task_mmu.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/pagewalk.h>
  3. #include <linux/mm_inline.h>
  4. #include <linux/hugetlb.h>
  5. #include <linux/huge_mm.h>
  6. #include <linux/mount.h>
  7. #include <linux/seq_file.h>
  8. #include <linux/highmem.h>
  9. #include <linux/ptrace.h>
  10. #include <linux/slab.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/mempolicy.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/sched/mm.h>
  16. #include <linux/swapops.h>
  17. #include <linux/mmu_notifier.h>
  18. #include <linux/page_idle.h>
  19. #include <linux/shmem_fs.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/pkeys.h>
  22. #include <trace/hooks/mm.h>
  23. #ifdef CONFIG_KSU_SUSFS_SUS_KSTAT
  24. #include <linux/susfs_def.h>
  25. #endif
  26. #include <asm/elf.h>
  27. #include <asm/tlb.h>
  28. #include <asm/tlbflush.h>
  29. #include "internal.h"
  30. #define SEQ_PUT_DEC(str, val) \
  31. seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
  32. void task_mem(struct seq_file *m, struct mm_struct *mm)
  33. {
  34. unsigned long text, lib, swap, anon, file, shmem;
  35. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  36. anon = get_mm_counter(mm, MM_ANONPAGES);
  37. file = get_mm_counter(mm, MM_FILEPAGES);
  38. shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  39. /*
  40. * Note: to minimize their overhead, mm maintains hiwater_vm and
  41. * hiwater_rss only when about to *lower* total_vm or rss. Any
  42. * collector of these hiwater stats must therefore get total_vm
  43. * and rss too, which will usually be the higher. Barriers? not
  44. * worth the effort, such snapshots can always be inconsistent.
  45. */
  46. hiwater_vm = total_vm = mm->total_vm;
  47. if (hiwater_vm < mm->hiwater_vm)
  48. hiwater_vm = mm->hiwater_vm;
  49. hiwater_rss = total_rss = anon + file + shmem;
  50. if (hiwater_rss < mm->hiwater_rss)
  51. hiwater_rss = mm->hiwater_rss;
  52. /* split executable areas between text and lib */
  53. text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
  54. text = min(text, mm->exec_vm << PAGE_SHIFT);
  55. lib = (mm->exec_vm << PAGE_SHIFT) - text;
  56. swap = get_mm_counter(mm, MM_SWAPENTS);
  57. SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
  58. SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
  59. SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
  60. SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
  61. SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
  62. SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
  63. SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
  64. SEQ_PUT_DEC(" kB\nRssFile:\t", file);
  65. SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
  66. SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
  67. SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
  68. seq_put_decimal_ull_width(m,
  69. " kB\nVmExe:\t", text >> 10, 8);
  70. seq_put_decimal_ull_width(m,
  71. " kB\nVmLib:\t", lib >> 10, 8);
  72. seq_put_decimal_ull_width(m,
  73. " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
  74. SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
  75. seq_puts(m, " kB\n");
  76. hugetlb_report_usage(m, mm);
  77. }
  78. #undef SEQ_PUT_DEC
  79. unsigned long task_vsize(struct mm_struct *mm)
  80. {
  81. return PAGE_SIZE * mm->total_vm;
  82. }
  83. unsigned long task_statm(struct mm_struct *mm,
  84. unsigned long *shared, unsigned long *text,
  85. unsigned long *data, unsigned long *resident)
  86. {
  87. *shared = get_mm_counter(mm, MM_FILEPAGES) +
  88. get_mm_counter(mm, MM_SHMEMPAGES);
  89. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  90. >> PAGE_SHIFT;
  91. *data = mm->data_vm + mm->stack_vm;
  92. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  93. return mm->total_vm;
  94. }
  95. #ifdef CONFIG_NUMA
  96. /*
  97. * Save get_task_policy() for show_numa_map().
  98. */
  99. static void hold_task_mempolicy(struct proc_maps_private *priv)
  100. {
  101. struct task_struct *task = priv->task;
  102. task_lock(task);
  103. priv->task_mempolicy = get_task_policy(task);
  104. mpol_get(priv->task_mempolicy);
  105. task_unlock(task);
  106. }
  107. static void release_task_mempolicy(struct proc_maps_private *priv)
  108. {
  109. mpol_put(priv->task_mempolicy);
  110. }
  111. #else
  112. static void hold_task_mempolicy(struct proc_maps_private *priv)
  113. {
  114. }
  115. static void release_task_mempolicy(struct proc_maps_private *priv)
  116. {
  117. }
  118. #endif
  119. static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
  120. loff_t *ppos)
  121. {
  122. struct vm_area_struct *vma = vma_next(&priv->iter);
  123. if (vma) {
  124. *ppos = vma->vm_start;
  125. } else {
  126. *ppos = -2UL;
  127. vma = get_gate_vma(priv->mm);
  128. }
  129. return vma;
  130. }
  131. static void *m_start(struct seq_file *m, loff_t *ppos)
  132. {
  133. struct proc_maps_private *priv = m->private;
  134. unsigned long last_addr = *ppos;
  135. struct mm_struct *mm;
  136. /* See m_next(). Zero at the start or after lseek. */
  137. if (last_addr == -1UL)
  138. return NULL;
  139. priv->task = get_proc_task(priv->inode);
  140. if (!priv->task)
  141. return ERR_PTR(-ESRCH);
  142. mm = priv->mm;
  143. if (!mm || !mmget_not_zero(mm)) {
  144. put_task_struct(priv->task);
  145. priv->task = NULL;
  146. return NULL;
  147. }
  148. if (mmap_read_lock_killable(mm)) {
  149. mmput(mm);
  150. put_task_struct(priv->task);
  151. priv->task = NULL;
  152. return ERR_PTR(-EINTR);
  153. }
  154. vma_iter_init(&priv->iter, mm, last_addr);
  155. hold_task_mempolicy(priv);
  156. if (last_addr == -2UL)
  157. return get_gate_vma(mm);
  158. return proc_get_vma(priv, ppos);
  159. }
  160. static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
  161. {
  162. if (*ppos == -2UL) {
  163. *ppos = -1UL;
  164. return NULL;
  165. }
  166. return proc_get_vma(m->private, ppos);
  167. }
  168. static void m_stop(struct seq_file *m, void *v)
  169. {
  170. struct proc_maps_private *priv = m->private;
  171. struct mm_struct *mm = priv->mm;
  172. if (!priv->task)
  173. return;
  174. release_task_mempolicy(priv);
  175. mmap_read_unlock(mm);
  176. mmput(mm);
  177. put_task_struct(priv->task);
  178. priv->task = NULL;
  179. }
  180. static int proc_maps_open(struct inode *inode, struct file *file,
  181. const struct seq_operations *ops, int psize)
  182. {
  183. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  184. if (!priv)
  185. return -ENOMEM;
  186. priv->inode = inode;
  187. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  188. if (IS_ERR(priv->mm)) {
  189. int err = PTR_ERR(priv->mm);
  190. seq_release_private(inode, file);
  191. return err;
  192. }
  193. return 0;
  194. }
  195. static int proc_map_release(struct inode *inode, struct file *file)
  196. {
  197. struct seq_file *seq = file->private_data;
  198. struct proc_maps_private *priv = seq->private;
  199. if (priv->mm)
  200. mmdrop(priv->mm);
  201. return seq_release_private(inode, file);
  202. }
  203. static int do_maps_open(struct inode *inode, struct file *file,
  204. const struct seq_operations *ops)
  205. {
  206. return proc_maps_open(inode, file, ops,
  207. sizeof(struct proc_maps_private));
  208. }
  209. /*
  210. * Indicate if the VMA is a stack for the given task; for
  211. * /proc/PID/maps that is the stack of the main task.
  212. */
  213. static int is_stack(struct vm_area_struct *vma)
  214. {
  215. /*
  216. * We make no effort to guess what a given thread considers to be
  217. * its "stack". It's not even well-defined for programs written
  218. * languages like Go.
