skcipher.h 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. /* SPDX-License-Identifier: GPL-2.0-or-later */
  2. /*
  3. * Symmetric key ciphers.
  4. *
  5. * Copyright (c) 2007-2015 Herbert Xu <[email protected]>
  6. */
  7. #ifndef _CRYPTO_SKCIPHER_H
  8. #define _CRYPTO_SKCIPHER_H
  9. #include <linux/container_of.h>
  10. #include <linux/crypto.h>
  11. #include <linux/slab.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. struct scatterlist;
  15. /**
  16. * struct skcipher_request - Symmetric key cipher request
  17. * @cryptlen: Number of bytes to encrypt or decrypt
  18. * @iv: Initialisation Vector
  19. * @src: Source SG list
  20. * @dst: Destination SG list
  21. * @base: Underlying async request
  22. * @__ctx: Start of private context data
  23. */
  24. struct skcipher_request {
  25. unsigned int cryptlen;
  26. u8 *iv;
  27. struct scatterlist *src;
  28. struct scatterlist *dst;
  29. struct crypto_async_request base;
  30. void *__ctx[] CRYPTO_MINALIGN_ATTR;
  31. };
  32. struct crypto_skcipher {
  33. unsigned int reqsize;
  34. struct crypto_tfm base;
  35. };
  36. struct crypto_sync_skcipher {
  37. struct crypto_skcipher base;
  38. };
  39. /**
  40. * struct skcipher_alg - symmetric key cipher definition
  41. * @min_keysize: Minimum key size supported by the transformation. This is the
  42. * smallest key length supported by this transformation algorithm.
  43. * This must be set to one of the pre-defined values as this is
  44. * not hardware specific. Possible values for this field can be
  45. * found via git grep "_MIN_KEY_SIZE" include/crypto/
  46. * @max_keysize: Maximum key size supported by the transformation. This is the
  47. * largest key length supported by this transformation algorithm.
  48. * This must be set to one of the pre-defined values as this is
  49. * not hardware specific. Possible values for this field can be
  50. * found via git grep "_MAX_KEY_SIZE" include/crypto/
  51. * @setkey: Set key for the transformation. This function is used to either
  52. * program a supplied key into the hardware or store the key in the
  53. * transformation context for programming it later. Note that this
  54. * function does modify the transformation context. This function can
  55. * be called multiple times during the existence of the transformation
  56. * object, so one must make sure the key is properly reprogrammed into
  57. * the hardware. This function is also responsible for checking the key
  58. * length for validity. In case a software fallback was put in place in
  59. * the @cra_init call, this function might need to use the fallback if
  60. * the algorithm doesn't support all of the key sizes.
  61. * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
  62. * the supplied scatterlist containing the blocks of data. The crypto
  63. * API consumer is responsible for aligning the entries of the
  64. * scatterlist properly and making sure the chunks are correctly
  65. * sized. In case a software fallback was put in place in the
  66. * @cra_init call, this function might need to use the fallback if
  67. * the algorithm doesn't support all of the key sizes. In case the
  68. * key was stored in transformation context, the key might need to be
  69. * re-programmed into the hardware in this function. This function
  70. * shall not modify the transformation context, as this function may
  71. * be called in parallel with the same transformation object.
  72. * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
  73. * and the conditions are exactly the same.
  74. * @init: Initialize the cryptographic transformation object. This function
  75. * is used to initialize the cryptographic transformation object.
  76. * This function is called only once at the instantiation time, right
  77. * after the transformation context was allocated. In case the
  78. * cryptographic hardware has some special requirements which need to
  79. * be handled by software, this function shall check for the precise
  80. * requirement of the transformation and put any software fallbacks
  81. * in place.
  82. * @exit: Deinitialize the cryptographic transformation object. This is a
  83. * counterpart to @init, used to remove various changes set in
  84. * @init.
  85. * @ivsize: IV size applicable for transformation. The consumer must provide an
  86. * IV of exactly that size to perform the encrypt or decrypt operation.
  87. * @chunksize: Equal to the block size except for stream ciphers such as
  88. * CTR where it is set to the underlying block size.
  89. * @walksize: Equal to the chunk size except in cases where the algorithm is
  90. * considerably more efficient if it can operate on multiple chunks
  91. * in parallel. Should be a multiple of chunksize.
