dcache.c 88 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * fs/dcache.c
  4. *
  5. * Complete reimplementation
  6. * (C) 1997 Thomas Schoebel-Theuer,
  7. * with heavy changes by Linus Torvalds
  8. */
  9. /*
  10. * Notes on the allocation strategy:
  11. *
  12. * The dcache is a master of the icache - whenever a dcache entry
  13. * exists, the inode will always exist. "iput()" is done either when
  14. * the dcache entry is deleted or garbage collected.
  15. */
  16. #include <linux/ratelimit.h>
  17. #include <linux/string.h>
  18. #include <linux/mm.h>
  19. #include <linux/fs.h>
  20. #include <linux/fscrypt.h>
  21. #include <linux/fsnotify.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/hash.h>
  25. #include <linux/cache.h>
  26. #include <linux/export.h>
  27. #include <linux/security.h>
  28. #include <linux/seqlock.h>
  29. #include <linux/memblock.h>
  30. #include <linux/bit_spinlock.h>
  31. #include <linux/rculist_bl.h>
  32. #include <linux/list_lru.h>
  33. #ifdef CONFIG_KSU_SUSFS_SUS_PATH
  34. #include <linux/susfs_def.h>
  35. #endif
  36. #include "internal.h"
  37. #include "mount.h"
  38. /*
  39. * Usage:
  40. * dcache->d_inode->i_lock protects:
  41. * - i_dentry, d_u.d_alias, d_inode of aliases
  42. * dcache_hash_bucket lock protects:
  43. * - the dcache hash table
  44. * s_roots bl list spinlock protects:
  45. * - the s_roots list (see __d_drop)
  46. * dentry->d_sb->s_dentry_lru_lock protects:
  47. * - the dcache lru lists and counters
  48. * d_lock protects:
  49. * - d_flags
  50. * - d_name
  51. * - d_lru
  52. * - d_count
  53. * - d_unhashed()
  54. * - d_parent and d_subdirs
  55. * - childrens' d_child and d_parent
  56. * - d_u.d_alias, d_inode
  57. *
  58. * Ordering:
  59. * dentry->d_inode->i_lock
  60. * dentry->d_lock
  61. * dentry->d_sb->s_dentry_lru_lock
  62. * dcache_hash_bucket lock
  63. * s_roots lock
  64. *
  65. * If there is an ancestor relationship:
  66. * dentry->d_parent->...->d_parent->d_lock
  67. * ...
  68. * dentry->d_parent->d_lock
  69. * dentry->d_lock
  70. *
  71. * If no ancestor relationship:
  72. * arbitrary, since it's serialized on rename_lock
  73. */
  74. int sysctl_vfs_cache_pressure __read_mostly = 100;
  75. EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  76. __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  77. EXPORT_SYMBOL(rename_lock);
  78. static struct kmem_cache *dentry_cache __read_mostly;
  79. const struct qstr empty_name = QSTR_INIT("", 0);
  80. EXPORT_SYMBOL(empty_name);
  81. const struct qstr slash_name = QSTR_INIT("/", 1);
  82. EXPORT_SYMBOL(slash_name);
  83. const struct qstr dotdot_name = QSTR_INIT("..", 2);
  84. EXPORT_SYMBOL(dotdot_name);
  85. /*
  86. * This is the single most critical data structure when it comes
  87. * to the dcache: the hashtable for lookups. Somebody should try
  88. * to make this good - I've just made it work.
  89. *
  90. * This hash-function tries to avoid losing too many bits of hash
  91. * information, yet avoid using a prime hash-size or similar.
  92. */
  93. static unsigned int d_hash_shift __read_mostly;
  94. static struct hlist_bl_head *dentry_hashtable __read_mostly;
  95. static inline struct hlist_bl_head *d_hash(unsigned int hash)
  96. {
  97. return dentry_hashtable + (hash >> d_hash_shift);
  98. }
  99. #define IN_LOOKUP_SHIFT 10
  100. static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
  101. static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
  102. unsigned int hash)
  103. {
  104. hash += (unsigned long) parent / L1_CACHE_BYTES;
  105. return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
  106. }
  107. struct dentry_stat_t {
  108. long nr_dentry;
  109. long nr_unused;
  110. long age_limit; /* age in seconds */
  111. long want_pages; /* pages requested by system */
  112. long nr_negative; /* # of unused negative dentries */
  113. long dummy; /* Reserved for future use */
  114. };
  115. static DEFINE_PER_CPU(long, nr_dentry);
  116. static DEFINE_PER_CPU(long, nr_dentry_unused);
  117. static DEFINE_PER_CPU(long, nr_dentry_negative);
  118. #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
  119. /* Statistics gathering. */
  120. static struct dentry_stat_t dentry_stat = {
  121. .age_limit = 45,
  122. };
  123. /*
  124. * Here we resort to our own counters instead of using generic per-cpu counters
  125. * for consistency with what the vfs inode code does. We are expected to harvest
  126. * better code and performance by having our own specialized counters.
  127. *
  128. * Please note that the loop is done over all possible CPUs, not over all online
  129. * CPUs. The reason for this is that we don't want to play games with CPUs going
  130. * on and off. If one of them goes off, we will just keep their counters.
  131. *
  132. * glommer: See cffbc8a for details, and if you ever intend to change this,
  133. * please update all vfs counters to match.
  134. */
  135. static long get_nr_dentry(void)
  136. {
  137. int i;
  138. long sum = 0;
  139. for_each_possible_cpu(i)
  140. sum += per_cpu(nr_dentry, i);
  141. return sum < 0 ? 0 : sum;
  142. }
  143. static long get_nr_dentry_unused(void)
  144. {
  145. int i;
  146. long sum = 0;
  147. for_each_possible_cpu(i)
  148. sum += per_cpu(nr_dentry_unused, i);
  149. return sum < 0 ? 0 : sum;
  150. }
  151. static long get_nr_dentry_negative(void)
  152. {
  153. int i;
  154. long sum = 0;
  155. for_each_possible_cpu(i)
  156. sum += per_cpu(nr_dentry_negative, i);
  157. return sum < 0 ? 0 : sum;
  158. }
  159. static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
  160. size_t *lenp, loff_t *ppos)
  161. {
  162. dentry_stat.nr_dentry = get_nr_dentry();
  163. dentry_stat.nr_unused = get_nr_dentry_unused();
  164. dentry_stat.nr_negative = get_nr_dentry_negative();
  165. return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  166. }
  167. static struct ctl_table fs_dcache_sysctls[] = {
  168. {
  169. .procname = "dentry-state",
  170. .data = &dentry_stat,
  171. .maxlen = 6*sizeof(long),
  172. .mode = 0444,
  173. .proc_handler = proc_nr_dentry,
  174. },
  175. { }
  176. };
  177. static int __init init_fs_dcache_sysctls(void)
  178. {
  179. register_sysctl_init("fs", fs_dcache_sysctls);
  180. return 0;
  181. }
  182. fs_initcall(init_fs_dcache_sysctls);
  183. #endif
  184. /*
  185. * Compare 2 name strings, return 0 if they match, otherwise non-zero.
  186. * The strings are both count bytes long, and count is non-zero.
  187. */
  188. #ifdef CONFIG_DCACHE_WORD_ACCESS
  189. #include <asm/word-at-a-time.h>
  190. /*
  191. * NOTE! 'cs' and 'scount' come from a dentry, so it has a
  192. * aligned allocation for this particular component. We don't
  193. * strictly need the load_unaligned_zeropad() safety, but it
  194. * doesn't hurt either.