  219. */
  220. return vma->vm_start <= vma->vm_mm->start_stack &&
  221. vma->vm_end >= vma->vm_mm->start_stack;
  222. }
  223. static void show_vma_header_prefix(struct seq_file *m,
  224. unsigned long start, unsigned long end,
  225. vm_flags_t flags, unsigned long long pgoff,
  226. dev_t dev, unsigned long ino)
  227. {
  228. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  229. seq_put_hex_ll(m, NULL, start, 8);
  230. seq_put_hex_ll(m, "-", end, 8);
  231. seq_putc(m, ' ');
  232. seq_putc(m, flags & VM_READ ? 'r' : '-');
  233. seq_putc(m, flags & VM_WRITE ? 'w' : '-');
  234. seq_putc(m, flags & VM_EXEC ? 'x' : '-');
  235. seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
  236. seq_put_hex_ll(m, " ", pgoff, 8);
  237. seq_put_hex_ll(m, " ", MAJOR(dev), 2);
  238. seq_put_hex_ll(m, ":", MINOR(dev), 2);
  239. seq_put_decimal_ull(m, " ", ino);
  240. seq_putc(m, ' ');
  241. }
  242. #ifdef CONFIG_KSU_SUSFS_SUS_KSTAT
  243. extern void susfs_sus_ino_for_show_map_vma(unsigned long ino, dev_t *out_dev, unsigned long *out_ino);
  244. #endif
  245. static void
  246. show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
  247. {
  248. struct mm_struct *mm = vma->vm_mm;
  249. struct file *file = vma->vm_file;
  250. vm_flags_t flags = vma->vm_flags;
  251. unsigned long ino = 0;
  252. unsigned long long pgoff = 0;
  253. unsigned long start, end;
  254. dev_t dev = 0;
  255. const char *name = NULL;
  256. if (file) {
  257. struct inode *inode = file_inode(vma->vm_file);
  258. #ifdef CONFIG_KSU_SUSFS_SUS_KSTAT
  259. if (unlikely(inode->i_state & INODE_STATE_SUS_KSTAT)) {
  260. susfs_sus_ino_for_show_map_vma(inode->i_ino, &dev, &ino);
  261. goto bypass_orig_flow;
  262. }
  263. #endif
  264. dev = inode->i_sb->s_dev;
  265. ino = inode->i_ino;
  266. #ifdef CONFIG_KSU_SUSFS_SUS_KSTAT
  267. bypass_orig_flow:
  268. #endif
  269. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  270. }
  271. start = vma->vm_start;
  272. end = vma->vm_end;
  273. show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
  274. /*
  275. * Print the dentry name for named mappings, and a
  276. * special [heap] marker for the heap:
  277. */
  278. if (file) {
  279. seq_pad(m, ' ');
  280. seq_file_path(m, file, "\n");
  281. goto done;
  282. }
  283. if (vma->vm_ops && vma->vm_ops->name) {
  284. name = vma->vm_ops->name(vma);
  285. if (name)
  286. goto done;
  287. }
  288. name = arch_vma_name(vma);
  289. if (!name) {
  290. struct anon_vma_name *anon_name;
  291. if (!mm) {
  292. name = "[vdso]";
  293. goto done;
  294. }
  295. if (vma->vm_start <= mm->brk &&
  296. vma->vm_end >= mm->start_brk) {
  297. name = "[heap]";
  298. goto done;
  299. }
  300. if (is_stack(vma)) {
  301. name = "[stack]";
  302. goto done;
  303. }
  304. anon_name = anon_vma_name(vma);
  305. if (anon_name) {
  306. seq_pad(m, ' ');
  307. seq_printf(m, "[anon:%s]", anon_name->name);
  308. }
  309. }
  310. done:
  311. if (name) {
  312. seq_pad(m, ' ');
  313. seq_puts(m, name);
  314. }
  315. seq_putc(m, '\n');
  316. }
  317. static int show_map(struct seq_file *m, void *v)
  318. {
  319. show_map_vma(m, v);
  320. return 0;
  321. }
  322. static const struct seq_operations proc_pid_maps_op = {
  323. .start = m_start,
  324. .next = m_next,
  325. .stop = m_stop,
  326. .show = show_map
  327. };
  328. static int pid_maps_open(struct inode *inode, struct file *file)
  329. {
  330. return do_maps_open(inode, file, &proc_pid_maps_op);
  331. }
  332. const struct file_operations proc_pid_maps_operations = {
  333. .open = pid_maps_open,
  334. .read = seq_read,
  335. .llseek = seq_lseek,
  336. .release = proc_map_release,
  337. };
  338. /*
  339. * Proportional Set Size(PSS): my share of RSS.
  340. *
  341. * PSS of a process is the count of pages it has in memory, where each
  342. * page is divided by the number of processes sharing it. So if a
  343. * process has 1000 pages all to itself, and 1000 shared with one other
  344. * process, its PSS will be 1500.
  345. *
  346. * To keep (accumulated) division errors low, we adopt a 64bit
  347. * fixed-point pss counter to minimize division errors. So (pss >>
  348. * PSS_SHIFT) would be the real byte count.
  349. *
  350. * A shift of 12 before division means (assuming 4K page size):
  351. * - 1M 3-user-pages add up to 8KB errors;
  352. * - supports mapcount up to 2^24, or 16M;
  353. * - supports PSS up to 2^52 bytes, or 4PB.
  354. */
  355. #define PSS_SHIFT 12
  356. #ifdef CONFIG_PROC_PAGE_MONITOR
  357. struct mem_size_stats {
  358. unsigned long resident;
  359. unsigned long shared_clean;
  360. unsigned long shared_dirty;
  361. unsigned long private_clean;
  362. unsigned long private_dirty;
  363. unsigned long referenced;
  364. unsigned long anonymous;
  365. unsigned long lazyfree;
  366. unsigned long anonymous_thp;
  367. unsigned long shmem_thp;
  368. unsigned long file_thp;
  369. unsigned long swap;
  370. unsigned long writeback;
  371. unsigned long same;
  372. unsigned long huge;
  373. unsigned long shared_hugetlb;
  374. unsigned long private_hugetlb;
  375. u64 pss;
  376. u64 pss_anon;
  377. u64 pss_file;
  378. u64 pss_shmem;
  379. u64 pss_dirty;
  380. u64 pss_locked;
  381. u64 swap_pss;
  382. };
  383. static void smaps_page_accumulate(struct mem_size_stats *mss,
  384. struct page *page, unsigned long size, unsigned long pss,
  385. bool dirty, bool locked, bool private)
  386. {
  387. mss->pss += pss;
  388. if (PageAnon(page))
  389. mss->pss_anon += pss;
  390. else if (PageSwapBacked(page))
  391. mss->pss_shmem += pss;
  392. else
  393. mss->pss_file += pss;
  394. if (locked)
  395. mss->pss_locked += pss;
  396. if (dirty || PageDirty(page)) {
  397. mss->pss_dirty += pss;
  398. if (private)
  399. mss->private_dirty += size;
  400. else
  401. mss->shared_dirty += size;
  402. } else {
  403. if (private)
  404. mss->private_clean += size;
  405. else
  406. mss->shared_clean += size;
  407. }
  408. }
  409. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  410. bool compound, bool young, bool dirty, bool locked,
  411. bool migration)
  412. {
  413. int i, nr = compound ? compound_nr(page) : 1;
  414. unsigned long size = nr * PAGE_SIZE;
  415. /*
  416. * First accumulate quantities that depend only on |size| and the type
  417. * of the compound page.
  418. */
  419. if (PageAnon(page)) {
  420. mss->anonymous += size;
  421. if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
  422. mss->lazyfree += size;
  423. }
  424. mss->resident += size;
  425. /* Accumulate the size in pages that have been accessed. */
  426. if (young || page_is_young(page) || PageReferenced(page))
  427. mss->referenced += size;
  428. /*
  429. * Then accumulate quantities that may depend on sharing, or that may
  430. * differ page-by-page.
  431. *
  432. * page_count(page) == 1 guarantees the page is mapped exactly once.
  433. * If any subpage of the compound page mapped with PTE it would elevate
  434. * page_count().
  435. *
  436. * The page_mapcount() is called to get a snapshot of the mapcount.
  437. * Without holding the page lock this snapshot can be slightly wrong as
  438. * we cannot always read the mapcount atomically. It is not safe to
  439. * call page_mapcount() even with PTL held if the page is not mapped,
  440. * especially for migration entries. Treat regular migration entries
  441. * as mapcount == 1.
