>
- #include <linux/overflow.h>
- #include <linux/types.h>
- #include <linux/workqueue.h>
- #include <linux/percpu-refcount.h>
- /*
- * Flags to pass to kmem_cache_create().
- * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
- */
- /* DEBUG: Perform (expensive) checks on alloc/free */
- #define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
- /* DEBUG: Red zone objs in a cache */
- #define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
- /* DEBUG: Poison objects */
- #define SLAB_POISON ((slab_flags_t __force)0x00000800U)
- /* Indicate a kmalloc slab */
- #define SLAB_KMALLOC ((slab_flags_t __force)0x00001000U)
- /* Align objs on cache lines */
- #define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
- /* Use GFP_DMA memory */
- #define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U)
- /* Use GFP_DMA32 memory */
- #define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U)
- /* DEBUG: Store the last owner for bug hunting */
- #define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U)
- /* Panic if kmem_cache_create() fails */
- #define SLAB_PANIC ((slab_flags_t __force)0x00040000U)
- /*
- * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
- *
- * This delays freeing the SLAB page by a grace period, it does _NOT_
- * delay object freeing. This means that if you do kmem_cache_free()
- * that memory location is free to be reused at any time. Thus it may
- * be possible to see another object there in the same RCU grace period.
- *
- * This feature only ensures the memory location backing the object
- * stays valid, the trick to using this is relying on an independent
- * object validation pass. Something like:
- *
- * rcu_read_lock()
- * again:
- * obj = lockless_lookup(key);
- * if (obj) {
- * if (!try_get_ref(obj)) // might fail for free objects
- * goto again;
- *
- * if (obj->key != key) { // not the object we expected
- * put_ref(obj);
- * goto again;
- * }
- * }
- * rcu_read_unlock();
- *
- * This is useful if we need to approach a kernel structure obliquely,
- * from its address obtained without the usual locking. We can lock
- * the structure to stabilize it and check it's still at the given address,
- * only if we can be sure that the memory has not been meanwhile reused
- * for some other kind of object (which our subsystem's lock might corrupt).
- *
- * rcu_read_lock before reading the address, then rcu_read_unlock after
- * taking the spinlock within the structure expected at that address.
- *
- * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
- */
- /* Defer freeing slabs to RCU */
- #define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U)
- /* Spread some memory over cpuset */
- #define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U)
- /* Trace allocations and frees */
- #define SLAB_TRACE ((slab_flags_t __force)0x00200000U)
- /* Flag to prevent checks on free */
- #ifdef CONFIG_DEBUG_OBJECTS
- # define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U)
- #else
- # define SLAB_DEBUG_OBJECTS 0
- #endif
- /* Avoid kmemleak tracing */
- #define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U)
- /* Fault injection mark */
- #ifdef CONFIG_FAILSLAB
- # define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U)
- #else
- # define SLAB_FAILSLAB 0
- #endif
- /* Account to memcg */
- #ifdef CONFIG_MEMCG_KMEM
- # define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U)
- #else
- # define SLAB_ACCOUNT 0
- #endif
- #ifdef CONFIG_KASAN_GENERIC
- #define SLAB_KASAN ((slab_flags_t __force)0x08000000U)
- #else
- #define SLAB_KASAN 0
- #endif
- /*
- * Ignore user specified debugging flags.
- * Intended for caches created for self-tests so they have only flags
- * specified in the code and other flags are ignored.
- */
- #define SLAB_NO_USER_FLAGS ((slab_flags_t __force)0x10000000U)
- #ifdef CONFIG_KFENCE
- #define SLAB_SKIP_KFENCE ((slab_flags_t __force)0x20000000U)
- #else
- #define SLAB_SKIP_KFENCE 0
- #endif
- /* The following flags affect the page allocator grouping pages by mobility */
- /* Objects are reclaimable */
- #define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U)
- #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
- /*
- * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
- *
- * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
- *
- * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
- * Both make kfree a no-op.