  92. * @base: Definition of a generic crypto algorithm.
  93. *
  94. * All fields except @ivsize are mandatory and must be filled.
  95. */
  96. struct skcipher_alg {
  97. int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
  98. unsigned int keylen);
  99. int (*encrypt)(struct skcipher_request *req);
  100. int (*decrypt)(struct skcipher_request *req);
  101. int (*init)(struct crypto_skcipher *tfm);
  102. void (*exit)(struct crypto_skcipher *tfm);
  103. unsigned int min_keysize;
  104. unsigned int max_keysize;
  105. unsigned int ivsize;
  106. unsigned int chunksize;
  107. unsigned int walksize;
  108. struct crypto_alg base;
  109. };
  110. #define MAX_SYNC_SKCIPHER_REQSIZE 384
  111. /*
  112. * This performs a type-check against the "tfm" argument to make sure
  113. * all users have the correct skcipher tfm for doing on-stack requests.
  114. */
  115. #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
  116. char __##name##_desc[sizeof(struct skcipher_request) + \
  117. MAX_SYNC_SKCIPHER_REQSIZE + \
  118. (!(sizeof((struct crypto_sync_skcipher *)1 == \
  119. (typeof(tfm))1))) \
  120. ] CRYPTO_MINALIGN_ATTR; \
  121. struct skcipher_request *name = (void *)__##name##_desc
  122. /**
  123. * DOC: Symmetric Key Cipher API
  124. *
  125. * Symmetric key cipher API is used with the ciphers of type
  126. * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
  127. *
  128. * Asynchronous cipher operations imply that the function invocation for a
  129. * cipher request returns immediately before the completion of the operation.
  130. * The cipher request is scheduled as a separate kernel thread and therefore
  131. * load-balanced on the different CPUs via the process scheduler. To allow
  132. * the kernel crypto API to inform the caller about the completion of a cipher
  133. * request, the caller must provide a callback function. That function is
  134. * invoked with the cipher handle when the request completes.
  135. *
  136. * To support the asynchronous operation, additional information than just the
  137. * cipher handle must be supplied to the kernel crypto API. That additional
  138. * information is given by filling in the skcipher_request data structure.
  139. *
  140. * For the symmetric key cipher API, the state is maintained with the tfm
  141. * cipher handle. A single tfm can be used across multiple calls and in
  142. * parallel. For asynchronous block cipher calls, context data supplied and
  143. * only used by the caller can be referenced the request data structure in
  144. * addition to the IV used for the cipher request. The maintenance of such
  145. * state information would be important for a crypto driver implementer to
  146. * have, because when calling the callback function upon completion of the
  147. * cipher operation, that callback function may need some information about
  148. * which operation just finished if it invoked multiple in parallel. This
  149. * state information is unused by the kernel crypto API.
  150. */
  151. static inline struct crypto_skcipher *__crypto_skcipher_cast(
  152. struct crypto_tfm *tfm)
  153. {
  154. return container_of(tfm, struct crypto_skcipher, base);
  155. }
  156. /**
  157. * crypto_alloc_skcipher() - allocate symmetric key cipher handle
  158. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
  159. * skcipher cipher
  160. * @type: specifies the type of the cipher
  161. * @mask: specifies the mask for the cipher
  162. *
  163. * Allocate a cipher handle for an skcipher. The returned struct
  164. * crypto_skcipher is the cipher handle that is required for any subsequent
  165. * API invocation for that skcipher.
  166. *
  167. * Return: allocated cipher handle in case of success; IS_ERR() is true in case
  168. * of an error, PTR_ERR() returns the error code.
  169. */
  170. struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
  171. u32 type, u32 mask);
  172. struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
  173. u32 type, u32 mask);
  174. static inline struct crypto_tfm *crypto_skcipher_tfm(
  175. struct crypto_skcipher *tfm)
  176. {
  177. return &tfm->base;
  178. }
  179. /**
  180. * crypto_free_skcipher() - zeroize and free cipher handle
  181. * @tfm: cipher handle to be freed
  182. *
  183. * If @tfm is a NULL or error pointer, this function does nothing.