  442. */
  443. if ((page_count(page) == 1) || migration) {
  444. smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
  445. locked, true);
  446. return;
  447. }
  448. for (i = 0; i < nr; i++, page++) {
  449. int mapcount = page_mapcount(page);
  450. unsigned long pss = PAGE_SIZE << PSS_SHIFT;
  451. if (mapcount >= 2)
  452. pss /= mapcount;
  453. smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
  454. mapcount < 2);
  455. }
  456. }
  457. #ifdef CONFIG_SHMEM
  458. static int smaps_pte_hole(unsigned long addr, unsigned long end,
  459. __always_unused int depth, struct mm_walk *walk)
  460. {
  461. struct mem_size_stats *mss = walk->private;
  462. struct vm_area_struct *vma = walk->vma;
  463. mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
  464. linear_page_index(vma, addr),
  465. linear_page_index(vma, end));
  466. return 0;
  467. }
  468. #else
  469. #define smaps_pte_hole NULL
  470. #endif /* CONFIG_SHMEM */
  471. static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
  472. {
  473. #ifdef CONFIG_SHMEM
  474. if (walk->ops->pte_hole) {
  475. /* depth is not used */
  476. smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
  477. }
  478. #endif
  479. }
  480. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  481. struct mm_walk *walk)
  482. {
  483. struct mem_size_stats *mss = walk->private;
  484. struct vm_area_struct *vma = walk->vma;
  485. bool locked = !!(vma->vm_flags & VM_LOCKED);
  486. struct page *page = NULL;
  487. bool migration = false, young = false, dirty = false;
  488. if (pte_present(*pte)) {
  489. page = vm_normal_page(vma, addr, *pte);
  490. young = pte_young(*pte);
  491. dirty = pte_dirty(*pte);
  492. } else if (is_swap_pte(*pte)) {
  493. swp_entry_t swpent = pte_to_swp_entry(*pte);
  494. if (!non_swap_entry(swpent)) {
  495. int mapcount;
  496. mss->swap += PAGE_SIZE;
  497. mapcount = swp_swapcount(swpent);
  498. if (mapcount >= 2) {
  499. u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
  500. do_div(pss_delta, mapcount);
  501. mss->swap_pss += pss_delta;
  502. } else {
  503. mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
  504. }
  505. trace_android_vh_smaps_pte_entry(swpent,
  506. &mss->writeback,
  507. &mss->same, &mss->huge);
  508. } else if (is_pfn_swap_entry(swpent)) {
  509. if (is_migration_entry(swpent))
  510. migration = true;
  511. page = pfn_swap_entry_to_page(swpent);
  512. }
  513. } else {
  514. smaps_pte_hole_lookup(addr, walk);
  515. return;
  516. }
  517. if (!page)
  518. return;
  519. smaps_account(mss, page, false, young, dirty, locked, migration);
  520. }
  521. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  522. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  523. struct mm_walk *walk)
  524. {
  525. struct mem_size_stats *mss = walk->private;
  526. struct vm_area_struct *vma = walk->vma;
  527. bool locked = !!(vma->vm_flags & VM_LOCKED);
  528. struct page *page = NULL;
  529. bool migration = false;
  530. if (pmd_present(*pmd)) {
  531. /* FOLL_DUMP will return -EFAULT on huge zero page */
  532. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  533. } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
  534. swp_entry_t entry = pmd_to_swp_entry(*pmd);
  535. if (is_migration_entry(entry)) {
  536. migration = true;
  537. page = pfn_swap_entry_to_page(entry);
  538. }
  539. }
  540. if (IS_ERR_OR_NULL(page))
  541. return;
  542. if (PageAnon(page))
  543. mss->anonymous_thp += HPAGE_PMD_SIZE;
  544. else if (PageSwapBacked(page))
  545. mss->shmem_thp += HPAGE_PMD_SIZE;
  546. else if (is_zone_device_page(page))
  547. /* pass */;
  548. else
  549. mss->file_thp += HPAGE_PMD_SIZE;
  550. smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
  551. locked, migration);
  552. }
  553. #else
  554. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  555. struct mm_walk *walk)
  556. {
  557. }
  558. #endif
  559. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  560. struct mm_walk *walk)
  561. {
  562. struct vm_area_struct *vma = walk->vma;
  563. pte_t *pte;
  564. spinlock_t *ptl;
  565. ptl = pmd_trans_huge_lock(pmd, vma);
  566. if (ptl) {
  567. smaps_pmd_entry(pmd, addr, walk);
  568. spin_unlock(ptl);
  569. goto out;
  570. }
  571. if (pmd_trans_unstable(pmd))
  572. goto out;
  573. /*
  574. * The mmap_lock held all the way back in m_start() is what
  575. * keeps khugepaged out of here and from collapsing things
  576. * in here.
  577. */
  578. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  579. for (; addr != end; pte++, addr += PAGE_SIZE)
  580. smaps_pte_entry(pte, addr, walk);
  581. pte_unmap_unlock(pte - 1, ptl);
  582. out:
  583. cond_resched();
  584. return 0;
  585. }
  586. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  587. {
  588. /*
  589. * Don't forget to update Documentation/ on changes.
  590. */
  591. static const char mnemonics[BITS_PER_LONG][2] = {
  592. /*
  593. * In case if we meet a flag we don't know about.
  594. */
  595. [0 ... (BITS_PER_LONG-1)] = "??",
  596. [ilog2(VM_READ)] = "rd",
  597. [ilog2(VM_WRITE)] = "wr",
  598. [ilog2(VM_EXEC)] = "ex",
  599. [ilog2(VM_SHARED)] = "sh",
  600. [ilog2(VM_MAYREAD)] = "mr",
  601. [ilog2(VM_MAYWRITE)] = "mw",
  602. [ilog2(VM_MAYEXEC)] = "me",
  603. [ilog2(VM_MAYSHARE)] = "ms",
  604. [ilog2(VM_GROWSDOWN)] = "gd",
  605. [ilog2(VM_PFNMAP)] = "pf",
  606. [ilog2(VM_LOCKED)] = "lo",
  607. [ilog2(VM_IO)] = "io",
  608. [ilog2(VM_SEQ_READ)] = "sr",
  609. [ilog2(VM_RAND_READ)] = "rr",
  610. [ilog2(VM_DONTCOPY)] = "dc",
  611. [ilog2(VM_DONTEXPAND)] = "de",
  612. [ilog2(VM_ACCOUNT)] = "ac",
  613. [ilog2(VM_NORESERVE)] = "nr",
  614. [ilog2(VM_HUGETLB)] = "ht",
  615. [ilog2(VM_SYNC)] = "sf",
  616. [ilog2(VM_ARCH_1)] = "ar",
  617. [ilog2(VM_WIPEONFORK)] = "wf",
  618. [ilog2(VM_DONTDUMP)] = "dd",
  619. #ifdef CONFIG_ARM64_BTI
  620. [ilog2(VM_ARM64_BTI)] = "bt",
  621. #endif
  622. #ifdef CONFIG_MEM_SOFT_DIRTY
  623. [ilog2(VM_SOFTDIRTY)] = "sd",
  624. #endif
  625. [ilog2(VM_MIXEDMAP)] = "mm",
  626. [ilog2(VM_HUGEPAGE)] = "hg",
  627. [ilog2(VM_NOHUGEPAGE)] = "nh",
  628. [ilog2(VM_MERGEABLE)] = "mg",
  629. [ilog2(VM_UFFD_MISSING)]= "um",
  630. [ilog2(VM_UFFD_WP)] = "uw",
  631. #ifdef CONFIG_ARM64_MTE
  632. [ilog2(VM_MTE)] = "mt",
  633. [ilog2(VM_MTE_ALLOWED)] = "",
  634. #endif
  635. #ifdef CONFIG_ARCH_HAS_PKEYS
  636. /* These come out via ProtectionKey: */
  637. [ilog2(VM_PKEY_BIT0)] = "",
  638. [ilog2(VM_PKEY_BIT1)] = "",
  639. [ilog2(VM_PKEY_BIT2)] = "",
  640. [ilog2(VM_PKEY_BIT3)] = "",
  641. #if VM_PKEY_BIT4
  642. [ilog2(VM_PKEY_BIT4)] = "",
  643. #endif
  644. #endif /* CONFIG_ARCH_HAS_PKEYS */
  645. #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
  646. [ilog2(VM_UFFD_MINOR)] = "ui",
  647. #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
  648. };
  649. size_t i;
  650. seq_puts(m, "VmFlags: ");
  651. for (i = 0; i < BITS_PER_LONG; i++) {
  652. if (!mnemonics[i][0])
  653. continue;
  654. if (vma->vm_flags & (1UL << i)) {
  655. seq_putc(m, mnemonics[i][0]);
  656. seq_putc(m, mnemonics[i][1]);
  657. seq_putc(m, ' ');
  658. }
  659. }
  660. seq_putc(m, '\n');
  661. }
  662. #ifdef CONFIG_HUGETLB_PAGE
  663. static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
  664. unsigned long addr, unsigned long end,
  665. struct mm_walk *walk)
  666. {
  667. struct mem_size_stats *mss = walk->private;
  668. struct vm_area_struct *vma = walk->vma;
  669. struct page *page = NULL;
  670. if (pte_present(*pte)) {
  671. page = vm_normal_page(vma, addr, *pte);
  672. } else if (is_swap_pte(*pte)) {
  673. swp_entry_t swpent = pte_to_swp_entry(*pte);
  674. if (is_pfn_swap_entry(swpent))
  675. page = pfn_swap_entry_to_page(swpent);
  676. }
  677. if (page) {
  678. if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
  679. mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
  680. else
  681. mss->private_hugetlb += huge_page_size(hstate_vma(vma));
  682. }
  683. return 0;
  684. }
  685. #else
  686. #define smaps_hugetlb_range NULL
  687. #endif /* HUGETLB_PAGE */
  688. static const struct mm_walk_ops smaps_walk_ops = {
  689. .pmd_entry = smaps_pte_range,
  690. .hugetlb_entry = smaps_hugetlb_range,
  691. .walk_lock = PGWALK_RDLOCK,
  692. };
  693. static const struct mm_walk_ops smaps_shmem_walk_ops = {
  694. .pmd_entry = smaps_pte_range,
  695. .hugetlb_entry = smaps_hugetlb_range,
  696. .pte_hole = smaps_pte_hole,
  697. .walk_lock = PGWALK_RDLOCK,
  698. };
  699. /*
  700. * Gather mem stats from @vma with the indicated beginning
  701. * address @start, and keep them in @mss.