- */
- #define ZERO_SIZE_PTR ((void *)16)
- #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
- (unsigned long)ZERO_SIZE_PTR)
- #include <linux/kasan.h>
- struct list_lru;
- struct mem_cgroup;
- /*
- * struct kmem_cache related prototypes
- */
- void __init kmem_cache_init(void);
- bool slab_is_available(void);
- struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
- unsigned int align, slab_flags_t flags,
- void (*ctor)(void *));
- struct kmem_cache *kmem_cache_create_usercopy(const char *name,
- unsigned int size, unsigned int align,
- slab_flags_t flags,
- unsigned int useroffset, unsigned int usersize,
- void (*ctor)(void *));
- void kmem_cache_destroy(struct kmem_cache *s);
- int kmem_cache_shrink(struct kmem_cache *s);
- /*
- * Please use this macro to create slab caches. Simply specify the
- * name of the structure and maybe some flags that are listed above.
- *
- * The alignment of the struct determines object alignment. If you
- * f.e. add ____cacheline_aligned_in_smp to the struct declaration
- * then the objects will be properly aligned in SMP configurations.
- */
- #define KMEM_CACHE(__struct, __flags) \
- kmem_cache_create(#__struct, sizeof(struct __struct), \
- __alignof__(struct __struct), (__flags), NULL)
- /*
- * To whitelist a single field for copying to/from usercopy, use this
- * macro instead for KMEM_CACHE() above.
- */
- #define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
- kmem_cache_create_usercopy(#__struct, \
- sizeof(struct __struct), \
- __alignof__(struct __struct), (__flags), \
- offsetof(struct __struct, __field), \
- sizeof_field(struct __struct, __field), NULL)
- /*
- * Common kmalloc functions provided by all allocators
- */
- void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2);
- void kfree(const void *objp);
- void kfree_sensitive(const void *objp);
- size_t __ksize(const void *objp);
- /**
- * ksize - Report actual allocation size of associated object
- *
- * @objp: Pointer returned from a prior kmalloc()-family allocation.
- *
- * This should not be used for writing beyond the originally requested
- * allocation size. Either use krealloc() or round up the allocation size
- * with kmalloc_size_roundup() prior to allocation. If this is used to
- * access beyond the originally requested allocation size, UBSAN_BOUNDS
- * and/or FORTIFY_SOURCE may trip, since they only know about the
- * originally allocated size via the __alloc_size attribute.
- */
- size_t ksize(const void *objp);
- #ifdef CONFIG_PRINTK
- bool kmem_valid_obj(void *object);
- void kmem_dump_obj(void *object);
- #endif
- /*
- * Some archs want to perform DMA into kmalloc caches and need a guaranteed
- * alignment larger than the alignment of a 64-bit integer.
- * Setting ARCH_DMA_MINALIGN in arch headers allows that.
- */
- #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
- #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
- #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
- #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
- #else
- #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
- #endif
- /*
- * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
- * Intended for arches that get misalignment faults even for 64 bit integer
- * aligned buffers.
- */
- #ifndef ARCH_SLAB_MINALIGN
- #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
- #endif
- /*
- * Arches can define this function if they want to decide the minimum slab
- * alignment at runtime. The value returned by the function must be a power
- * of two and >= ARCH_SLAB_MINALIGN.
- */
- #ifndef arch_slab_minalign
- static inline unsigned int arch_slab_minalign(void)
- {
- return ARCH_SLAB_MINALIGN;
- }
- #endif
- /*
- * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
- * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
- * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
- */
- #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
- #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
- #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
- /*
- * Kmalloc array related definitions
- */
- #ifdef CONFIG_SLAB
- /*
- * SLAB and SLUB directly allocates requests fitting in to an order-1 page
- * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
- */
- #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
- #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
- #ifndef KMALLOC_SHIFT_LOW
- #define KMALLOC_SHIFT_LOW 5
- #endif
- #endif
- #ifdef CONFIG_SLUB
- #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
- #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
- #ifndef KMALLOC_SHIFT_LOW
- #define KMALLOC_SHIFT_LOW 3
- #endif
- #endif
- #ifdef CONFIG_SLOB
- /*
- * SLOB passes all requests larger than one page to the page allocator.
- * No kmalloc array is necessary since objects of different sizes can
- * be allocated from the same page.
- */
- #define KMALLOC_SHIFT_HIGH PAGE_SHIFT
- #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
- #ifndef KMALLOC_SHIFT_LOW
- #define KMALLOC_SHIFT_LOW 3
- #endif
- #endif
- /* Maximum allocatable size */
- #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
- /* Maximum size for which we actually use a slab cache */
- #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
- /* Maximum order allocatable via the slab allocator */
- #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
- /*
- * Kmalloc subsystem.