  184. */
  185. static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
  186. {
  187. crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
  188. }
  189. static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
  190. {
  191. crypto_free_skcipher(&tfm->base);
  192. }
  193. /**
  194. * crypto_has_skcipher() - Search for the availability of an skcipher.
  195. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
  196. * skcipher
  197. * @type: specifies the type of the skcipher
  198. * @mask: specifies the mask for the skcipher
  199. *
  200. * Return: true when the skcipher is known to the kernel crypto API; false
  201. * otherwise
  202. */
  203. int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask);
  204. static inline const char *crypto_skcipher_driver_name(
  205. struct crypto_skcipher *tfm)
  206. {
  207. return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
  208. }
  209. static inline struct skcipher_alg *crypto_skcipher_alg(
  210. struct crypto_skcipher *tfm)
  211. {
  212. return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
  213. struct skcipher_alg, base);
  214. }
  215. static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
  216. {
  217. return alg->ivsize;
  218. }
  219. /**
  220. * crypto_skcipher_ivsize() - obtain IV size
  221. * @tfm: cipher handle
  222. *
  223. * The size of the IV for the skcipher referenced by the cipher handle is
  224. * returned. This IV size may be zero if the cipher does not need an IV.
  225. *
  226. * Return: IV size in bytes
  227. */
  228. static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
  229. {
  230. return crypto_skcipher_alg(tfm)->ivsize;
  231. }
  232. static inline unsigned int crypto_sync_skcipher_ivsize(
  233. struct crypto_sync_skcipher *tfm)
  234. {
  235. return crypto_skcipher_ivsize(&tfm->base);
  236. }
  237. /**
  238. * crypto_skcipher_blocksize() - obtain block size of cipher
  239. * @tfm: cipher handle
  240. *
  241. * The block size for the skcipher referenced with the cipher handle is
  242. * returned. The caller may use that information to allocate appropriate
  243. * memory for the data returned by the encryption or decryption operation
  244. *
  245. * Return: block size of cipher
  246. */
  247. static inline unsigned int crypto_skcipher_blocksize(
  248. struct crypto_skcipher *tfm)
  249. {
  250. return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
  251. }
  252. static inline unsigned int crypto_skcipher_alg_chunksize(
  253. struct skcipher_alg *alg)
  254. {
  255. return alg->chunksize;
  256. }
  257. /**
  258. * crypto_skcipher_chunksize() - obtain chunk size
  259. * @tfm: cipher handle
  260. *
  261. * The block size is set to one for ciphers such as CTR. However,
  262. * you still need to provide incremental updates in multiples of
  263. * the underlying block size as the IV does not have sub-block
  264. * granularity. This is known in this API as the chunk size.
  265. *
  266. * Return: chunk size in bytes
  267. */
  268. static inline unsigned int crypto_skcipher_chunksize(
  269. struct crypto_skcipher *tfm)
  270. {
  271. return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
  272. }
  273. static inline unsigned int crypto_sync_skcipher_blocksize(
  274. struct crypto_sync_skcipher *tfm)
  275. {
  276. return crypto_skcipher_blocksize(&tfm->base);
  277. }
  278. static inline unsigned int crypto_skcipher_alignmask(
  279. struct crypto_skcipher *tfm)
  280. {
  281. return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
  282. }
  283. static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
  284. {
  285. return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
  286. }
  287. static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
  288. u32 flags)
  289. {
  290. crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
  291. }
  292. static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
  293. u32 flags)
  294. {
  295. crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
  296. }
  297. static inline u32 crypto_sync_skcipher_get_flags(
  298. struct crypto_sync_skcipher *tfm)
  299. {
  300. return crypto_skcipher_get_flags(&tfm->base);
  301. }
  302. static inline void crypto_sync_skcipher_set_flags(
  303. struct crypto_sync_skcipher *tfm, u32 flags)
  304. {
  305. crypto_skcipher_set_flags(&tfm->base, flags);
  306. }
  307. static inline void crypto_sync_skcipher_clear_flags(
  308. struct crypto_sync_skcipher *tfm, u32 flags)
  309. {
  310. crypto_skcipher_clear_flags(&tfm->base, flags);
  311. }
  312. /**
  313. * crypto_skcipher_setkey() - set key for cipher
  314. * @tfm: cipher handle
  315. * @key: buffer holding the key
  316. * @keylen: length of the key in bytes
  317. *
  318. * The caller provided key is set for the skcipher referenced by the cipher
  319. * handle.