  195. *
  196. * In contrast, 'ct' and 'tcount' can be from a pathname, and do
  197. * need the careful unaligned handling.
  198. */
  199. static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
  200. {
  201. unsigned long a,b,mask;
  202. for (;;) {
  203. a = read_word_at_a_time(cs);
  204. b = load_unaligned_zeropad(ct);
  205. if (tcount < sizeof(unsigned long))
  206. break;
  207. if (unlikely(a != b))
  208. return 1;
  209. cs += sizeof(unsigned long);
  210. ct += sizeof(unsigned long);
  211. tcount -= sizeof(unsigned long);
  212. if (!tcount)
  213. return 0;
  214. }
  215. mask = bytemask_from_count(tcount);
  216. return unlikely(!!((a ^ b) & mask));
  217. }
  218. #else
  219. static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
  220. {
  221. do {
  222. if (*cs != *ct)
  223. return 1;
  224. cs++;
  225. ct++;
  226. tcount--;
  227. } while (tcount);
  228. return 0;
  229. }
  230. #endif
  231. static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
  232. {
  233. /*
  234. * Be careful about RCU walk racing with rename:
  235. * use 'READ_ONCE' to fetch the name pointer.
  236. *
  237. * NOTE! Even if a rename will mean that the length
  238. * was not loaded atomically, we don't care. The
  239. * RCU walk will check the sequence count eventually,
  240. * and catch it. And we won't overrun the buffer,
  241. * because we're reading the name pointer atomically,
  242. * and a dentry name is guaranteed to be properly
  243. * terminated with a NUL byte.
  244. *
  245. * End result: even if 'len' is wrong, we'll exit
  246. * early because the data cannot match (there can
  247. * be no NUL in the ct/tcount data)
  248. */
  249. const unsigned char *cs = READ_ONCE(dentry->d_name.name);
  250. return dentry_string_cmp(cs, ct, tcount);
  251. }
  252. struct external_name {
  253. union {
  254. atomic_t count;
  255. struct rcu_head head;
  256. } u;
  257. unsigned char name[];
  258. };
  259. static inline struct external_name *external_name(struct dentry *dentry)
  260. {
  261. return container_of(dentry->d_name.name, struct external_name, name[0]);
  262. }
  263. static void __d_free(struct rcu_head *head)
  264. {
  265. struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
  266. kmem_cache_free(dentry_cache, dentry);
  267. }
  268. static void __d_free_external(struct rcu_head *head)
  269. {
  270. struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
  271. kfree(external_name(dentry));
  272. kmem_cache_free(dentry_cache, dentry);
  273. }
  274. static inline int dname_external(const struct dentry *dentry)
  275. {
  276. return dentry->d_name.name != dentry->d_iname;
  277. }
  278. void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
  279. {
  280. spin_lock(&dentry->d_lock);
  281. name->name = dentry->d_name;
  282. if (unlikely(dname_external(dentry))) {
  283. atomic_inc(&external_name(dentry)->u.count);
  284. } else {
  285. memcpy(name->inline_name, dentry->d_iname,
  286. dentry->d_name.len + 1);
  287. name->name.name = name->inline_name;
  288. }
  289. spin_unlock(&dentry->d_lock);
  290. }
  291. EXPORT_SYMBOL(take_dentry_name_snapshot);
  292. void release_dentry_name_snapshot(struct name_snapshot *name)
  293. {
  294. if (unlikely(name->name.name != name->inline_name)) {
  295. struct external_name *p;
  296. p = container_of(name->name.name, struct external_name, name[0]);
  297. if (unlikely(atomic_dec_and_test(&p->u.count)))
  298. kfree_rcu(p, u.head);
  299. }
  300. }
  301. EXPORT_SYMBOL(release_dentry_name_snapshot);
  302. static inline void __d_set_inode_and_type(struct dentry *dentry,
  303. struct inode *inode,
  304. unsigned type_flags)
  305. {
  306. unsigned flags;
  307. dentry->d_inode = inode;
  308. flags = READ_ONCE(dentry->d_flags);
  309. flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
  310. flags |= type_flags;
  311. smp_store_release(&dentry->d_flags, flags);
  312. }
  313. static inline void __d_clear_type_and_inode(struct dentry *dentry)
  314. {
  315. unsigned flags = READ_ONCE(dentry->d_flags);
  316. flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
  317. WRITE_ONCE(dentry->d_flags, flags);
  318. dentry->d_inode = NULL;
  319. if (dentry->d_flags & DCACHE_LRU_LIST)
  320. this_cpu_inc(nr_dentry_negative);
  321. }
  322. static void dentry_free(struct dentry *dentry)
  323. {
  324. WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
  325. if (unlikely(dname_external(dentry))) {
  326. struct external_name *p = external_name(dentry);
  327. if (likely(atomic_dec_and_test(&p->u.count))) {
  328. call_rcu(&dentry->d_u.d_rcu, __d_free_external);
  329. return;
  330. }
  331. }
  332. /* if dentry was never visible to RCU, immediate free is OK */
  333. if (dentry->d_flags & DCACHE_NORCU)
  334. __d_free(&dentry->d_u.d_rcu);
  335. else
  336. call_rcu(&dentry->d_u.d_rcu, __d_free);
  337. }
  338. /*
  339. * Release the dentry's inode, using the filesystem
  340. * d_iput() operation if defined.
  341. */
  342. static void dentry_unlink_inode(struct dentry * dentry)
  343. __releases(dentry->d_lock)
  344. __releases(dentry->d_inode->i_lock)
  345. {
  346. struct inode *inode = dentry->d_inode;
  347. raw_write_seqcount_begin(&dentry->d_seq);
  348. __d_clear_type_and_inode(dentry);
  349. hlist_del_init(&dentry->d_u.d_alias);
  350. raw_write_seqcount_end(&dentry->d_seq);
  351. spin_unlock(&dentry->d_lock);
  352. spin_unlock(&inode->i_lock);
  353. if (!inode->i_nlink)
  354. fsnotify_inoderemove(inode);
  355. if (dentry->d_op && dentry->d_op->d_iput)
  356. dentry->d_op->d_iput(dentry, inode);
  357. else
  358. iput(inode);
  359. }
  360. /*
  361. * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
  362. * is in use - which includes both the "real" per-superblock
  363. * LRU list _and_ the DCACHE_SHRINK_LIST use.
  364. *
  365. * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
  366. * on the shrink list (ie not on the superblock LRU list).
  367. *
  368. * The per-cpu "nr_dentry_unused" counters are updated with
  369. * the DCACHE_LRU_LIST bit.
  370. *
  371. * The per-cpu "nr_dentry_negative" counters are only updated
  372. * when deleted from or added to the per-superblock LRU list, not
  373. * from/to the shrink list. That is to avoid an unneeded dec/inc
  374. * pair when moving from LRU to shrink list in select_collect().
  375. *
  376. * These helper functions make sure we always follow the
  377. * rules. d_lock must be held by the caller.