- */
- #ifndef KMALLOC_MIN_SIZE
- #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
- #endif
- /*
- * This restriction comes from byte sized index implementation.
- * Page size is normally 2^12 bytes and, in this case, if we want to use
- * byte sized index which can represent 2^8 entries, the size of the object
- * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
- * If minimum size of kmalloc is less than 16, we use it as minimum object
- * size and give up to use byte sized index.
- */
- #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
- (KMALLOC_MIN_SIZE) : 16)
- /*
- * Whenever changing this, take care of that kmalloc_type() and
- * create_kmalloc_caches() still work as intended.
- *
- * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
- * is for accounted but unreclaimable and non-dma objects. All the other
- * kmem caches can have both accounted and unaccounted objects.
- */
- enum kmalloc_cache_type {
- KMALLOC_NORMAL = 0,
- #ifndef CONFIG_ZONE_DMA
- KMALLOC_DMA = KMALLOC_NORMAL,
- #endif
- #ifndef CONFIG_MEMCG_KMEM
- KMALLOC_CGROUP = KMALLOC_NORMAL,
- #else
- KMALLOC_CGROUP,
- #endif
- KMALLOC_RECLAIM,
- #ifdef CONFIG_ZONE_DMA
- KMALLOC_DMA,
- #endif
- NR_KMALLOC_TYPES
- };
- #ifndef CONFIG_SLOB
- extern struct kmem_cache *
- kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
- /*
- * Define gfp bits that should not be set for KMALLOC_NORMAL.
- */
- #define KMALLOC_NOT_NORMAL_BITS \
- (__GFP_RECLAIMABLE | \
- (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \
- (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
- static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
- {
- /*
- * The most common case is KMALLOC_NORMAL, so test for it
- * with a single branch for all the relevant flags.
- */
- if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
- return KMALLOC_NORMAL;
- /*
- * At least one of the flags has to be set. Their priorities in
- * decreasing order are:
- * 1) __GFP_DMA
- * 2) __GFP_RECLAIMABLE
- * 3) __GFP_ACCOUNT
- */
- if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
- return KMALLOC_DMA;
- if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
- return KMALLOC_RECLAIM;
- else
- return KMALLOC_CGROUP;
- }
- /*
- * Figure out which kmalloc slab an allocation of a certain size
- * belongs to.
- * 0 = zero alloc
- * 1 = 65 .. 96 bytes
- * 2 = 129 .. 192 bytes
- * n = 2^(n-1)+1 .. 2^n
- *
- * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
- * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
- * Callers where !size_is_constant should only be test modules, where runtime
- * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab().
- */
- static __always_inline unsigned int __kmalloc_index(size_t size,
- bool size_is_constant)
- {
- if (!size)
- return 0;
- if (size <= KMALLOC_MIN_SIZE)
- return KMALLOC_SHIFT_LOW;
- if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
- return 1;
- if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
- return 2;
- if (size <= 8) return 3;
- if (size <= 16) return 4;
- if (size <= 32) return 5;
- if (size <= 64) return 6;
- if (size <= 128) return 7;
- if (size <= 256) return 8;
- if (size <= 512) return 9;
- if (size <= 1024) return 10;
- if (size <= 2 * 1024) return 11;
- if (size <= 4 * 1024) return 12;
- if (size <= 8 * 1024) return 13;
- if (size <= 16 * 1024) return 14;
- if (size <= 32 * 1024) return 15;
- if (size <= 64 * 1024) return 16;
- if (size <= 128 * 1024) return 17;
- if (size <= 256 * 1024) return 18;
- if (size <= 512 * 1024) return 19;
- if (size <= 1024 * 1024) return 20;
- if (size <= 2 * 1024 * 1024) return 21;
- if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
- BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
- else
- BUG();
- /* Will never be reached. Needed because the compiler may complain */
- return -1;
- }
- static_assert(PAGE_SHIFT <= 20);
- #define kmalloc_index(s) __kmalloc_index(s, true)
- #endif /* !CONFIG_SLOB */
- void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
- void *kmem_cache_alloc(struct kmem_cache *s, gfp_t flags) __assume_slab_alignment __malloc;
- void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
- gfp_t gfpflags) __assume_slab_alignment __malloc;
- void kmem_cache_free(struct kmem_cache *s, void *objp);
- /*
- * Bulk allocation and freeing operations. These are accelerated in an
- * allocator specific way to avoid taking locks repeatedly or building
- * metadata structures unnecessarily.