  320. *
  321. * Note, the key length determines the cipher type. Many block ciphers implement
  322. * different cipher modes depending on the key size, such as AES-128 vs AES-192
  323. * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
  324. * is performed.
  325. *
  326. * Return: 0 if the setting of the key was successful; < 0 if an error occurred
  327. */
  328. int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
  329. const u8 *key, unsigned int keylen);
  330. static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
  331. const u8 *key, unsigned int keylen)
  332. {
  333. return crypto_skcipher_setkey(&tfm->base, key, keylen);
  334. }
  335. static inline unsigned int crypto_skcipher_min_keysize(
  336. struct crypto_skcipher *tfm)
  337. {
  338. return crypto_skcipher_alg(tfm)->min_keysize;
  339. }
  340. static inline unsigned int crypto_skcipher_max_keysize(
  341. struct crypto_skcipher *tfm)
  342. {
  343. return crypto_skcipher_alg(tfm)->max_keysize;
  344. }
  345. /**
  346. * crypto_skcipher_reqtfm() - obtain cipher handle from request
  347. * @req: skcipher_request out of which the cipher handle is to be obtained
  348. *
  349. * Return the crypto_skcipher handle when furnishing an skcipher_request
  350. * data structure.
  351. *
  352. * Return: crypto_skcipher handle
  353. */
  354. static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
  355. struct skcipher_request *req)
  356. {
  357. return __crypto_skcipher_cast(req->base.tfm);
  358. }
  359. static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
  360. struct skcipher_request *req)
  361. {
  362. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  363. return container_of(tfm, struct crypto_sync_skcipher, base);
  364. }
  365. /**
  366. * crypto_skcipher_encrypt() - encrypt plaintext
  367. * @req: reference to the skcipher_request handle that holds all information
  368. * needed to perform the cipher operation
  369. *
  370. * Encrypt plaintext data using the skcipher_request handle. That data
  371. * structure and how it is filled with data is discussed with the
  372. * skcipher_request_* functions.
  373. *
  374. * Return: 0 if the cipher operation was successful; < 0 if an error occurred
  375. */
  376. int crypto_skcipher_encrypt(struct skcipher_request *req);
  377. /**
  378. * crypto_skcipher_decrypt() - decrypt ciphertext
  379. * @req: reference to the skcipher_request handle that holds all information
  380. * needed to perform the cipher operation
  381. *
  382. * Decrypt ciphertext data using the skcipher_request handle. That data
  383. * structure and how it is filled with data is discussed with the
  384. * skcipher_request_* functions.
  385. *
  386. * Return: 0 if the cipher operation was successful; < 0 if an error occurred
  387. */
  388. int crypto_skcipher_decrypt(struct skcipher_request *req);
  389. /**
  390. * DOC: Symmetric Key Cipher Request Handle
  391. *
  392. * The skcipher_request data structure contains all pointers to data
  393. * required for the symmetric key cipher operation. This includes the cipher
  394. * handle (which can be used by multiple skcipher_request instances), pointer
  395. * to plaintext and ciphertext, asynchronous callback function, etc. It acts
  396. * as a handle to the skcipher_request_* API calls in a similar way as
  397. * skcipher handle to the crypto_skcipher_* API calls.
  398. */
  399. /**
  400. * crypto_skcipher_reqsize() - obtain size of the request data structure
  401. * @tfm: cipher handle
  402. *
  403. * Return: number of bytes
  404. */
  405. static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
  406. {
  407. return tfm->reqsize;
  408. }
  409. /**
  410. * skcipher_request_set_tfm() - update cipher handle reference in request
  411. * @req: request handle to be modified
  412. * @tfm: cipher handle that shall be added to the request handle
  413. *
  414. * Allow the caller to replace the existing skcipher handle in the request
  415. * data structure with a different one.