  378. */
  379. #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
  380. static void d_lru_add(struct dentry *dentry)
  381. {
  382. D_FLAG_VERIFY(dentry, 0);
  383. dentry->d_flags |= DCACHE_LRU_LIST;
  384. this_cpu_inc(nr_dentry_unused);
  385. if (d_is_negative(dentry))
  386. this_cpu_inc(nr_dentry_negative);
  387. WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
  388. }
  389. static void d_lru_del(struct dentry *dentry)
  390. {
  391. D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
  392. dentry->d_flags &= ~DCACHE_LRU_LIST;
  393. this_cpu_dec(nr_dentry_unused);
  394. if (d_is_negative(dentry))
  395. this_cpu_dec(nr_dentry_negative);
  396. WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
  397. }
  398. static void d_shrink_del(struct dentry *dentry)
  399. {
  400. D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
  401. list_del_init(&dentry->d_lru);
  402. dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
  403. this_cpu_dec(nr_dentry_unused);
  404. }
  405. static void d_shrink_add(struct dentry *dentry, struct list_head *list)
  406. {
  407. D_FLAG_VERIFY(dentry, 0);
  408. list_add(&dentry->d_lru, list);
  409. dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
  410. this_cpu_inc(nr_dentry_unused);
  411. }
  412. /*
  413. * These can only be called under the global LRU lock, ie during the
  414. * callback for freeing the LRU list. "isolate" removes it from the
  415. * LRU lists entirely, while shrink_move moves it to the indicated
  416. * private list.
  417. */
  418. static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
  419. {
  420. D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
  421. dentry->d_flags &= ~DCACHE_LRU_LIST;
  422. this_cpu_dec(nr_dentry_unused);
  423. if (d_is_negative(dentry))
  424. this_cpu_dec(nr_dentry_negative);
  425. list_lru_isolate(lru, &dentry->d_lru);
  426. }
  427. static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
  428. struct list_head *list)
  429. {
  430. D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
  431. dentry->d_flags |= DCACHE_SHRINK_LIST;
  432. if (d_is_negative(dentry))
  433. this_cpu_dec(nr_dentry_negative);
  434. list_lru_isolate_move(lru, &dentry->d_lru, list);
  435. }
  436. static void ___d_drop(struct dentry *dentry)
  437. {
  438. struct hlist_bl_head *b;
  439. /*
  440. * Hashed dentries are normally on the dentry hashtable,
  441. * with the exception of those newly allocated by
  442. * d_obtain_root, which are always IS_ROOT:
  443. */
  444. if (unlikely(IS_ROOT(dentry)))
  445. b = &dentry->d_sb->s_roots;
  446. else
  447. b = d_hash(dentry->d_name.hash);
  448. hlist_bl_lock(b);
  449. __hlist_bl_del(&dentry->d_hash);
  450. hlist_bl_unlock(b);
  451. }
  452. void __d_drop(struct dentry *dentry)
  453. {
  454. if (!d_unhashed(dentry)) {
  455. ___d_drop(dentry);
  456. dentry->d_hash.pprev = NULL;
  457. write_seqcount_invalidate(&dentry->d_seq);
  458. }
  459. }
  460. EXPORT_SYMBOL(__d_drop);
  461. /**
  462. * d_drop - drop a dentry
  463. * @dentry: dentry to drop
  464. *
  465. * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
  466. * be found through a VFS lookup any more. Note that this is different from
  467. * deleting the dentry - d_delete will try to mark the dentry negative if
  468. * possible, giving a successful _negative_ lookup, while d_drop will
  469. * just make the cache lookup fail.
  470. *
  471. * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
  472. * reason (NFS timeouts or autofs deletes).
  473. *
  474. * __d_drop requires dentry->d_lock
  475. *
  476. * ___d_drop doesn't mark dentry as "unhashed"
  477. * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
  478. */
  479. void d_drop(struct dentry *dentry)
  480. {
  481. spin_lock(&dentry->d_lock);
  482. __d_drop(dentry);
  483. spin_unlock(&dentry->d_lock);
  484. }
  485. EXPORT_SYMBOL(d_drop);
  486. static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
  487. {
  488. struct dentry *next;
  489. /*
  490. * Inform d_walk() and shrink_dentry_list() that we are no longer
  491. * attached to the dentry tree
  492. */
  493. dentry->d_flags |= DCACHE_DENTRY_KILLED;
  494. if (unlikely(list_empty(&dentry->d_child)))
  495. return;
  496. __list_del_entry(&dentry->d_child);
  497. /*
  498. * Cursors can move around the list of children. While we'd been
  499. * a normal list member, it didn't matter - ->d_child.next would've
  500. * been updated. However, from now on it won't be and for the
  501. * things like d_walk() it might end up with a nasty surprise.
  502. * Normally d_walk() doesn't care about cursors moving around -
  503. * ->d_lock on parent prevents that and since a cursor has no children
  504. * of its own, we get through it without ever unlocking the parent.
  505. * There is one exception, though - if we ascend from a child that
  506. * gets killed as soon as we unlock it, the next sibling is found
  507. * using the value left in its ->d_child.next. And if _that_
  508. * pointed to a cursor, and cursor got moved (e.g. by lseek())
  509. * before d_walk() regains parent->d_lock, we'll end up skipping
  510. * everything the cursor had been moved past.
  511. *
  512. * Solution: make sure that the pointer left behind in ->d_child.next
  513. * points to something that won't be moving around. I.e. skip the
  514. * cursors.
  515. */
  516. while (dentry->d_child.next != &parent->d_subdirs) {
  517. next = list_entry(dentry->d_child.next, struct dentry, d_child);
  518. if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
  519. break;
  520. dentry->d_child.next = next->d_child.next;
  521. }
  522. }
  523. static void __dentry_kill(struct dentry *dentry)
  524. {
  525. struct dentry *parent = NULL;
  526. bool can_free = true;
  527. if (!IS_ROOT(dentry))
  528. parent = dentry->d_parent;
  529. /*
  530. * The dentry is now unrecoverably dead to the world.
  531. */
  532. lockref_mark_dead(&dentry->d_lockref);
  533. /*
  534. * inform the fs via d_prune that this dentry is about to be
  535. * unhashed and destroyed.
  536. */
  537. if (dentry->d_flags & DCACHE_OP_PRUNE)
  538. dentry->d_op->d_prune(dentry);
  539. if (dentry->d_flags & DCACHE_LRU_LIST) {
  540. if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
  541. d_lru_del(dentry);
  542. }
  543. /* if it was on the hash then remove it */
  544. __d_drop(dentry);
  545. dentry_unlist(dentry, parent);
  546. if (parent)
  547. spin_unlock(&parent->d_lock);
  548. if (dentry->d_inode)
  549. dentry_unlink_inode(dentry);
  550. else
  551. spin_unlock(&dentry->d_lock);
  552. this_cpu_dec(nr_dentry);
  553. if (dentry->d_op && dentry->d_op->d_release)
  554. dentry->d_op->d_release(dentry);
  555. spin_lock(&dentry->d_lock);
  556. if (dentry->d_flags & DCACHE_SHRINK_LIST) {
  557. dentry->d_flags |= DCACHE_MAY_FREE;
  558. can_free = false;
  559. }
  560. spin_unlock(&dentry->d_lock);
  561. if (likely(can_free))
  562. dentry_free(dentry);
  563. cond_resched();
  564. }
  565. static struct dentry *__lock_parent(struct dentry *dentry)
  566. {
  567. struct dentry *parent;
  568. rcu_read_lock();
  569. spin_unlock(&dentry->d_lock);
  570. again:
  571. parent = READ_ONCE(dentry->d_parent);
  572. spin_lock(&parent->d_lock);
  573. /*
  574. * We can't blindly lock dentry until we are sure
  575. * that we won't violate the locking order.
  576. * Any changes of dentry->d_parent must have
  577. * been done with parent->d_lock held, so
  578. * spin_lock() above is enough of a barrier
  579. * for checking if it's still our child.
