ubi.h 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271
  1. /* SPDX-License-Identifier: GPL-2.0-or-later */
  2. /*
  3. * Copyright (c) International Business Machines Corp., 2006
  4. *
  5. * Author: Artem Bityutskiy (Битюцкий Артём)
  6. */
  7. #ifndef __LINUX_UBI_H__
  8. #define __LINUX_UBI_H__
  9. #include <linux/ioctl.h>
  10. #include <linux/types.h>
  11. #include <linux/scatterlist.h>
  12. #include <mtd/ubi-user.h>
  13. /* All voumes/LEBs */
  14. #define UBI_ALL -1
  15. /*
  16. * Maximum number of scatter gather list entries,
  17. * we use only 64 to have a lower memory foot print.
  18. */
  19. #define UBI_MAX_SG_COUNT 64
  20. /*
  21. * enum ubi_open_mode - UBI volume open mode constants.
  22. *
  23. * UBI_READONLY: read-only mode
  24. * UBI_READWRITE: read-write mode
  25. * UBI_EXCLUSIVE: exclusive mode
  26. * UBI_METAONLY: modify only the volume meta-data,
  27. * i.e. the data stored in the volume table, but not in any of volume LEBs.
  28. */
  29. enum {
  30. UBI_READONLY = 1,
  31. UBI_READWRITE,
  32. UBI_EXCLUSIVE,
  33. UBI_METAONLY
  34. };
  35. /**
  36. * struct ubi_volume_info - UBI volume description data structure.
  37. * @vol_id: volume ID
  38. * @ubi_num: UBI device number this volume belongs to
  39. * @size: how many physical eraseblocks are reserved for this volume
  40. * @used_bytes: how many bytes of data this volume contains
  41. * @used_ebs: how many physical eraseblocks of this volume actually contain any
  42. * data
  43. * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
  44. * @corrupted: non-zero if the volume is corrupted (static volumes only)
  45. * @upd_marker: non-zero if the volume has update marker set
  46. * @alignment: volume alignment
  47. * @usable_leb_size: how many bytes are available in logical eraseblocks of
  48. * this volume
  49. * @name_len: volume name length
  50. * @name: volume name
  51. * @cdev: UBI volume character device major and minor numbers
  52. *
  53. * The @corrupted flag is only relevant to static volumes and is always zero
  54. * for dynamic ones. This is because UBI does not care about dynamic volume
  55. * data protection and only cares about protecting static volume data.
  56. *
  57. * The @upd_marker flag is set if the volume update operation was interrupted.
  58. * Before touching the volume data during the update operation, UBI first sets
  59. * the update marker flag for this volume. If the volume update operation was
  60. * further interrupted, the update marker indicates this. If the update marker
  61. * is set, the contents of the volume is certainly damaged and a new volume
  62. * update operation has to be started.
  63. *
  64. * To put it differently, @corrupted and @upd_marker fields have different
  65. * semantics:
  66. * o the @corrupted flag means that this static volume is corrupted for some
  67. * reasons, but not because an interrupted volume update
  68. * o the @upd_marker field means that the volume is damaged because of an
  69. * interrupted update operation.
  70. *
  71. * I.e., the @corrupted flag is never set if the @upd_marker flag is set.
  72. *
  73. * The @used_bytes and @used_ebs fields are only really needed for static
  74. * volumes and contain the number of bytes stored in this static volume and how
  75. * many eraseblock this data occupies. In case of dynamic volumes, the
  76. * @used_bytes field is equivalent to @size*@usable_leb_size, and the @used_ebs
  77. * field is equivalent to @size.
  78. *
  79. * In general, logical eraseblock size is a property of the UBI device, not
  80. * of the UBI volume. Indeed, the logical eraseblock size depends on the
  81. * physical eraseblock size and on how much bytes UBI headers consume. But
  82. * because of the volume alignment (@alignment), the usable size of logical
  83. * eraseblocks if a volume may be less. The following equation is true:
  84. * @usable_leb_size = LEB size - (LEB size mod @alignment),
  85. * where LEB size is the logical eraseblock size defined by the UBI device.
  86. *
  87. * The alignment is multiple to the minimal flash input/output unit size or %1
  88. * if all the available space is used.
  89. *
  90. * To put this differently, alignment may be considered is a way to change
  91. * volume logical eraseblock sizes.
  92. */
  93. struct ubi_volume_info {
  94. int ubi_num;
  95. int vol_id;
  96. int size;
  97. long long used_bytes;
  98. int used_ebs;
  99. int vol_type;
  100. int corrupted;
  101. int upd_marker;
  102. int alignment;
  103. int usable_leb_size;
  104. int name_len;
  105. const char *name;
  106. dev_t cdev;
  107. };
  108. /**
  109. * struct ubi_sgl - UBI scatter gather list data structure.
  110. * @list_pos: current position in @sg[]
  111. * @page_pos: current position in @sg[@list_pos]
  112. * @sg: the scatter gather list itself
  113. *
  114. * ubi_sgl is a wrapper around a scatter list which keeps track of the
  115. * current position in the list and the current list item such that
  116. * it can be used across multiple ubi_leb_read_sg() calls.
  117. */
  118. struct ubi_sgl {
  119. int list_pos;
  120. int page_pos;
  121. struct scatterlist sg[UBI_MAX_SG_COUNT];
  122. };
  123. /**
  124. * ubi_sgl_init - initialize an UBI scatter gather list data structure.
  125. * @usgl: the UBI scatter gather struct itself
  126. *
  127. * Please note that you still have to use sg_init_table() or any adequate
  128. * function to initialize the unterlaying struct scatterlist.
  129. */
  130. static inline void ubi_sgl_init(struct ubi_sgl *usgl)
  131. {
  132. usgl->list_pos = 0;
  133. usgl->page_pos = 0;
  134. }
  135. /**
  136. * struct ubi_device_info - UBI device description data structure.
