pid.h 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _LINUX_PID_H
  3. #define _LINUX_PID_H
  4. #include <linux/rculist.h>
  5. #include <linux/wait.h>
  6. #include <linux/refcount.h>
  7. enum pid_type
  8. {
  9. PIDTYPE_PID,
  10. PIDTYPE_TGID,
  11. PIDTYPE_PGID,
  12. PIDTYPE_SID,
  13. PIDTYPE_MAX,
  14. };
  15. /*
  16. * What is struct pid?
  17. *
  18. * A struct pid is the kernel's internal notion of a process identifier.
  19. * It refers to individual tasks, process groups, and sessions. While
  20. * there are processes attached to it the struct pid lives in a hash
  21. * table, so it and then the processes that it refers to can be found
  22. * quickly from the numeric pid value. The attached processes may be
  23. * quickly accessed by following pointers from struct pid.
  24. *
  25. * Storing pid_t values in the kernel and referring to them later has a
  26. * problem. The process originally with that pid may have exited and the
  27. * pid allocator wrapped, and another process could have come along
  28. * and been assigned that pid.
  29. *
  30. * Referring to user space processes by holding a reference to struct
  31. * task_struct has a problem. When the user space process exits
  32. * the now useless task_struct is still kept. A task_struct plus a
  33. * stack consumes around 10K of low kernel memory. More precisely
  34. * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
  35. * a struct pid is about 64 bytes.
  36. *
  37. * Holding a reference to struct pid solves both of these problems.
  38. * It is small so holding a reference does not consume a lot of
  39. * resources, and since a new struct pid is allocated when the numeric pid
  40. * value is reused (when pids wrap around) we don't mistakenly refer to new
  41. * processes.
  42. */
  43. /*
  44. * struct upid is used to get the id of the struct pid, as it is
  45. * seen in particular namespace. Later the struct pid is found with
  46. * find_pid_ns() using the int nr and struct pid_namespace *ns.
  47. */
  48. struct upid {
  49. int nr;
  50. struct pid_namespace *ns;
  51. };
  52. struct pid
  53. {
  54. refcount_t count;
  55. unsigned int level;
  56. spinlock_t lock;
  57. /* lists of tasks that use this pid */
  58. struct hlist_head tasks[PIDTYPE_MAX];
  59. struct hlist_head inodes;
  60. /* wait queue for pidfd notifications */
  61. wait_queue_head_t wait_pidfd;
  62. struct rcu_head rcu;
  63. struct upid numbers[1];
  64. };
  65. extern struct pid init_struct_pid;
  66. extern const struct file_operations pidfd_fops;
  67. struct file;
  68. extern struct pid *pidfd_pid(const struct file *file);
  69. struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags);
  70. struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags);
  71. int pidfd_create(struct pid *pid, unsigned int flags);
  72. static inline struct pid *get_pid(struct pid *pid)
  73. {
  74. if (pid)
  75. refcount_inc(&pid->count);
  76. return pid;
  77. }
  78. extern void put_pid(struct pid *pid);
  79. extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
  80. static inline bool pid_has_task(struct pid *pid, enum pid_type type)
  81. {
  82. return !hlist_empty(&pid->tasks[type]);
  83. }
  84. extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
  85. extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
  86. /*
  87. * these helpers must be called with the tasklist_lock write-held.
  88. */
  89. extern void attach_pid(struct task_struct *task, enum pid_type);
  90. extern void detach_pid(struct task_struct *task, enum pid_type);
  91. extern void change_pid(struct task_struct *task, enum pid_type,
  92. struct pid *pid);
  93. extern void exchange_tids(struct task_struct *task, struct task_struct *old);
  94. extern void transfer_pid(struct task_struct *old, struct task_struct *new,
  95. enum pid_type);
  96. struct pid_namespace;
  97. extern struct pid_namespace init_pid_ns;
  98. extern int pid_max;
  99. extern int pid_max_min, pid_max_max;
  100. /*
  101. * look up a PID in the hash table. Must be called with the tasklist_lock
  102. * or rcu_read_lock() held.
  103. *
  104. * find_pid_ns() finds the pid in the namespace specified
  105. * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
  106. *
  107. * see also find_task_by_vpid() set in include/linux/sched.h
  108. */
  109. extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
  110. extern struct pid *find_vpid(int nr);
  111. /*
  112. * Lookup a PID in the hash table, and return with it's count elevated.
  113. */
  114. extern struct pid *find_get_pid(int nr);
  115. extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
  116. extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
  117. size_t set_tid_size);
  118. extern void free_pid(struct pid *pid);
  119. extern void disable_pid_allocation(struct pid_namespace *ns);
  120. /*
  121. * ns_of_pid() returns the pid namespace in which the specified pid was
  122. * allocated.
  123. *
  124. * NOTE:
  125. * ns_of_pid() is expected to be called for a process (task) that has
  126. * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
  127. * is expected to be non-NULL. If @pid is NULL, caller should handle
  128. * the resulting NULL pid-ns.
  129. */
  130. static inline struct pid_namespace *ns_of_pid(struct pid *pid)
  131. {
  132. struct pid_namespace *ns = NULL;
  133. if (pid)
  134. ns = pid->numbers[pid->level].ns;
  135. return ns;
  136. }
  137. /*
  138. * is_child_reaper returns true if the pid is the init process
  139. * of the current namespace. As this one could be checked before
  140. * pid_ns->child_reaper is assigned in copy_process, we check
  141. * with the pid number.
  142. */
  143. static inline bool is_child_reaper(struct pid *pid)
  144. {
  145. return pid->numbers[pid->level].nr == 1;
  146. }
  147. /*
  148. * the helpers to get the pid's id seen from different namespaces
  149. *
  150. * pid_nr() : global id, i.e. the id seen from the init namespace;
  151. * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of
  152. * current.
  153. * pid_nr_ns() : id seen from the ns specified.
  154. *
  155. * see also task_xid_nr() etc in include/linux/sched.h
  156. */
  157. static inline pid_t pid_nr(struct pid *pid)
  158. {
  159. pid_t nr = 0;
  160. if (pid)
  161. nr = pid->numbers[0].nr;
  162. return nr;
  163. }
  164. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
  165. pid_t pid_vnr(struct pid *pid);
  166. #define do_each_pid_task(pid, type, task) \
  167. do { \
  168. if ((pid) != NULL) \
  169. hlist_for_each_entry_rcu((task), \
  170. &(pid)->tasks[type], pid_links[type]) {
  171. /*
  172. * Both old and new leaders may be attached to
  173. * the same pid in the middle of de_thread().
  174. */
  175. #define while_each_pid_task(pid, type, task) \
  176. if (type == PIDTYPE_PID) \
  177. break; \
  178. } \
  179. } while (0)
  180. #define do_each_pid_thread(pid, type, task) \
  181. do_each_pid_task(pid, type, task) { \
  182. struct task_struct *tg___ = task; \
  183. for_each_thread(tg___, task) {
  184. #define while_each_pid_thread(pid, type, task) \
  185. } \
  186. task = tg___; \
  187. } while_each_pid_task(pid, type, task)
  188. #endif /* _LINUX_PID_H */