- *
- * Note that interrupts must be enabled when calling these functions.
- */
- void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
- int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
- /*
- * Caller must not use kfree_bulk() on memory not originally allocated
- * by kmalloc(), because the SLOB allocator cannot handle this.
- */
- static __always_inline void kfree_bulk(size_t size, void **p)
- {
- kmem_cache_free_bulk(NULL, size, p);
- }
- void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
- __alloc_size(1);
- void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
- __malloc;
- void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
- __assume_kmalloc_alignment __alloc_size(3);
- void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
- int node, size_t size) __assume_kmalloc_alignment
- __alloc_size(4);
- void *kmalloc_large(size_t size, gfp_t flags) __assume_page_alignment
- __alloc_size(1);
- void *kmalloc_large_node(size_t size, gfp_t flags, int node) __assume_page_alignment
- __alloc_size(1);
- /**
- * kmalloc - allocate memory
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate.
- *
- * kmalloc is the normal method of allocating memory
- * for objects smaller than page size in the kernel.
- *
- * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
- * bytes. For @size of power of two bytes, the alignment is also guaranteed
- * to be at least to the size.
- *
- * The @flags argument may be one of the GFP flags defined at
- * include/linux/gfp.h and described at
- * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
- *
- * The recommended usage of the @flags is described at
- * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
- *
- * Below is a brief outline of the most useful GFP flags
- *
- * %GFP_KERNEL
- * Allocate normal kernel ram. May sleep.
- *
- * %GFP_NOWAIT
- * Allocation will not sleep.
- *
- * %GFP_ATOMIC
- * Allocation will not sleep. May use emergency pools.
- *
- * %GFP_HIGHUSER
- * Allocate memory from high memory on behalf of user.
- *
- * Also it is possible to set different flags by OR'ing
- * in one or more of the following additional @flags:
- *
- * %__GFP_HIGH
- * This allocation has high priority and may use emergency pools.
- *
- * %__GFP_NOFAIL
- * Indicate that this allocation is in no way allowed to fail
- * (think twice before using).
- *
- * %__GFP_NORETRY
- * If memory is not immediately available,
- * then give up at once.
- *
- * %__GFP_NOWARN
- * If allocation fails, don't issue any warnings.
- *
- * %__GFP_RETRY_MAYFAIL
- * Try really hard to succeed the allocation but fail
- * eventually.
- */
- static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
- {
- if (__builtin_constant_p(size)) {
- #ifndef CONFIG_SLOB
- unsigned int index;
- #endif
- if (size > KMALLOC_MAX_CACHE_SIZE)
- return kmalloc_large(size, flags);
- #ifndef CONFIG_SLOB
- index = kmalloc_index(size);
- if (!index)
- return ZERO_SIZE_PTR;
- return kmalloc_trace(
- kmalloc_caches[kmalloc_type(flags)][index],
- flags, size);
- #endif
- }
- return __kmalloc(size, flags);
- }
- #ifndef CONFIG_SLOB
- static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
- {
- if (__builtin_constant_p(size)) {
- unsigned int index;
- if (size > KMALLOC_MAX_CACHE_SIZE)
- return kmalloc_large_node(size, flags, node);
- index = kmalloc_index(size);
- if (!index)
- return ZERO_SIZE_PTR;
- return kmalloc_node_trace(
- kmalloc_caches[kmalloc_type(flags)][index],
- flags, node, size);
- }
- return __kmalloc_node(size, flags, node);
- }
- #else
- static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
- {
- if (__builtin_constant_p(size) && size > KMALLOC_MAX_CACHE_SIZE)
- return kmalloc_large_node(size, flags, node);
- return __kmalloc_node(size, flags, node);
- }
- #endif
- /**
- * kmalloc_array - allocate memory for an array.
- * @n: number of elements.
- * @size: element size.
- * @flags: the type of memory to allocate (see kmalloc).