  580. */
  581. if (unlikely(parent != dentry->d_parent)) {
  582. spin_unlock(&parent->d_lock);
  583. goto again;
  584. }
  585. rcu_read_unlock();
  586. if (parent != dentry)
  587. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  588. else
  589. parent = NULL;
  590. return parent;
  591. }
  592. static inline struct dentry *lock_parent(struct dentry *dentry)
  593. {
  594. struct dentry *parent = dentry->d_parent;
  595. if (IS_ROOT(dentry))
  596. return NULL;
  597. if (likely(spin_trylock(&parent->d_lock)))
  598. return parent;
  599. return __lock_parent(dentry);
  600. }
  601. static inline bool retain_dentry(struct dentry *dentry)
  602. {
  603. WARN_ON(d_in_lookup(dentry));
  604. /* Unreachable? Get rid of it */
  605. if (unlikely(d_unhashed(dentry)))
  606. return false;
  607. if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
  608. return false;
  609. if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
  610. if (dentry->d_op->d_delete(dentry))
  611. return false;
  612. }
  613. if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
  614. return false;
  615. /* retain; LRU fodder */
  616. dentry->d_lockref.count--;
  617. if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
  618. d_lru_add(dentry);
  619. else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
  620. dentry->d_flags |= DCACHE_REFERENCED;
  621. return true;
  622. }
  623. void d_mark_dontcache(struct inode *inode)
  624. {
  625. struct dentry *de;
  626. spin_lock(&inode->i_lock);
  627. hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
  628. spin_lock(&de->d_lock);
  629. de->d_flags |= DCACHE_DONTCACHE;
  630. spin_unlock(&de->d_lock);
  631. }
  632. inode->i_state |= I_DONTCACHE;
  633. spin_unlock(&inode->i_lock);
  634. }
  635. EXPORT_SYMBOL(d_mark_dontcache);
  636. /*
  637. * Finish off a dentry we've decided to kill.
  638. * dentry->d_lock must be held, returns with it unlocked.
  639. * Returns dentry requiring refcount drop, or NULL if we're done.
  640. */
  641. static struct dentry *dentry_kill(struct dentry *dentry)
  642. __releases(dentry->d_lock)
  643. {
  644. struct inode *inode = dentry->d_inode;
  645. struct dentry *parent = NULL;
  646. if (inode && unlikely(!spin_trylock(&inode->i_lock)))
  647. goto slow_positive;
  648. if (!IS_ROOT(dentry)) {
  649. parent = dentry->d_parent;
  650. if (unlikely(!spin_trylock(&parent->d_lock))) {
  651. parent = __lock_parent(dentry);
  652. if (likely(inode || !dentry->d_inode))
  653. goto got_locks;
  654. /* negative that became positive */
  655. if (parent)
  656. spin_unlock(&parent->d_lock);
  657. inode = dentry->d_inode;
  658. goto slow_positive;
  659. }
  660. }
  661. __dentry_kill(dentry);
  662. return parent;
  663. slow_positive:
  664. spin_unlock(&dentry->d_lock);
  665. spin_lock(&inode->i_lock);
  666. spin_lock(&dentry->d_lock);
  667. parent = lock_parent(dentry);
  668. got_locks:
  669. if (unlikely(dentry->d_lockref.count != 1)) {
  670. dentry->d_lockref.count--;
  671. } else if (likely(!retain_dentry(dentry))) {
  672. __dentry_kill(dentry);
  673. return parent;
  674. }
  675. /* we are keeping it, after all */
  676. if (inode)
  677. spin_unlock(&inode->i_lock);
  678. if (parent)
  679. spin_unlock(&parent->d_lock);
  680. spin_unlock(&dentry->d_lock);
  681. return NULL;
  682. }
  683. /*
  684. * Try to do a lockless dput(), and return whether that was successful.
  685. *
  686. * If unsuccessful, we return false, having already taken the dentry lock.
  687. *
  688. * The caller needs to hold the RCU read lock, so that the dentry is
  689. * guaranteed to stay around even if the refcount goes down to zero!
  690. */
  691. static inline bool fast_dput(struct dentry *dentry)
  692. {
  693. int ret;
  694. unsigned int d_flags;
  695. /*
  696. * If we have a d_op->d_delete() operation, we sould not
  697. * let the dentry count go to zero, so use "put_or_lock".
  698. */
  699. if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
  700. return lockref_put_or_lock(&dentry->d_lockref);
  701. /*
  702. * .. otherwise, we can try to just decrement the
  703. * lockref optimistically.
  704. */
  705. ret = lockref_put_return(&dentry->d_lockref);
  706. /*
  707. * If the lockref_put_return() failed due to the lock being held
  708. * by somebody else, the fast path has failed. We will need to
  709. * get the lock, and then check the count again.
  710. */
  711. if (unlikely(ret < 0)) {
  712. spin_lock(&dentry->d_lock);
  713. if (dentry->d_lockref.count > 1) {
  714. dentry->d_lockref.count--;
  715. spin_unlock(&dentry->d_lock);
  716. return true;
  717. }
  718. return false;
  719. }
  720. /*
  721. * If we weren't the last ref, we're done.
  722. */
  723. if (ret)
  724. return true;
  725. /*
  726. * Careful, careful. The reference count went down
  727. * to zero, but we don't hold the dentry lock, so
  728. * somebody else could get it again, and do another
  729. * dput(), and we need to not race with that.
  730. *
  731. * However, there is a very special and common case
  732. * where we don't care, because there is nothing to
  733. * do: the dentry is still hashed, it does not have
  734. * a 'delete' op, and it's referenced and already on
  735. * the LRU list.
  736. *
  737. * NOTE! Since we aren't locked, these values are
  738. * not "stable". However, it is sufficient that at
  739. * some point after we dropped the reference the
  740. * dentry was hashed and the flags had the proper
  741. * value. Other dentry users may have re-gotten
  742. * a reference to the dentry and change that, but
  743. * our work is done - we can leave the dentry
  744. * around with a zero refcount.
  745. *
  746. * Nevertheless, there are two cases that we should kill
  747. * the dentry anyway.
  748. * 1. free disconnected dentries as soon as their refcount
  749. * reached zero.
  750. * 2. free dentries if they should not be cached.
  751. */
  752. smp_rmb();
  753. d_flags = READ_ONCE(dentry->d_flags);
  754. d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
  755. DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
  756. /* Nothing to do? Dropping the reference was all we needed? */
  757. if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
  758. return true;
  759. /*
  760. * Not the fast normal case? Get the lock. We've already decremented
  761. * the refcount, but we'll need to re-check the situation after
  762. * getting the lock.
  763. */
  764. spin_lock(&dentry->d_lock);
  765. /*
  766. * Did somebody else grab a reference to it in the meantime, and
  767. * we're no longer the last user after all? Alternatively, somebody
  768. * else could have killed it and marked it dead. Either way, we
  769. * don't need to do anything else.
  770. */
  771. if (dentry->d_lockref.count) {
  772. spin_unlock(&dentry->d_lock);
  773. return true;
  774. }
  775. /*
  776. * Re-get the reference we optimistically dropped. We hold the
  777. * lock, and we just tested that it was zero, so we can just
  778. * set it to 1.
  779. */
  780. dentry->d_lockref.count = 1;
  781. return false;
  782. }
  783. /*
  784. * This is dput
  785. *
  786. * This is complicated by the fact that we do not want to put
  787. * dentries that are no longer on any hash chain on the unused
  788. * list: we'd much rather just get rid of them immediately.