  702. *
  703. * Use vm_start of @vma as the beginning address if @start is 0.
  704. */
  705. static void smap_gather_stats(struct vm_area_struct *vma,
  706. struct mem_size_stats *mss, unsigned long start)
  707. {
  708. const struct mm_walk_ops *ops = &smaps_walk_ops;
  709. /* Invalid start */
  710. if (start >= vma->vm_end)
  711. return;
  712. #ifdef CONFIG_SHMEM
  713. if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
  714. /*
  715. * For shared or readonly shmem mappings we know that all
  716. * swapped out pages belong to the shmem object, and we can
  717. * obtain the swap value much more efficiently. For private
  718. * writable mappings, we might have COW pages that are
  719. * not affected by the parent swapped out pages of the shmem
  720. * object, so we have to distinguish them during the page walk.
  721. * Unless we know that the shmem object (or the part mapped by
  722. * our VMA) has no swapped out pages at all.
  723. */
  724. unsigned long shmem_swapped = shmem_swap_usage(vma);
  725. if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
  726. !(vma->vm_flags & VM_WRITE))) {
  727. mss->swap += shmem_swapped;
  728. } else {
  729. ops = &smaps_shmem_walk_ops;
  730. }
  731. }
  732. #endif
  733. /* mmap_lock is held in m_start */
  734. if (!start)
  735. walk_page_vma(vma, ops, mss);
  736. else
  737. walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
  738. }
  739. #define SEQ_PUT_DEC(str, val) \
  740. seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
  741. /* Show the contents common for smaps and smaps_rollup */
  742. static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
  743. bool rollup_mode)
  744. {
  745. SEQ_PUT_DEC("Rss: ", mss->resident);
  746. SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
  747. SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT);
  748. if (rollup_mode) {
  749. /*
  750. * These are meaningful only for smaps_rollup, otherwise two of
  751. * them are zero, and the other one is the same as Pss.
  752. */
  753. SEQ_PUT_DEC(" kB\nPss_Anon: ",
  754. mss->pss_anon >> PSS_SHIFT);
  755. SEQ_PUT_DEC(" kB\nPss_File: ",
  756. mss->pss_file >> PSS_SHIFT);
  757. SEQ_PUT_DEC(" kB\nPss_Shmem: ",
  758. mss->pss_shmem >> PSS_SHIFT);
  759. }
  760. SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
  761. SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
  762. SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
  763. SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
  764. SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
  765. SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
  766. SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
  767. SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
  768. SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
  769. SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
  770. SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
  771. seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
  772. mss->private_hugetlb >> 10, 7);
  773. SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
  774. SEQ_PUT_DEC(" kB\nSwapPss: ",
  775. mss->swap_pss >> PSS_SHIFT);
  776. SEQ_PUT_DEC(" kB\nLocked: ",
  777. mss->pss_locked >> PSS_SHIFT);
  778. seq_puts(m, " kB\n");
  779. trace_android_vh_show_smap(m, mss->writeback, mss->same, mss->huge);
  780. }
  781. static int show_smap(struct seq_file *m, void *v)
  782. {
  783. struct vm_area_struct *vma = v;
  784. struct mem_size_stats mss;
  785. memset(&mss, 0, sizeof(mss));
  786. smap_gather_stats(vma, &mss, 0);
  787. show_map_vma(m, vma);
  788. SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
  789. SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
  790. SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
  791. seq_puts(m, " kB\n");
  792. __show_smap(m, &mss, false);
  793. seq_printf(m, "THPeligible: %d\n",
  794. hugepage_vma_check(vma, vma->vm_flags, true, false, true));
  795. if (arch_pkeys_enabled())
  796. seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
  797. show_smap_vma_flags(m, vma);
  798. return 0;
  799. }
  800. static int show_smaps_rollup(struct seq_file *m, void *v)
  801. {
  802. struct proc_maps_private *priv = m->private;
  803. struct mem_size_stats mss;
  804. struct mm_struct *mm = priv->mm;
  805. struct vm_area_struct *vma;
  806. unsigned long vma_start = 0, last_vma_end = 0;
  807. int ret = 0;
  808. MA_STATE(mas, &mm->mm_mt, 0, 0);
  809. priv->task = get_proc_task(priv->inode);
  810. if (!priv->task)
  811. return -ESRCH;
  812. if (!mm || !mmget_not_zero(mm)) {
  813. ret = -ESRCH;
  814. goto out_put_task;
  815. }
  816. memset(&mss, 0, sizeof(mss));
  817. ret = mmap_read_lock_killable(mm);
  818. if (ret)
  819. goto out_put_mm;
  820. hold_task_mempolicy(priv);
  821. vma = mas_find(&mas, ULONG_MAX);
  822. if (unlikely(!vma))
  823. goto empty_set;
  824. vma_start = vma->vm_start;
  825. do {
  826. smap_gather_stats(vma, &mss, 0);
  827. last_vma_end = vma->vm_end;
  828. /*
  829. * Release mmap_lock temporarily if someone wants to
  830. * access it for write request.
  831. */
  832. if (mmap_lock_is_contended(mm)) {
  833. mas_pause(&mas);
  834. mmap_read_unlock(mm);
  835. ret = mmap_read_lock_killable(mm);
  836. if (ret) {
  837. release_task_mempolicy(priv);
  838. goto out_put_mm;
  839. }
  840. /*
  841. * After dropping the lock, there are four cases to
  842. * consider. See the following example for explanation.
  843. *
  844. * +------+------+-----------+
  845. * | VMA1 | VMA2 | VMA3 |
  846. * +------+------+-----------+
  847. * | | | |
  848. * 4k 8k 16k 400k
  849. *
  850. * Suppose we drop the lock after reading VMA2 due to
  851. * contention, then we get:
  852. *
  853. * last_vma_end = 16k
  854. *
  855. * 1) VMA2 is freed, but VMA3 exists:
  856. *
  857. * find_vma(mm, 16k - 1) will return VMA3.
  858. * In this case, just continue from VMA3.
  859. *
  860. * 2) VMA2 still exists:
  861. *
  862. * find_vma(mm, 16k - 1) will return VMA2.
  863. * Iterate the loop like the original one.
  864. *
  865. * 3) No more VMAs can be found:
  866. *
  867. * find_vma(mm, 16k - 1) will return NULL.
  868. * No more things to do, just break.
  869. *
  870. * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
  871. *
  872. * find_vma(mm, 16k - 1) will return VMA' whose range
  873. * contains last_vma_end.
  874. * Iterate VMA' from last_vma_end.