  416. */
  417. static inline void skcipher_request_set_tfm(struct skcipher_request *req,
  418. struct crypto_skcipher *tfm)
  419. {
  420. req->base.tfm = crypto_skcipher_tfm(tfm);
  421. }
  422. static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
  423. struct crypto_sync_skcipher *tfm)
  424. {
  425. skcipher_request_set_tfm(req, &tfm->base);
  426. }
  427. static inline struct skcipher_request *skcipher_request_cast(
  428. struct crypto_async_request *req)
  429. {
  430. return container_of(req, struct skcipher_request, base);
  431. }
  432. /**
  433. * skcipher_request_alloc() - allocate request data structure
  434. * @tfm: cipher handle to be registered with the request
  435. * @gfp: memory allocation flag that is handed to kmalloc by the API call.
  436. *
  437. * Allocate the request data structure that must be used with the skcipher
  438. * encrypt and decrypt API calls. During the allocation, the provided skcipher
  439. * handle is registered in the request data structure.
  440. *
  441. * Return: allocated request handle in case of success, or NULL if out of memory
  442. */
  443. static inline struct skcipher_request *skcipher_request_alloc(
  444. struct crypto_skcipher *tfm, gfp_t gfp)
  445. {
  446. struct skcipher_request *req;
  447. req = kmalloc(sizeof(struct skcipher_request) +
  448. crypto_skcipher_reqsize(tfm), gfp);
  449. if (likely(req))
  450. skcipher_request_set_tfm(req, tfm);
  451. return req;
  452. }
  453. /**
  454. * skcipher_request_free() - zeroize and free request data structure
  455. * @req: request data structure cipher handle to be freed
  456. */
  457. static inline void skcipher_request_free(struct skcipher_request *req)
  458. {
  459. kfree_sensitive(req);
  460. }
  461. static inline void skcipher_request_zero(struct skcipher_request *req)
  462. {
  463. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  464. memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
  465. }
  466. /**
  467. * skcipher_request_set_callback() - set asynchronous callback function
  468. * @req: request handle
  469. * @flags: specify zero or an ORing of the flags
  470. * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
  471. * increase the wait queue beyond the initial maximum size;
  472. * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
  473. * @compl: callback function pointer to be registered with the request handle
  474. * @data: The data pointer refers to memory that is not used by the kernel
  475. * crypto API, but provided to the callback function for it to use. Here,
  476. * the caller can provide a reference to memory the callback function can
  477. * operate on. As the callback function is invoked asynchronously to the
  478. * related functionality, it may need to access data structures of the
  479. * related functionality which can be referenced using this pointer. The
  480. * callback function can access the memory via the "data" field in the
  481. * crypto_async_request data structure provided to the callback function.
  482. *
  483. * This function allows setting the callback function that is triggered once the
  484. * cipher operation completes.
  485. *
  486. * The callback function is registered with the skcipher_request handle and
  487. * must comply with the following template::
  488. *
  489. * void callback_function(struct crypto_async_request *req, int error)
  490. */
  491. static inline void skcipher_request_set_callback(struct skcipher_request *req,
  492. u32 flags,
  493. crypto_completion_t compl,
  494. void *data)
  495. {
  496. req->base.complete = compl;
  497. req->base.data = data;
  498. req->base.flags = flags;
  499. }
  500. /**
  501. * skcipher_request_set_crypt() - set data buffers
  502. * @req: request handle
  503. * @src: source scatter / gather list
  504. * @dst: destination scatter / gather list
  505. * @cryptlen: number of bytes to process from @src
  506. * @iv: IV for the cipher operation which must comply with the IV size defined
  507. * by crypto_skcipher_ivsize
  508. *
  509. * This function allows setting of the source data and destination data
  510. * scatter / gather lists.
  511. *
  512. * For encryption, the source is treated as the plaintext and the
  513. * destination is the ciphertext. For a decryption operation, the use is
  514. * reversed - the source is the ciphertext and the destination is the plaintext.
  515. */
  516. static inline void skcipher_request_set_crypt(
  517. struct skcipher_request *req,
  518. struct scatterlist *src, struct scatterlist *dst,
  519. unsigned int cryptlen, void *iv)
  520. {
  521. req->src = src;
  522. req->dst = dst;
  523. req->cryptlen = cryptlen;
  524. req->iv = iv;
  525. }
  526. #endif /* _CRYPTO_SKCIPHER_H */