  789. *
  790. * However, that implies that we have to traverse the dentry
  791. * tree upwards to the parents which might _also_ now be
  792. * scheduled for deletion (it may have been only waiting for
  793. * its last child to go away).
  794. *
  795. * This tail recursion is done by hand as we don't want to depend
  796. * on the compiler to always get this right (gcc generally doesn't).
  797. * Real recursion would eat up our stack space.
  798. */
  799. /*
  800. * dput - release a dentry
  801. * @dentry: dentry to release
  802. *
  803. * Release a dentry. This will drop the usage count and if appropriate
  804. * call the dentry unlink method as well as removing it from the queues and
  805. * releasing its resources. If the parent dentries were scheduled for release
  806. * they too may now get deleted.
  807. */
  808. void dput(struct dentry *dentry)
  809. {
  810. while (dentry) {
  811. might_sleep();
  812. rcu_read_lock();
  813. if (likely(fast_dput(dentry))) {
  814. rcu_read_unlock();
  815. return;
  816. }
  817. /* Slow case: now with the dentry lock held */
  818. rcu_read_unlock();
  819. if (likely(retain_dentry(dentry))) {
  820. spin_unlock(&dentry->d_lock);
  821. return;
  822. }
  823. dentry = dentry_kill(dentry);
  824. }
  825. }
  826. EXPORT_SYMBOL(dput);
  827. static void __dput_to_list(struct dentry *dentry, struct list_head *list)
  828. __must_hold(&dentry->d_lock)
  829. {
  830. if (dentry->d_flags & DCACHE_SHRINK_LIST) {
  831. /* let the owner of the list it's on deal with it */
  832. --dentry->d_lockref.count;
  833. } else {
  834. if (dentry->d_flags & DCACHE_LRU_LIST)
  835. d_lru_del(dentry);
  836. if (!--dentry->d_lockref.count)
  837. d_shrink_add(dentry, list);
  838. }
  839. }
  840. void dput_to_list(struct dentry *dentry, struct list_head *list)
  841. {
  842. rcu_read_lock();
  843. if (likely(fast_dput(dentry))) {
  844. rcu_read_unlock();
  845. return;
  846. }
  847. rcu_read_unlock();
  848. if (!retain_dentry(dentry))
  849. __dput_to_list(dentry, list);
  850. spin_unlock(&dentry->d_lock);
  851. }
  852. /* This must be called with d_lock held */
  853. static inline void __dget_dlock(struct dentry *dentry)
  854. {
  855. dentry->d_lockref.count++;
  856. }
  857. static inline void __dget(struct dentry *dentry)
  858. {
  859. lockref_get(&dentry->d_lockref);
  860. }
  861. struct dentry *dget_parent(struct dentry *dentry)
  862. {
  863. int gotref;
  864. struct dentry *ret;
  865. unsigned seq;
  866. /*
  867. * Do optimistic parent lookup without any
  868. * locking.
  869. */
  870. rcu_read_lock();
  871. seq = raw_seqcount_begin(&dentry->d_seq);
  872. ret = READ_ONCE(dentry->d_parent);
  873. gotref = lockref_get_not_zero(&ret->d_lockref);
  874. rcu_read_unlock();
  875. if (likely(gotref)) {
  876. if (!read_seqcount_retry(&dentry->d_seq, seq))
  877. return ret;
  878. dput(ret);
  879. }
  880. repeat:
  881. /*
  882. * Don't need rcu_dereference because we re-check it was correct under
  883. * the lock.
  884. */
  885. rcu_read_lock();
  886. ret = dentry->d_parent;
  887. spin_lock(&ret->d_lock);
  888. if (unlikely(ret != dentry->d_parent)) {
  889. spin_unlock(&ret->d_lock);
  890. rcu_read_unlock();
  891. goto repeat;
  892. }
  893. rcu_read_unlock();
  894. BUG_ON(!ret->d_lockref.count);
  895. ret->d_lockref.count++;
  896. spin_unlock(&ret->d_lock);
  897. return ret;
  898. }
  899. EXPORT_SYMBOL(dget_parent);
  900. static struct dentry * __d_find_any_alias(struct inode *inode)
  901. {
  902. struct dentry *alias;
  903. if (hlist_empty(&inode->i_dentry))
  904. return NULL;
  905. alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
  906. __dget(alias);
  907. return alias;
  908. }
  909. /**
  910. * d_find_any_alias - find any alias for a given inode
  911. * @inode: inode to find an alias for
  912. *
  913. * If any aliases exist for the given inode, take and return a
  914. * reference for one of them. If no aliases exist, return %NULL.
  915. */
  916. struct dentry *d_find_any_alias(struct inode *inode)
  917. {
  918. struct dentry *de;
  919. spin_lock(&inode->i_lock);
  920. de = __d_find_any_alias(inode);
  921. spin_unlock(&inode->i_lock);
  922. return de;
  923. }
  924. EXPORT_SYMBOL(d_find_any_alias);
  925. static struct dentry *__d_find_alias(struct inode *inode)
  926. {
  927. struct dentry *alias;
  928. if (S_ISDIR(inode->i_mode))
  929. return __d_find_any_alias(inode);
  930. hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
  931. spin_lock(&alias->d_lock);
  932. if (!d_unhashed(alias)) {
  933. __dget_dlock(alias);
  934. spin_unlock(&alias->d_lock);
  935. return alias;
  936. }
  937. spin_unlock(&alias->d_lock);
  938. }
  939. return NULL;
  940. }
  941. /**
  942. * d_find_alias - grab a hashed alias of inode
  943. * @inode: inode in question
  944. *
  945. * If inode has a hashed alias, or is a directory and has any alias,
  946. * acquire the reference to alias and return it. Otherwise return NULL.
  947. * Notice that if inode is a directory there can be only one alias and
  948. * it can be unhashed only if it has no children, or if it is the root
  949. * of a filesystem, or if the directory was renamed and d_revalidate
  950. * was the first vfs operation to notice.
  951. *
  952. * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
  953. * any other hashed alias over that one.
  954. */
  955. struct dentry *d_find_alias(struct inode *inode)
  956. {
  957. struct dentry *de = NULL;
  958. if (!hlist_empty(&inode->i_dentry)) {
  959. spin_lock(&inode->i_lock);
  960. de = __d_find_alias(inode);
  961. spin_unlock(&inode->i_lock);
  962. }
  963. return de;
  964. }
  965. EXPORT_SYMBOL(d_find_alias);
  966. /*
  967. * Caller MUST be holding rcu_read_lock() and be guaranteed
  968. * that inode won't get freed until rcu_read_unlock().
  969. */
  970. struct dentry *d_find_alias_rcu(struct inode *inode)
  971. {
  972. struct hlist_head *l = &inode->i_dentry;
  973. struct dentry *de = NULL;
  974. spin_lock(&inode->i_lock);
  975. // ->i_dentry and ->i_rcu are colocated, but the latter won't be
  976. // used without having I_FREEING set, which means no aliases left
  977. if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
  978. if (S_ISDIR(inode->i_mode)) {
  979. de = hlist_entry(l->first, struct dentry, d_u.d_alias);
  980. } else {
  981. hlist_for_each_entry(de, l, d_u.d_alias)
  982. if (!d_unhashed(de))
  983. break;
  984. }
  985. }
  986. spin_unlock(&inode->i_lock);
  987. return de;
  988. }
  989. /*
  990. * Try to kill dentries associated with this inode.
  991. * WARNING: you must own a reference to inode.