  875. */
  876. vma = mas_find(&mas, ULONG_MAX);
  877. /* Case 3 above */
  878. if (!vma)
  879. break;
  880. /* Case 1 above */
  881. if (vma->vm_start >= last_vma_end)
  882. continue;
  883. /* Case 4 above */
  884. if (vma->vm_end > last_vma_end)
  885. smap_gather_stats(vma, &mss, last_vma_end);
  886. }
  887. /* Case 2 above */
  888. } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
  889. empty_set:
  890. show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
  891. seq_pad(m, ' ');
  892. seq_puts(m, "[rollup]\n");
  893. __show_smap(m, &mss, true);
  894. release_task_mempolicy(priv);
  895. mmap_read_unlock(mm);
  896. out_put_mm:
  897. mmput(mm);
  898. out_put_task:
  899. put_task_struct(priv->task);
  900. priv->task = NULL;
  901. return ret;
  902. }
  903. #undef SEQ_PUT_DEC
  904. static const struct seq_operations proc_pid_smaps_op = {
  905. .start = m_start,
  906. .next = m_next,
  907. .stop = m_stop,
  908. .show = show_smap
  909. };
  910. static int pid_smaps_open(struct inode *inode, struct file *file)
  911. {
  912. return do_maps_open(inode, file, &proc_pid_smaps_op);
  913. }
  914. static int smaps_rollup_open(struct inode *inode, struct file *file)
  915. {
  916. int ret;
  917. struct proc_maps_private *priv;
  918. priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
  919. if (!priv)
  920. return -ENOMEM;
  921. ret = single_open(file, show_smaps_rollup, priv);
  922. if (ret)
  923. goto out_free;
  924. priv->inode = inode;
  925. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  926. if (IS_ERR(priv->mm)) {
  927. ret = PTR_ERR(priv->mm);
  928. single_release(inode, file);
  929. goto out_free;
  930. }
  931. return 0;
  932. out_free:
  933. kfree(priv);
  934. return ret;
  935. }
  936. static int smaps_rollup_release(struct inode *inode, struct file *file)
  937. {
  938. struct seq_file *seq = file->private_data;
  939. struct proc_maps_private *priv = seq->private;
  940. if (priv->mm)
  941. mmdrop(priv->mm);
  942. kfree(priv);
  943. return single_release(inode, file);
  944. }
  945. const struct file_operations proc_pid_smaps_operations = {
  946. .open = pid_smaps_open,
  947. .read = seq_read,
  948. .llseek = seq_lseek,
  949. .release = proc_map_release,
  950. };
  951. const struct file_operations proc_pid_smaps_rollup_operations = {
  952. .open = smaps_rollup_open,
  953. .read = seq_read,
  954. .llseek = seq_lseek,
  955. .release = smaps_rollup_release,
  956. };
  957. enum clear_refs_types {
  958. CLEAR_REFS_ALL = 1,
  959. CLEAR_REFS_ANON,
  960. CLEAR_REFS_MAPPED,
  961. CLEAR_REFS_SOFT_DIRTY,
  962. CLEAR_REFS_MM_HIWATER_RSS,
  963. CLEAR_REFS_LAST,
  964. };
  965. struct clear_refs_private {
  966. enum clear_refs_types type;
  967. };
  968. #ifdef CONFIG_MEM_SOFT_DIRTY
  969. static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  970. {
  971. struct page *page;
  972. if (!pte_write(pte))
  973. return false;
  974. if (!is_cow_mapping(vma->vm_flags))
  975. return false;
  976. if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
  977. return false;
  978. page = vm_normal_page(vma, addr, pte);
  979. if (!page)
  980. return false;
  981. return page_maybe_dma_pinned(page);
  982. }
  983. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  984. unsigned long addr, pte_t *pte)
  985. {
  986. /*
  987. * The soft-dirty tracker uses #PF-s to catch writes
  988. * to pages, so write-protect the pte as well. See the
  989. * Documentation/admin-guide/mm/soft-dirty.rst for full description
  990. * of how soft-dirty works.
  991. */
  992. pte_t ptent = *pte;
  993. if (pte_present(ptent)) {
  994. pte_t old_pte;
  995. if (pte_is_pinned(vma, addr, ptent))
  996. return;
  997. old_pte = ptep_modify_prot_start(vma, addr, pte);
  998. ptent = pte_wrprotect(old_pte);
  999. ptent = pte_clear_soft_dirty(ptent);
  1000. ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
  1001. } else if (is_swap_pte(ptent)) {
  1002. ptent = pte_swp_clear_soft_dirty(ptent);
  1003. set_pte_at(vma->vm_mm, addr, pte, ptent);
  1004. }
  1005. }
  1006. #else
  1007. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  1008. unsigned long addr, pte_t *pte)
  1009. {
  1010. }
  1011. #endif
  1012. #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
  1013. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  1014. unsigned long addr, pmd_t *pmdp)
  1015. {
  1016. pmd_t old, pmd = *pmdp;
  1017. if (pmd_present(pmd)) {
  1018. /* See comment in change_huge_pmd() */
  1019. old = pmdp_invalidate(vma, addr, pmdp);
  1020. if (pmd_dirty(old))
  1021. pmd = pmd_mkdirty(pmd);
  1022. if (pmd_young(old))
  1023. pmd = pmd_mkyoung(pmd);
  1024. pmd = pmd_wrprotect(pmd);
  1025. pmd = pmd_clear_soft_dirty(pmd);
  1026. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  1027. } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
  1028. pmd = pmd_swp_clear_soft_dirty(pmd);
  1029. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  1030. }
  1031. }
  1032. #else
  1033. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  1034. unsigned long addr, pmd_t *pmdp)
  1035. {
  1036. }
  1037. #endif
  1038. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  1039. unsigned long end, struct mm_walk *walk)
  1040. {
  1041. struct clear_refs_private *cp = walk->private;
  1042. struct vm_area_struct *vma = walk->vma;
  1043. pte_t *pte, ptent;
  1044. spinlock_t *ptl;
  1045. struct page *page;
  1046. ptl = pmd_trans_huge_lock(pmd, vma);
  1047. if (ptl) {
  1048. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  1049. clear_soft_dirty_pmd(vma, addr, pmd);
  1050. goto out;
  1051. }
  1052. if (!pmd_present(*pmd))
  1053. goto out;
  1054. page = pmd_page(*pmd);
  1055. /* Clear accessed and referenced bits. */
  1056. pmdp_test_and_clear_young(vma, addr, pmd);
  1057. test_and_clear_page_young(page);
  1058. ClearPageReferenced(page);
  1059. out:
  1060. spin_unlock(ptl);
  1061. return 0;
  1062. }
  1063. if (pmd_trans_unstable(pmd))
  1064. return 0;
  1065. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  1066. for (; addr != end; pte++, addr += PAGE_SIZE) {
  1067. ptent = *pte;
  1068. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  1069. clear_soft_dirty(vma, addr, pte);
  1070. continue;
  1071. }
  1072. if (!pte_present(ptent))
  1073. continue;
  1074. page = vm_normal_page(vma, addr, ptent);
  1075. if (!page)
  1076. continue;
  1077. /* Clear accessed and referenced bits. */
  1078. ptep_test_and_clear_young(vma, addr, pte);
  1079. test_and_clear_page_young(page);
  1080. ClearPageReferenced(page);
  1081. }
  1082. pte_unmap_unlock(pte - 1, ptl);
  1083. cond_resched();
  1084. return 0;
  1085. }
  1086. static int clear_refs_test_walk(unsigned long start, unsigned long end,
  1087. struct mm_walk *walk)
  1088. {
  1089. struct clear_refs_private *cp = walk->private;
  1090. struct vm_area_struct *vma = walk->vma;
  1091. if (vma->vm_flags & VM_PFNMAP)
  1092. return 1;
  1093. /*
  1094. * Writing 1 to /proc/pid/clear_refs affects all pages.
  1095. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
  1096. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
  1097. * Writing 4 to /proc/pid/clear_refs affects all pages.