  137. * @ubi_num: ubi device number
  138. * @leb_size: logical eraseblock size on this UBI device
  139. * @leb_start: starting offset of logical eraseblocks within physical
  140. * eraseblocks
  141. * @min_io_size: minimal I/O unit size
  142. * @max_write_size: maximum amount of bytes the underlying flash can write at a
  143. * time (MTD write buffer size)
  144. * @ro_mode: if this device is in read-only mode
  145. * @cdev: UBI character device major and minor numbers
  146. *
  147. * Note, @leb_size is the logical eraseblock size offered by the UBI device.
  148. * Volumes of this UBI device may have smaller logical eraseblock size if their
  149. * alignment is not equivalent to %1.
  150. *
  151. * The @max_write_size field describes flash write maximum write unit. For
  152. * example, NOR flash allows for changing individual bytes, so @min_io_size is
  153. * %1. However, it does not mean than NOR flash has to write data byte-by-byte.
  154. * Instead, CFI NOR flashes have a write-buffer of, e.g., 64 bytes, and when
  155. * writing large chunks of data, they write 64-bytes at a time. Obviously, this
  156. * improves write throughput.
  157. *
  158. * Also, the MTD device may have N interleaved (striped) flash chips
  159. * underneath, in which case @min_io_size can be physical min. I/O size of
  160. * single flash chip, while @max_write_size can be N * @min_io_size.
  161. *
  162. * The @max_write_size field is always greater or equivalent to @min_io_size.
  163. * E.g., some NOR flashes may have (@min_io_size = 1, @max_write_size = 64). In
  164. * contrast, NAND flashes usually have @min_io_size = @max_write_size = NAND
  165. * page size.
  166. */
  167. struct ubi_device_info {
  168. int ubi_num;
  169. int leb_size;
  170. int leb_start;
  171. int min_io_size;
  172. int max_write_size;
  173. int ro_mode;
  174. dev_t cdev;
  175. };
  176. /*
  177. * Volume notification types.
  178. * @UBI_VOLUME_ADDED: a volume has been added (an UBI device was attached or a
  179. * volume was created)
  180. * @UBI_VOLUME_REMOVED: a volume has been removed (an UBI device was detached
  181. * or a volume was removed)
  182. * @UBI_VOLUME_RESIZED: a volume has been re-sized
  183. * @UBI_VOLUME_RENAMED: a volume has been re-named
  184. * @UBI_VOLUME_UPDATED: data has been written to a volume
  185. *
  186. * These constants define which type of event has happened when a volume
  187. * notification function is invoked.
  188. */
  189. enum {
  190. UBI_VOLUME_ADDED,
  191. UBI_VOLUME_REMOVED,
  192. UBI_VOLUME_RESIZED,
  193. UBI_VOLUME_RENAMED,
  194. UBI_VOLUME_UPDATED,
  195. };
  196. /*
  197. * struct ubi_notification - UBI notification description structure.
  198. * @di: UBI device description object
  199. * @vi: UBI volume description object
  200. *
  201. * UBI notifiers are called with a pointer to an object of this type. The
  202. * object describes the notification. Namely, it provides a description of the
  203. * UBI device and UBI volume the notification informs about.
  204. */
  205. struct ubi_notification {
  206. struct ubi_device_info di;
  207. struct ubi_volume_info vi;
  208. };
  209. /* UBI descriptor given to users when they open UBI volumes */
  210. struct ubi_volume_desc;
  211. int ubi_get_device_info(int ubi_num, struct ubi_device_info *di);
  212. void ubi_get_volume_info(struct ubi_volume_desc *desc,
  213. struct ubi_volume_info *vi);
  214. struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode);
  215. struct ubi_volume_desc *ubi_open_volume_nm(int ubi_num, const char *name,
  216. int mode);
  217. struct ubi_volume_desc *ubi_open_volume_path(const char *pathname, int mode);
  218. int ubi_register_volume_notifier(struct notifier_block *nb,
  219. int ignore_existing);
  220. int ubi_unregister_volume_notifier(struct notifier_block *nb);
  221. void ubi_close_volume(struct ubi_volume_desc *desc);
  222. int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
  223. int len, int check);
  224. int ubi_leb_read_sg(struct ubi_volume_desc *desc, int lnum, struct ubi_sgl *sgl,
  225. int offset, int len, int check);
  226. int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
  227. int offset, int len);
  228. int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
  229. int len);
  230. int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum);
  231. int ubi_leb_unmap(struct ubi_volume_desc *desc, int lnum);
  232. int ubi_leb_map(struct ubi_volume_desc *desc, int lnum);
  233. int ubi_is_mapped(struct ubi_volume_desc *desc, int lnum);
  234. int ubi_sync(int ubi_num);
  235. int ubi_flush(int ubi_num, int vol_id, int lnum);
  236. /*
  237. * This function is the same as the 'ubi_leb_read()' function, but it does not
  238. * provide the checking capability.
  239. */
  240. static inline int ubi_read(struct ubi_volume_desc *desc, int lnum, char *buf,
  241. int offset, int len)
  242. {
  243. return ubi_leb_read(desc, lnum, buf, offset, len, 0);
  244. }
  245. /*
  246. * This function is the same as the 'ubi_leb_read_sg()' function, but it does
  247. * not provide the checking capability.
  248. */
  249. static inline int ubi_read_sg(struct ubi_volume_desc *desc, int lnum,
  250. struct ubi_sgl *sgl, int offset, int len)
  251. {
  252. return ubi_leb_read_sg(desc, lnum, sgl, offset, len, 0);
  253. }
  254. #endif /* !__LINUX_UBI_H__ */