  992. */
  993. void d_prune_aliases(struct inode *inode)
  994. {
  995. struct dentry *dentry;
  996. restart:
  997. spin_lock(&inode->i_lock);
  998. hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
  999. spin_lock(&dentry->d_lock);
  1000. if (!dentry->d_lockref.count) {
  1001. struct dentry *parent = lock_parent(dentry);
  1002. if (likely(!dentry->d_lockref.count)) {
  1003. __dentry_kill(dentry);
  1004. dput(parent);
  1005. goto restart;
  1006. }
  1007. if (parent)
  1008. spin_unlock(&parent->d_lock);
  1009. }
  1010. spin_unlock(&dentry->d_lock);
  1011. }
  1012. spin_unlock(&inode->i_lock);
  1013. }
  1014. EXPORT_SYMBOL(d_prune_aliases);
  1015. /*
  1016. * Lock a dentry from shrink list.
  1017. * Called under rcu_read_lock() and dentry->d_lock; the former
  1018. * guarantees that nothing we access will be freed under us.
  1019. * Note that dentry is *not* protected from concurrent dentry_kill(),
  1020. * d_delete(), etc.
  1021. *
  1022. * Return false if dentry has been disrupted or grabbed, leaving
  1023. * the caller to kick it off-list. Otherwise, return true and have
  1024. * that dentry's inode and parent both locked.
  1025. */
  1026. static bool shrink_lock_dentry(struct dentry *dentry)
  1027. {
  1028. struct inode *inode;
  1029. struct dentry *parent;
  1030. if (dentry->d_lockref.count)
  1031. return false;
  1032. inode = dentry->d_inode;
  1033. if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
  1034. spin_unlock(&dentry->d_lock);
  1035. spin_lock(&inode->i_lock);
  1036. spin_lock(&dentry->d_lock);
  1037. if (unlikely(dentry->d_lockref.count))
  1038. goto out;
  1039. /* changed inode means that somebody had grabbed it */
  1040. if (unlikely(inode != dentry->d_inode))
  1041. goto out;
  1042. }
  1043. parent = dentry->d_parent;
  1044. if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
  1045. return true;
  1046. spin_unlock(&dentry->d_lock);
  1047. spin_lock(&parent->d_lock);
  1048. if (unlikely(parent != dentry->d_parent)) {
  1049. spin_unlock(&parent->d_lock);
  1050. spin_lock(&dentry->d_lock);
  1051. goto out;
  1052. }
  1053. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  1054. if (likely(!dentry->d_lockref.count))
  1055. return true;
  1056. spin_unlock(&parent->d_lock);
  1057. out:
  1058. if (inode)
  1059. spin_unlock(&inode->i_lock);
  1060. return false;
  1061. }
  1062. void shrink_dentry_list(struct list_head *list)
  1063. {
  1064. while (!list_empty(list)) {
  1065. struct dentry *dentry, *parent;
  1066. dentry = list_entry(list->prev, struct dentry, d_lru);
  1067. spin_lock(&dentry->d_lock);
  1068. rcu_read_lock();
  1069. if (!shrink_lock_dentry(dentry)) {
  1070. bool can_free = false;
  1071. rcu_read_unlock();
  1072. d_shrink_del(dentry);
  1073. if (dentry->d_lockref.count < 0)
  1074. can_free = dentry->d_flags & DCACHE_MAY_FREE;
  1075. spin_unlock(&dentry->d_lock);
  1076. if (can_free)
  1077. dentry_free(dentry);
  1078. continue;
  1079. }
  1080. rcu_read_unlock();
  1081. d_shrink_del(dentry);
  1082. parent = dentry->d_parent;
  1083. if (parent != dentry)
  1084. __dput_to_list(parent, list);
  1085. __dentry_kill(dentry);
  1086. }
  1087. }
  1088. static enum lru_status dentry_lru_isolate(struct list_head *item,
  1089. struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
  1090. {
  1091. struct list_head *freeable = arg;
  1092. struct dentry *dentry = container_of(item, struct dentry, d_lru);
  1093. /*
  1094. * we are inverting the lru lock/dentry->d_lock here,
  1095. * so use a trylock. If we fail to get the lock, just skip
  1096. * it
  1097. */
  1098. if (!spin_trylock(&dentry->d_lock))
  1099. return LRU_SKIP;
  1100. /*
  1101. * Referenced dentries are still in use. If they have active
  1102. * counts, just remove them from the LRU. Otherwise give them
  1103. * another pass through the LRU.
  1104. */
  1105. if (dentry->d_lockref.count) {
  1106. d_lru_isolate(lru, dentry);
  1107. spin_unlock(&dentry->d_lock);
  1108. return LRU_REMOVED;
  1109. }
  1110. if (dentry->d_flags & DCACHE_REFERENCED) {
  1111. dentry->d_flags &= ~DCACHE_REFERENCED;
  1112. spin_unlock(&dentry->d_lock);
  1113. /*
  1114. * The list move itself will be made by the common LRU code. At
  1115. * this point, we've dropped the dentry->d_lock but keep the
  1116. * lru lock. This is safe to do, since every list movement is
  1117. * protected by the lru lock even if both locks are held.
  1118. *
  1119. * This is guaranteed by the fact that all LRU management
  1120. * functions are intermediated by the LRU API calls like
  1121. * list_lru_add and list_lru_del. List movement in this file
  1122. * only ever occur through this functions or through callbacks
  1123. * like this one, that are called from the LRU API.
  1124. *
  1125. * The only exceptions to this are functions like
  1126. * shrink_dentry_list, and code that first checks for the
  1127. * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
  1128. * operating only with stack provided lists after they are
  1129. * properly isolated from the main list. It is thus, always a
  1130. * local access.
  1131. */
  1132. return LRU_ROTATE;
  1133. }
  1134. d_lru_shrink_move(lru, dentry, freeable);
  1135. spin_unlock(&dentry->d_lock);
  1136. return LRU_REMOVED;
  1137. }
  1138. /**
  1139. * prune_dcache_sb - shrink the dcache
  1140. * @sb: superblock
  1141. * @sc: shrink control, passed to list_lru_shrink_walk()
  1142. *
  1143. * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
  1144. * is done when we need more memory and called from the superblock shrinker
  1145. * function.
  1146. *
  1147. * This function may fail to free any resources if all the dentries are in
  1148. * use.
  1149. */
  1150. long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
  1151. {
  1152. LIST_HEAD(dispose);
  1153. long freed;
  1154. freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
  1155. dentry_lru_isolate, &dispose);
  1156. shrink_dentry_list(&dispose);
  1157. return freed;
  1158. }
  1159. static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
  1160. struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
  1161. {
  1162. struct list_head *freeable = arg;
  1163. struct dentry *dentry = container_of(item, struct dentry, d_lru);
  1164. /*
  1165. * we are inverting the lru lock/dentry->d_lock here,
  1166. * so use a trylock. If we fail to get the lock, just skip
  1167. * it
  1168. */
  1169. if (!spin_trylock(&dentry->d_lock))
  1170. return LRU_SKIP;
  1171. d_lru_shrink_move(lru, dentry, freeable);
  1172. spin_unlock(&dentry->d_lock);
  1173. return LRU_REMOVED;
  1174. }
  1175. /**
  1176. * shrink_dcache_sb - shrink dcache for a superblock
  1177. * @sb: superblock
  1178. *
  1179. * Shrink the dcache for the specified super block. This is used to free
  1180. * the dcache before unmounting a file system.