  1098. */
  1099. if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
  1100. return 1;
  1101. if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
  1102. return 1;
  1103. return 0;
  1104. }
  1105. static const struct mm_walk_ops clear_refs_walk_ops = {
  1106. .pmd_entry = clear_refs_pte_range,
  1107. .test_walk = clear_refs_test_walk,
  1108. .walk_lock = PGWALK_WRLOCK,
  1109. };
  1110. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  1111. size_t count, loff_t *ppos)
  1112. {
  1113. struct task_struct *task;
  1114. char buffer[PROC_NUMBUF];
  1115. struct mm_struct *mm;
  1116. struct vm_area_struct *vma;
  1117. enum clear_refs_types type;
  1118. int itype;
  1119. int rv;
  1120. memset(buffer, 0, sizeof(buffer));
  1121. if (count > sizeof(buffer) - 1)
  1122. count = sizeof(buffer) - 1;
  1123. if (copy_from_user(buffer, buf, count))
  1124. return -EFAULT;
  1125. rv = kstrtoint(strstrip(buffer), 10, &itype);
  1126. if (rv < 0)
  1127. return rv;
  1128. type = (enum clear_refs_types)itype;
  1129. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  1130. return -EINVAL;
  1131. task = get_proc_task(file_inode(file));
  1132. if (!task)
  1133. return -ESRCH;
  1134. mm = get_task_mm(task);
  1135. if (mm) {
  1136. MA_STATE(mas, &mm->mm_mt, 0, 0);
  1137. struct mmu_notifier_range range;
  1138. struct clear_refs_private cp = {
  1139. .type = type,
  1140. };
  1141. if (mmap_write_lock_killable(mm)) {
  1142. count = -EINTR;
  1143. goto out_mm;
  1144. }
  1145. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  1146. /*
  1147. * Writing 5 to /proc/pid/clear_refs resets the peak
  1148. * resident set size to this mm's current rss value.
  1149. */
  1150. reset_mm_hiwater_rss(mm);
  1151. goto out_unlock;
  1152. }
  1153. if (type == CLEAR_REFS_SOFT_DIRTY) {
  1154. mas_for_each(&mas, vma, ULONG_MAX) {
  1155. if (!(vma->vm_flags & VM_SOFTDIRTY))
  1156. continue;
  1157. vm_flags_clear(vma, VM_SOFTDIRTY);
  1158. vma_set_page_prot(vma);
  1159. }
  1160. inc_tlb_flush_pending(mm);
  1161. mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
  1162. 0, NULL, mm, 0, -1UL);
  1163. mmu_notifier_invalidate_range_start(&range);
  1164. }
  1165. walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
  1166. if (type == CLEAR_REFS_SOFT_DIRTY) {
  1167. mmu_notifier_invalidate_range_end(&range);
  1168. flush_tlb_mm(mm);
  1169. dec_tlb_flush_pending(mm);
  1170. }
  1171. out_unlock:
  1172. mmap_write_unlock(mm);
  1173. out_mm:
  1174. mmput(mm);
  1175. }
  1176. put_task_struct(task);
  1177. return count;
  1178. }
  1179. const struct file_operations proc_clear_refs_operations = {
  1180. .write = clear_refs_write,
  1181. .llseek = noop_llseek,
  1182. };
  1183. typedef struct {
  1184. u64 pme;
  1185. } pagemap_entry_t;
  1186. struct pagemapread {
  1187. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  1188. pagemap_entry_t *buffer;
  1189. bool show_pfn;
  1190. };
  1191. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  1192. #define PAGEMAP_WALK_MASK (PMD_MASK)
  1193. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  1194. #define PM_PFRAME_BITS 55
  1195. #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
  1196. #define PM_SOFT_DIRTY BIT_ULL(55)
  1197. #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
  1198. #define PM_UFFD_WP BIT_ULL(57)
  1199. #define PM_FILE BIT_ULL(61)
  1200. #define PM_SWAP BIT_ULL(62)
  1201. #define PM_PRESENT BIT_ULL(63)
  1202. #define PM_END_OF_BUFFER 1
  1203. static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
  1204. {
  1205. return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
  1206. }
  1207. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  1208. struct pagemapread *pm)
  1209. {
  1210. pm->buffer[pm->pos++] = *pme;
  1211. if (pm->pos >= pm->len)
  1212. return PM_END_OF_BUFFER;
  1213. return 0;
  1214. }
  1215. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  1216. __always_unused int depth, struct mm_walk *walk)
  1217. {
  1218. struct pagemapread *pm = walk->private;
  1219. unsigned long addr = start;
  1220. int err = 0;
  1221. while (addr < end) {
  1222. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  1223. pagemap_entry_t pme = make_pme(0, 0);
  1224. /* End of address space hole, which we mark as non-present. */
  1225. unsigned long hole_end;
  1226. if (vma)
  1227. hole_end = min(end, vma->vm_start);
  1228. else
  1229. hole_end = end;
  1230. for (; addr < hole_end; addr += PAGE_SIZE) {
  1231. err = add_to_pagemap(addr, &pme, pm);
  1232. if (err)
  1233. goto out;
  1234. }
  1235. if (!vma)
  1236. break;
  1237. /* Addresses in the VMA. */
  1238. if (vma->vm_flags & VM_SOFTDIRTY)
  1239. pme = make_pme(0, PM_SOFT_DIRTY);
  1240. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  1241. err = add_to_pagemap(addr, &pme, pm);
  1242. if (err)
  1243. goto out;
  1244. }
  1245. }
  1246. out:
  1247. return err;
  1248. }
  1249. static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
  1250. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  1251. {
  1252. u64 frame = 0, flags = 0;
  1253. struct page *page = NULL;
  1254. bool migration = false;
  1255. if (pte_present(pte)) {
  1256. if (pm->show_pfn)
  1257. frame = pte_pfn(pte);
  1258. flags |= PM_PRESENT;
  1259. page = vm_normal_page(vma, addr, pte);
  1260. if (pte_soft_dirty(pte))
  1261. flags |= PM_SOFT_DIRTY;
  1262. if (pte_uffd_wp(pte))
  1263. flags |= PM_UFFD_WP;
  1264. } else if (is_swap_pte(pte)) {
  1265. swp_entry_t entry;
  1266. if (pte_swp_soft_dirty(pte))
  1267. flags |= PM_SOFT_DIRTY;
  1268. if (pte_swp_uffd_wp(pte))
  1269. flags |= PM_UFFD_WP;
  1270. entry = pte_to_swp_entry(pte);
  1271. if (pm->show_pfn) {
  1272. pgoff_t offset;
  1273. /*
  1274. * For PFN swap offsets, keeping the offset field
  1275. * to be PFN only to be compatible with old smaps.
  1276. */
  1277. if (is_pfn_swap_entry(entry))
  1278. offset = swp_offset_pfn(entry);
  1279. else
  1280. offset = swp_offset(entry);
  1281. frame = swp_type(entry) |
  1282. (offset << MAX_SWAPFILES_SHIFT);
  1283. }
  1284. flags |= PM_SWAP;
  1285. migration = is_migration_entry(entry);
  1286. if (is_pfn_swap_entry(entry))
  1287. page = pfn_swap_entry_to_page(entry);
  1288. if (pte_marker_entry_uffd_wp(entry))
  1289. flags |= PM_UFFD_WP;
  1290. }
  1291. if (page && !PageAnon(page))
  1292. flags |= PM_FILE;
  1293. if (page && !migration && page_mapcount(page) == 1)
  1294. flags |= PM_MMAP_EXCLUSIVE;
  1295. if (vma->vm_flags & VM_SOFTDIRTY)
  1296. flags |= PM_SOFT_DIRTY;
  1297. return make_pme(frame, flags);
  1298. }
  1299. static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
  1300. struct mm_walk *walk)
  1301. {
  1302. struct vm_area_struct *vma = walk->vma;
  1303. struct pagemapread *pm = walk->private;
  1304. spinlock_t *ptl;
  1305. pte_t *pte, *orig_pte;
  1306. int err = 0;
  1307. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1308. bool migration = false;
  1309. ptl = pmd_trans_huge_lock(pmdp, vma);
  1310. if (ptl) {
  1311. u64 flags = 0, frame = 0;
  1312. pmd_t pmd = *pmdp;
  1313. struct page *page = NULL;
  1314. if (vma->vm_flags & VM_SOFTDIRTY)
  1315. flags |= PM_SOFT_DIRTY;
  1316. if (pmd_present(pmd)) {
  1317. page = pmd_page(pmd);
  1318. flags |= PM_PRESENT;
  1319. if (pmd_soft_dirty(pmd))
  1320. flags |= PM_SOFT_DIRTY;
  1321. if (pmd_uffd_wp(pmd))
  1322. flags |= PM_UFFD_WP;
  1323. if (pm->show_pfn)
  1324. frame = pmd_pfn(pmd) +
  1325. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1326. }
  1327. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1328. else if (is_swap_pmd(pmd)) {
  1329. swp_entry_t entry = pmd_to_swp_entry(pmd);
  1330. unsigned long offset;
  1331. if (pm->show_pfn) {
  1332. if (is_pfn_swap_entry(entry))
  1333. offset = swp_offset_pfn(entry);
  1334. else
  1335. offset = swp_offset(entry);
  1336. offset = offset +
  1337. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1338. frame = swp_type(entry) |
  1339. (offset << MAX_SWAPFILES_SHIFT);
  1340. }
  1341. flags |= PM_SWAP;
  1342. if (pmd_swp_soft_dirty(pmd))
  1343. flags |= PM_SOFT_DIRTY;
  1344. if (pmd_swp_uffd_wp(pmd))
  1345. flags |= PM_UFFD_WP;
  1346. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  1347. migration = is_migration_entry(entry);
  1348. page = pfn_swap_entry_to_page(entry);
  1349. }
  1350. #endif
  1351. if (page && !migration && page_mapcount(page) == 1)
  1352. flags |= PM_MMAP_EXCLUSIVE;
  1353. for (; addr != end; addr += PAGE_SIZE) {
  1354. pagemap_entry_t pme = make_pme(frame, flags);
  1355. err = add_to_pagemap(addr, &pme, pm);
  1356. if (err)
  1357. break;
  1358. if (pm->show_pfn) {
  1359. if (flags & PM_PRESENT)
  1360. frame++;
  1361. else if (flags & PM_SWAP)
  1362. frame += (1 << MAX_SWAPFILES_SHIFT);
  1363. }
  1364. }
  1365. spin_unlock(ptl);
  1366. return err;
  1367. }
  1368. if (pmd_trans_unstable(pmdp))
  1369. return 0;
  1370. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1371. /*
  1372. * We can assume that @vma always points to a valid one and @end never
  1373. * goes beyond vma->vm_end.