- */
- static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
- {
- size_t bytes;
- if (unlikely(check_mul_overflow(n, size, &bytes)))
- return NULL;
- if (__builtin_constant_p(n) && __builtin_constant_p(size))
- return kmalloc(bytes, flags);
- return __kmalloc(bytes, flags);
- }
- /**
- * krealloc_array - reallocate memory for an array.
- * @p: pointer to the memory chunk to reallocate
- * @new_n: new number of elements to alloc
- * @new_size: new size of a single member of the array
- * @flags: the type of memory to allocate (see kmalloc)
- */
- static inline __realloc_size(2, 3) void * __must_check krealloc_array(void *p,
- size_t new_n,
- size_t new_size,
- gfp_t flags)
- {
- size_t bytes;
- if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
- return NULL;
- return krealloc(p, bytes, flags);
- }
- /**
- * kcalloc - allocate memory for an array. The memory is set to zero.
- * @n: number of elements.
- * @size: element size.
- * @flags: the type of memory to allocate (see kmalloc).
- */
- static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
- {
- return kmalloc_array(n, size, flags | __GFP_ZERO);
- }
- void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
- unsigned long caller);
- #define kmalloc_node_track_caller(size, flags, node) \
- __kmalloc_node_track_caller(size, flags, node, \
- _RET_IP_)
- /*
- * kmalloc_track_caller is a special version of kmalloc that records the
- * calling function of the routine calling it for slab leak tracking instead
- * of just the calling function (confusing, eh?).
- * It's useful when the call to kmalloc comes from a widely-used standard
- * allocator where we care about the real place the memory allocation
- * request comes from.
- */
- #define kmalloc_track_caller(size, flags) \
- __kmalloc_node_track_caller(size, flags, \
- NUMA_NO_NODE, _RET_IP_)
- static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
- int node)
- {
- size_t bytes;
- if (unlikely(check_mul_overflow(n, size, &bytes)))
- return NULL;
- if (__builtin_constant_p(n) && __builtin_constant_p(size))
- return kmalloc_node(bytes, flags, node);
- return __kmalloc_node(bytes, flags, node);
- }
- static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
- {
- return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
- }
- /*
- * Shortcuts
- */
- static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
- {
- return kmem_cache_alloc(k, flags | __GFP_ZERO);
- }
- /**
- * kzalloc - allocate memory. The memory is set to zero.
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate (see kmalloc).
- */
- static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
- {
- return kmalloc(size, flags | __GFP_ZERO);
- }
- /**
- * kzalloc_node - allocate zeroed memory from a particular memory node.
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate (see kmalloc).
- * @node: memory node from which to allocate
- */
- static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
- {
- return kmalloc_node(size, flags | __GFP_ZERO, node);
- }
- extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
- static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
- {
- return kvmalloc_node(size, flags, NUMA_NO_NODE);
- }
- static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
- {
- return kvmalloc_node(size, flags | __GFP_ZERO, node);
- }
- static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
- {
- return kvmalloc(size, flags | __GFP_ZERO);
- }
- static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
- {
- size_t bytes;
- if (unlikely(check_mul_overflow(n, size, &bytes)))
- return NULL;
- return kvmalloc(bytes, flags);
- }
- static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
- {
- return kvmalloc_array(n, size, flags | __GFP_ZERO);
- }
- extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
- __realloc_size(3);
- extern void kvfree(const void *addr);
- extern void kvfree_sensitive(const void *addr, size_t len);
- unsigned int kmem_cache_size(struct kmem_cache *s);
- /**
- * kmalloc_size_roundup - Report allocation bucket size for the given size
- *
- * @size: Number of bytes to round up from.
- *
- * This returns the number of bytes that would be available in a kmalloc()
- * allocation of @size bytes. For example, a 126 byte request would be
- * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
- * for the general-purpose kmalloc()-based allocations, and is not for the
- * pre-sized kmem_cache_alloc()-based allocations.)
- *
- * Use this to kmalloc() the full bucket size ahead of time instead of using
- * ksize() to query the size after an allocation.
- */
- size_t kmalloc_size_roundup(size_t size);
- void __init kmem_cache_init_late(void);
- #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
- int slab_prepare_cpu(unsigned int cpu);
- int slab_dead_cpu(unsigned int cpu);
- #else
- #define slab_prepare_cpu NULL
- #define slab_dead_cpu NULL
- #endif
- #endif /* _LINUX_SLAB_H */
|