  1181. */
  1182. void shrink_dcache_sb(struct super_block *sb)
  1183. {
  1184. do {
  1185. LIST_HEAD(dispose);
  1186. list_lru_walk(&sb->s_dentry_lru,
  1187. dentry_lru_isolate_shrink, &dispose, 1024);
  1188. shrink_dentry_list(&dispose);
  1189. } while (list_lru_count(&sb->s_dentry_lru) > 0);
  1190. }
  1191. EXPORT_SYMBOL(shrink_dcache_sb);
  1192. /**
  1193. * enum d_walk_ret - action to talke during tree walk
  1194. * @D_WALK_CONTINUE: contrinue walk
  1195. * @D_WALK_QUIT: quit walk
  1196. * @D_WALK_NORETRY: quit when retry is needed
  1197. * @D_WALK_SKIP: skip this dentry and its children
  1198. */
  1199. enum d_walk_ret {
  1200. D_WALK_CONTINUE,
  1201. D_WALK_QUIT,
  1202. D_WALK_NORETRY,
  1203. D_WALK_SKIP,
  1204. };
  1205. /**
  1206. * d_walk - walk the dentry tree
  1207. * @parent: start of walk
  1208. * @data: data passed to @enter() and @finish()
  1209. * @enter: callback when first entering the dentry
  1210. *
  1211. * The @enter() callbacks are called with d_lock held.
  1212. */
  1213. static void d_walk(struct dentry *parent, void *data,
  1214. enum d_walk_ret (*enter)(void *, struct dentry *))
  1215. {
  1216. struct dentry *this_parent;
  1217. struct list_head *next;
  1218. unsigned seq = 0;
  1219. enum d_walk_ret ret;
  1220. bool retry = true;
  1221. again:
  1222. read_seqbegin_or_lock(&rename_lock, &seq);
  1223. this_parent = parent;
  1224. spin_lock(&this_parent->d_lock);
  1225. ret = enter(data, this_parent);
  1226. switch (ret) {
  1227. case D_WALK_CONTINUE:
  1228. break;
  1229. case D_WALK_QUIT:
  1230. case D_WALK_SKIP:
  1231. goto out_unlock;
  1232. case D_WALK_NORETRY:
  1233. retry = false;
  1234. break;
  1235. }
  1236. repeat:
  1237. next = this_parent->d_subdirs.next;
  1238. resume:
  1239. while (next != &this_parent->d_subdirs) {
  1240. struct list_head *tmp = next;
  1241. struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
  1242. next = tmp->next;
  1243. if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
  1244. continue;
  1245. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  1246. ret = enter(data, dentry);
  1247. switch (ret) {
  1248. case D_WALK_CONTINUE:
  1249. break;
  1250. case D_WALK_QUIT:
  1251. spin_unlock(&dentry->d_lock);
  1252. goto out_unlock;
  1253. case D_WALK_NORETRY:
  1254. retry = false;
  1255. break;
  1256. case D_WALK_SKIP:
  1257. spin_unlock(&dentry->d_lock);
  1258. continue;
  1259. }
  1260. if (!list_empty(&dentry->d_subdirs)) {
  1261. spin_unlock(&this_parent->d_lock);
  1262. spin_release(&dentry->d_lock.dep_map, _RET_IP_);
  1263. this_parent = dentry;
  1264. spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
  1265. goto repeat;
  1266. }
  1267. spin_unlock(&dentry->d_lock);
  1268. }
  1269. /*
  1270. * All done at this level ... ascend and resume the search.
  1271. */
  1272. rcu_read_lock();
  1273. ascend:
  1274. if (this_parent != parent) {
  1275. struct dentry *child = this_parent;
  1276. this_parent = child->d_parent;
  1277. spin_unlock(&child->d_lock);
  1278. spin_lock(&this_parent->d_lock);
  1279. /* might go back up the wrong parent if we have had a rename. */
  1280. if (need_seqretry(&rename_lock, seq))
  1281. goto rename_retry;
  1282. /* go into the first sibling still alive */
  1283. do {
  1284. next = child->d_child.next;
  1285. if (next == &this_parent->d_subdirs)
  1286. goto ascend;
  1287. child = list_entry(next, struct dentry, d_child);
  1288. } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
  1289. rcu_read_unlock();
  1290. goto resume;
  1291. }
  1292. if (need_seqretry(&rename_lock, seq))
  1293. goto rename_retry;
  1294. rcu_read_unlock();
  1295. out_unlock:
  1296. spin_unlock(&this_parent->d_lock);
  1297. done_seqretry(&rename_lock, seq);
  1298. return;
  1299. rename_retry:
  1300. spin_unlock(&this_parent->d_lock);
  1301. rcu_read_unlock();
  1302. BUG_ON(seq & 1);
  1303. if (!retry)
  1304. return;
  1305. seq = 1;
  1306. goto again;
  1307. }
  1308. struct check_mount {
  1309. struct vfsmount *mnt;
  1310. unsigned int mounted;
  1311. };
  1312. static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
  1313. {
  1314. struct check_mount *info = data;
  1315. struct path path = { .mnt = info->mnt, .dentry = dentry };
  1316. if (likely(!d_mountpoint(dentry)))
  1317. return D_WALK_CONTINUE;
  1318. if (__path_is_mountpoint(&path)) {
  1319. info->mounted = 1;
  1320. return D_WALK_QUIT;
  1321. }
  1322. return D_WALK_CONTINUE;
  1323. }
  1324. /**
  1325. * path_has_submounts - check for mounts over a dentry in the
  1326. * current namespace.
  1327. * @parent: path to check.
  1328. *
  1329. * Return true if the parent or its subdirectories contain
  1330. * a mount point in the current namespace.
  1331. */
  1332. int path_has_submounts(const struct path *parent)
  1333. {
  1334. struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
  1335. read_seqlock_excl(&mount_lock);
  1336. d_walk(parent->dentry, &data, path_check_mount);
  1337. read_sequnlock_excl(&mount_lock);
  1338. return data.mounted;
  1339. }
  1340. EXPORT_SYMBOL(path_has_submounts);
  1341. /*
  1342. * Called by mount code to set a mountpoint and check if the mountpoint is
  1343. * reachable (e.g. NFS can unhash a directory dentry and then the complete
  1344. * subtree can become unreachable).
  1345. *
  1346. * Only one of d_invalidate() and d_set_mounted() must succeed. For
  1347. * this reason take rename_lock and d_lock on dentry and ancestors.
  1348. */
  1349. int d_set_mounted(struct dentry *dentry)
  1350. {
  1351. struct dentry *p;
  1352. int ret = -ENOENT;
  1353. write_seqlock(&rename_lock);
  1354. for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
  1355. /* Need exclusion wrt. d_invalidate() */
  1356. spin_lock(&p->d_lock);
  1357. if (unlikely(d_unhashed(p))) {
  1358. spin_unlock(&p->d_lock);
  1359. goto out;
  1360. }
  1361. spin_unlock(&p->d_lock);
  1362. }
  1363. spin_lock(&dentry->d_lock);
  1364. if (!d_unlinked(dentry)) {
  1365. ret = -EBUSY;
  1366. if (!d_mountpoint(dentry)) {
  1367. dentry->d_flags |= DCACHE_MOUNTED;
  1368. ret = 0;
  1369. }
  1370. }
  1371. spin_unlock(&dentry->d_lock);
  1372. out:
  1373. write_sequnlock(&rename_lock);
  1374. return ret;
  1375. }
  1376. /*
  1377. * Search the dentry child list of the specified parent,
  1378. * and move any unused dentries to the end of the unused
  1379. * list for prune_dcache(). We descend to the next level
  1380. * whenever the d_subdirs list is non-empty and continue
  1381. * searching.