  1374. */
  1375. orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
  1376. for (; addr < end; pte++, addr += PAGE_SIZE) {
  1377. pagemap_entry_t pme;
  1378. pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
  1379. err = add_to_pagemap(addr, &pme, pm);
  1380. if (err)
  1381. break;
  1382. }
  1383. pte_unmap_unlock(orig_pte, ptl);
  1384. cond_resched();
  1385. return err;
  1386. }
  1387. #ifdef CONFIG_HUGETLB_PAGE
  1388. /* This function walks within one hugetlb entry in the single call */
  1389. static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
  1390. unsigned long addr, unsigned long end,
  1391. struct mm_walk *walk)
  1392. {
  1393. struct pagemapread *pm = walk->private;
  1394. struct vm_area_struct *vma = walk->vma;
  1395. u64 flags = 0, frame = 0;
  1396. int err = 0;
  1397. pte_t pte;
  1398. if (vma->vm_flags & VM_SOFTDIRTY)
  1399. flags |= PM_SOFT_DIRTY;
  1400. pte = huge_ptep_get(ptep);
  1401. if (pte_present(pte)) {
  1402. struct page *page = pte_page(pte);
  1403. if (!PageAnon(page))
  1404. flags |= PM_FILE;
  1405. if (page_mapcount(page) == 1)
  1406. flags |= PM_MMAP_EXCLUSIVE;
  1407. if (huge_pte_uffd_wp(pte))
  1408. flags |= PM_UFFD_WP;
  1409. flags |= PM_PRESENT;
  1410. if (pm->show_pfn)
  1411. frame = pte_pfn(pte) +
  1412. ((addr & ~hmask) >> PAGE_SHIFT);
  1413. } else if (pte_swp_uffd_wp_any(pte)) {
  1414. flags |= PM_UFFD_WP;
  1415. }
  1416. for (; addr != end; addr += PAGE_SIZE) {
  1417. pagemap_entry_t pme = make_pme(frame, flags);
  1418. err = add_to_pagemap(addr, &pme, pm);
  1419. if (err)
  1420. return err;
  1421. if (pm->show_pfn && (flags & PM_PRESENT))
  1422. frame++;
  1423. }
  1424. cond_resched();
  1425. return err;
  1426. }
  1427. #else
  1428. #define pagemap_hugetlb_range NULL
  1429. #endif /* HUGETLB_PAGE */
  1430. static const struct mm_walk_ops pagemap_ops = {
  1431. .pmd_entry = pagemap_pmd_range,
  1432. .pte_hole = pagemap_pte_hole,
  1433. .hugetlb_entry = pagemap_hugetlb_range,
  1434. .walk_lock = PGWALK_RDLOCK,
  1435. };
  1436. /*
  1437. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1438. *
  1439. * For each page in the address space, this file contains one 64-bit entry
  1440. * consisting of the following:
  1441. *
  1442. * Bits 0-54 page frame number (PFN) if present
  1443. * Bits 0-4 swap type if swapped
  1444. * Bits 5-54 swap offset if swapped
  1445. * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
  1446. * Bit 56 page exclusively mapped
  1447. * Bit 57 pte is uffd-wp write-protected
  1448. * Bits 58-60 zero
  1449. * Bit 61 page is file-page or shared-anon
  1450. * Bit 62 page swapped
  1451. * Bit 63 page present
  1452. *
  1453. * If the page is not present but in swap, then the PFN contains an
  1454. * encoding of the swap file number and the page's offset into the
  1455. * swap. Unmapped pages return a null PFN. This allows determining
  1456. * precisely which pages are mapped (or in swap) and comparing mapped
  1457. * pages between processes.
  1458. *
  1459. * Efficient users of this interface will use /proc/pid/maps to
  1460. * determine which areas of memory are actually mapped and llseek to
  1461. * skip over unmapped regions.
  1462. */
  1463. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1464. size_t count, loff_t *ppos)
  1465. {
  1466. struct mm_struct *mm = file->private_data;
  1467. struct pagemapread pm;
  1468. unsigned long src;
  1469. unsigned long svpfn;
  1470. unsigned long start_vaddr;
  1471. unsigned long end_vaddr;
  1472. int ret = 0, copied = 0;
  1473. if (!mm || !mmget_not_zero(mm))
  1474. goto out;
  1475. ret = -EINVAL;
  1476. /* file position must be aligned */
  1477. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1478. goto out_mm;
  1479. ret = 0;
  1480. if (!count)
  1481. goto out_mm;
  1482. /* do not disclose physical addresses: attack vector */
  1483. pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
  1484. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1485. pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
  1486. ret = -ENOMEM;
  1487. if (!pm.buffer)
  1488. goto out_mm;
  1489. src = *ppos;
  1490. svpfn = src / PM_ENTRY_BYTES;
  1491. end_vaddr = mm->task_size;
  1492. /* watch out for wraparound */
  1493. start_vaddr = end_vaddr;
  1494. if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
  1495. start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
  1496. /* Ensure the address is inside the task */
  1497. if (start_vaddr > mm->task_size)
  1498. start_vaddr = end_vaddr;
  1499. /*
  1500. * The odds are that this will stop walking way
  1501. * before end_vaddr, because the length of the
  1502. * user buffer is tracked in "pm", and the walk
  1503. * will stop when we hit the end of the buffer.
  1504. */
  1505. ret = 0;
  1506. while (count && (start_vaddr < end_vaddr)) {
  1507. int len;
  1508. unsigned long end;
  1509. pm.pos = 0;
  1510. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1511. /* overflow ? */
  1512. if (end < start_vaddr || end > end_vaddr)
  1513. end = end_vaddr;
  1514. ret = mmap_read_lock_killable(mm);
  1515. if (ret)
  1516. goto out_free;
  1517. ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
  1518. mmap_read_unlock(mm);
  1519. start_vaddr = end;
  1520. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1521. if (copy_to_user(buf, pm.buffer, len)) {
  1522. ret = -EFAULT;
  1523. goto out_free;
  1524. }
  1525. copied += len;
  1526. buf += len;
  1527. count -= len;
  1528. }
  1529. *ppos += copied;
  1530. if (!ret || ret == PM_END_OF_BUFFER)
  1531. ret = copied;
  1532. out_free:
  1533. kfree(pm.buffer);
  1534. out_mm:
  1535. mmput(mm);
  1536. out:
  1537. return ret;
  1538. }
  1539. static int pagemap_open(struct inode *inode, struct file *file)
  1540. {
  1541. struct mm_struct *mm;
  1542. mm = proc_mem_open(inode, PTRACE_MODE_READ);
  1543. if (IS_ERR(mm))
  1544. return PTR_ERR(mm);
  1545. file->private_data = mm;
  1546. return 0;
  1547. }
  1548. static int pagemap_release(struct inode *inode, struct file *file)
  1549. {
  1550. struct mm_struct *mm = file->private_data;
  1551. if (mm)
  1552. mmdrop(mm);
  1553. return 0;
  1554. }
  1555. const struct file_operations proc_pagemap_operations = {
  1556. .llseek = mem_lseek, /* borrow this */
  1557. .read = pagemap_read,
  1558. .open = pagemap_open,
  1559. .release = pagemap_release,
  1560. };
  1561. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1562. #ifdef CONFIG_NUMA
  1563. struct numa_maps {
  1564. unsigned long pages;
  1565. unsigned long anon;
  1566. unsigned long active;
  1567. unsigned long writeback;
  1568. unsigned long mapcount_max;
  1569. unsigned long dirty;
  1570. unsigned long swapcache;
  1571. unsigned long node[MAX_NUMNODES];
  1572. };
  1573. struct numa_maps_private {
  1574. struct proc_maps_private proc_maps;
  1575. struct numa_maps md;
  1576. };
  1577. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1578. unsigned long nr_pages)
  1579. {
  1580. int count = page_mapcount(page);
  1581. md->pages += nr_pages;
  1582. if (pte_dirty || PageDirty(page))
  1583. md->dirty += nr_pages;
  1584. if (PageSwapCache(page))
  1585. md->swapcache += nr_pages;
  1586. if (PageActive(page) || PageUnevictable(page))
  1587. md->active += nr_pages;
  1588. if (PageWriteback(page))
  1589. md->writeback += nr_pages;
  1590. if (PageAnon(page))
  1591. md->anon += nr_pages;
  1592. if (count > md->mapcount_max)
  1593. md->mapcount_max = count;
  1594. md->node[page_to_nid(page)] += nr_pages;
  1595. }
  1596. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1597. unsigned long addr)
  1598. {
  1599. struct page *page;
  1600. int nid;
  1601. if (!pte_present(pte))
  1602. return NULL;
  1603. page = vm_normal_page(vma, addr, pte);
  1604. if (!page || is_zone_device_page(page))
  1605. return NULL;
  1606. if (PageReserved(page))
  1607. return NULL;
  1608. nid = page_to_nid(page);
  1609. if (!node_isset(nid, node_states[N_MEMORY]))
  1610. return NULL;
  1611. return page;
  1612. }
  1613. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1614. static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
  1615. struct vm_area_struct *vma,
  1616. unsigned long addr)
  1617. {
  1618. struct page *page;
  1619. int nid;
  1620. if (!pmd_present(pmd))
  1621. return NULL;
  1622. page = vm_normal_page_pmd(vma, addr, pmd);
  1623. if (!page)
  1624. return NULL;
  1625. if (PageReserved(page))
  1626. return NULL;
  1627. nid = page_to_nid(page);
  1628. if (!node_isset(nid, node_states[N_MEMORY]))
  1629. return NULL;
  1630. return page;
  1631. }
  1632. #endif
  1633. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1634. unsigned long end, struct mm_walk *walk)
  1635. {
  1636. struct numa_maps *md = walk->private;
  1637. struct vm_area_struct *vma = walk->vma;
  1638. spinlock_t *ptl;
  1639. pte_t *orig_pte;
  1640. pte_t *pte;
  1641. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1642. ptl = pmd_trans_huge_lock(pmd, vma);
  1643. if (ptl) {
  1644. struct page *page;
  1645. page = can_gather_numa_stats_pmd(*pmd, vma, addr);
  1646. if (page)
  1647. gather_stats(page, md, pmd_dirty(*pmd),
  1648. HPAGE_PMD_SIZE/PAGE_SIZE);
  1649. spin_unlock(ptl);
  1650. return 0;
  1651. }
  1652. if (pmd_trans_unstable(pmd))
  1653. return 0;
  1654. #endif
  1655. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1656. do {
  1657. struct page *page = can_gather_numa_stats(*pte, vma, addr);
  1658. if (!page)
  1659. continue;
  1660. gather_stats(page, md, pte_dirty(*pte), 1);
  1661. } while (pte++, addr += PAGE_SIZE, addr != end);
  1662. pte_unmap_unlock(orig_pte, ptl);
  1663. cond_resched();
  1664. return 0;
  1665. }
  1666. #ifdef CONFIG_HUGETLB_PAGE
  1667. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1668. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1669. {
  1670. pte_t huge_pte = huge_ptep_get(pte);
  1671. struct numa_maps *md;
  1672. struct page *page;
  1673. if (!pte_present(huge_pte))
  1674. return 0;
  1675. page = pte_page(huge_pte);
  1676. md = walk->private;
  1677. gather_stats(page, md, pte_dirty(huge_pte), 1);
  1678. return 0;
  1679. }
  1680. #else
  1681. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1682. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1683. {
  1684. return 0;
  1685. }
  1686. #endif
  1687. static const struct mm_walk_ops show_numa_ops = {
  1688. .hugetlb_entry = gather_hugetlb_stats,
  1689. .pmd_entry = gather_pte_stats,
  1690. .walk_lock = PGWALK_RDLOCK,
  1691. };
  1692. /*
  1693. * Display pages allocated per node and memory policy via /proc.
  1694. */
  1695. static int show_numa_map(struct seq_file *m, void *v)
  1696. {
  1697. struct numa_maps_private *numa_priv = m->private;
  1698. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1699. struct vm_area_struct *vma = v;
  1700. struct numa_maps *md = &numa_priv->md;
  1701. struct file *file = vma->vm_file;
  1702. struct mm_struct *mm = vma->vm_mm;
  1703. struct mempolicy *pol;
  1704. char buffer[64];
  1705. int nid;
  1706. if (!mm)
  1707. return 0;
  1708. /* Ensure we start with an empty set of numa_maps statistics. */
  1709. memset(md, 0, sizeof(*md));
  1710. pol = __get_vma_policy(vma, vma->vm_start);
  1711. if (pol) {
  1712. mpol_to_str(buffer, sizeof(buffer), pol);
  1713. mpol_cond_put(pol);
  1714. } else {
  1715. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1716. }
  1717. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1718. if (file) {
  1719. seq_puts(m, " file=");
  1720. seq_file_path(m, file, "\n\t= ");
  1721. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1722. seq_puts(m, " heap");
  1723. } else if (is_stack(vma)) {
  1724. seq_puts(m, " stack");
  1725. }
  1726. if (is_vm_hugetlb_page(vma))
  1727. seq_puts(m, " huge");
  1728. /* mmap_lock is held by m_start */
  1729. walk_page_vma(vma, &show_numa_ops, md);
  1730. if (!md->pages)
  1731. goto out;
  1732. if (md->anon)
  1733. seq_printf(m, " anon=%lu", md->anon);
  1734. if (md->dirty)
  1735. seq_printf(m, " dirty=%lu", md->dirty);
  1736. if (md->pages != md->anon && md->pages != md->dirty)
  1737. seq_printf(m, " mapped=%lu", md->pages);
  1738. if (md->mapcount_max > 1)
  1739. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1740. if (md->swapcache)
  1741. seq_printf(m, " swapcache=%lu", md->swapcache);
  1742. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1743. seq_printf(m, " active=%lu", md->active);
  1744. if (md->writeback)
  1745. seq_printf(m, " writeback=%lu", md->writeback);
  1746. for_each_node_state(nid, N_MEMORY)
  1747. if (md->node[nid])
  1748. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1749. seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
  1750. out:
  1751. seq_putc(m, '\n');
  1752. return 0;
  1753. }
  1754. static const struct seq_operations proc_pid_numa_maps_op = {
  1755. .start = m_start,
  1756. .next = m_next,
  1757. .stop = m_stop,
  1758. .show = show_numa_map,
  1759. };
  1760. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1761. {
  1762. return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
  1763. sizeof(struct numa_maps_private));
  1764. }
  1765. const struct file_operations proc_pid_numa_maps_operations = {
  1766. .open = pid_numa_maps_open,
  1767. .read = seq_read,
  1768. .llseek = seq_lseek,
  1769. .release = proc_map_release,
  1770. };
  1771. #endif /* CONFIG_NUMA */