  1382. *
  1383. * It returns zero iff there are no unused children,
  1384. * otherwise it returns the number of children moved to
  1385. * the end of the unused list. This may not be the total
  1386. * number of unused children, because select_parent can
  1387. * drop the lock and return early due to latency
  1388. * constraints.
  1389. */
  1390. struct select_data {
  1391. struct dentry *start;
  1392. union {
  1393. long found;
  1394. struct dentry *victim;
  1395. };
  1396. struct list_head dispose;
  1397. };
  1398. static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
  1399. {
  1400. struct select_data *data = _data;
  1401. enum d_walk_ret ret = D_WALK_CONTINUE;
  1402. if (data->start == dentry)
  1403. goto out;
  1404. if (dentry->d_flags & DCACHE_SHRINK_LIST) {
  1405. data->found++;
  1406. } else {
  1407. if (dentry->d_flags & DCACHE_LRU_LIST)
  1408. d_lru_del(dentry);
  1409. if (!dentry->d_lockref.count) {
  1410. d_shrink_add(dentry, &data->dispose);
  1411. data->found++;
  1412. }
  1413. }
  1414. /*
  1415. * We can return to the caller if we have found some (this
  1416. * ensures forward progress). We'll be coming back to find
  1417. * the rest.
  1418. */
  1419. if (!list_empty(&data->dispose))
  1420. ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
  1421. out:
  1422. return ret;
  1423. }
  1424. static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
  1425. {
  1426. struct select_data *data = _data;
  1427. enum d_walk_ret ret = D_WALK_CONTINUE;
  1428. if (data->start == dentry)
  1429. goto out;
  1430. if (dentry->d_flags & DCACHE_SHRINK_LIST) {
  1431. if (!dentry->d_lockref.count) {
  1432. rcu_read_lock();
  1433. data->victim = dentry;
  1434. return D_WALK_QUIT;
  1435. }
  1436. } else {
  1437. if (dentry->d_flags & DCACHE_LRU_LIST)
  1438. d_lru_del(dentry);
  1439. if (!dentry->d_lockref.count)
  1440. d_shrink_add(dentry, &data->dispose);
  1441. }
  1442. /*
  1443. * We can return to the caller if we have found some (this
  1444. * ensures forward progress). We'll be coming back to find
  1445. * the rest.
  1446. */
  1447. if (!list_empty(&data->dispose))
  1448. ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
  1449. out:
  1450. return ret;
  1451. }
  1452. /**
  1453. * shrink_dcache_parent - prune dcache
  1454. * @parent: parent of entries to prune
  1455. *
  1456. * Prune the dcache to remove unused children of the parent dentry.
  1457. */
  1458. void shrink_dcache_parent(struct dentry *parent)
  1459. {
  1460. for (;;) {
  1461. struct select_data data = {.start = parent};
  1462. INIT_LIST_HEAD(&data.dispose);
  1463. d_walk(parent, &data, select_collect);
  1464. if (!list_empty(&data.dispose)) {
  1465. shrink_dentry_list(&data.dispose);
  1466. continue;
  1467. }
  1468. cond_resched();
  1469. if (!data.found)
  1470. break;
  1471. data.victim = NULL;
  1472. d_walk(parent, &data, select_collect2);
  1473. if (data.victim) {
  1474. struct dentry *parent;
  1475. spin_lock(&data.victim->d_lock);
  1476. if (!shrink_lock_dentry(data.victim)) {
  1477. spin_unlock(&data.victim->d_lock);
  1478. rcu_read_unlock();
  1479. } else {
  1480. rcu_read_unlock();
  1481. parent = data.victim->d_parent;
  1482. if (parent != data.victim)
  1483. __dput_to_list(parent, &data.dispose);
  1484. __dentry_kill(data.victim);
  1485. }
  1486. }
  1487. if (!list_empty(&data.dispose))
  1488. shrink_dentry_list(&data.dispose);
  1489. }
  1490. }
  1491. EXPORT_SYMBOL(shrink_dcache_parent);
  1492. static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
  1493. {
  1494. /* it has busy descendents; complain about those instead */
  1495. if (!list_empty(&dentry->d_subdirs))
  1496. return D_WALK_CONTINUE;
  1497. /* root with refcount 1 is fine */
  1498. if (dentry == _data && dentry->d_lockref.count == 1)
  1499. return D_WALK_CONTINUE;
  1500. printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
  1501. " still in use (%d) [unmount of %s %s]\n",
  1502. dentry,
  1503. dentry->d_inode ?
  1504. dentry->d_inode->i_ino : 0UL,
  1505. dentry,
  1506. dentry->d_lockref.count,
  1507. dentry->d_sb->s_type->name,
  1508. dentry->d_sb->s_id);
  1509. WARN_ON(1);
  1510. return D_WALK_CONTINUE;
  1511. }
  1512. static void do_one_tree(struct dentry *dentry)
  1513. {
  1514. shrink_dcache_parent(dentry);
  1515. d_walk(dentry, dentry, umount_check);
  1516. d_drop(dentry);
  1517. dput(dentry);
  1518. }
  1519. /*
  1520. * destroy the dentries attached to a superblock on unmounting
  1521. */
  1522. void shrink_dcache_for_umount(struct super_block *sb)
  1523. {
  1524. struct dentry *dentry;
  1525. WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
  1526. dentry = sb->s_root;
  1527. sb->s_root = NULL;
  1528. do_one_tree(dentry);
  1529. while (!hlist_bl_empty(&sb->s_roots)) {
  1530. dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
  1531. do_one_tree(dentry);
  1532. }
  1533. }
  1534. static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
  1535. {
  1536. struct dentry **victim = _data;
  1537. if (d_mountpoint(dentry)) {
  1538. __dget_dlock(dentry);
  1539. *victim = dentry;
  1540. return D_WALK_QUIT;
  1541. }
  1542. return D_WALK_CONTINUE;
  1543. }
  1544. /**
  1545. * d_invalidate - detach submounts, prune dcache, and drop
  1546. * @dentry: dentry to invalidate (aka detach, prune and drop)
  1547. */
  1548. void d_invalidate(struct dentry *dentry)
  1549. {
  1550. bool had_submounts = false;
  1551. spin_lock(&dentry->d_lock);
  1552. if (d_unhashed(dentry)) {
  1553. spin_unlock(&dentry->d_lock);
  1554. return;
  1555. }
  1556. __d_drop(dentry);
  1557. spin_unlock(&dentry->d_lock);
  1558. /* Negative dentries can be dropped without further checks */
  1559. if (!dentry->d_inode)
  1560. return;
  1561. shrink_dcache_parent(dentry);
  1562. for (;;) {
  1563. struct dentry *victim = NULL;
  1564. d_walk(dentry, &victim, find_submount);
  1565. if (!victim) {
  1566. if (had_submounts)
  1567. shrink_dcache_parent(dentry);
  1568. return;
  1569. }
  1570. had_submounts = true;
  1571. detach_mounts(victim);
  1572. dput(victim);
  1573. }
  1574. }
  1575. EXPORT_SYMBOL(d_invalidate);
  1576. /**
  1577. * __d_alloc - allocate a dcache entry
  1578. * @sb: filesystem it will belong to
  1579. * @name: qstr of the name
  1580. *
  1581. * Allocates a dentry. It returns %NULL if there is insufficient memory
  1582. * available. On a success the dentry is returned. The name passed in is
  1583. * copied and the copy passed in may be reused after this call.
  1584. */
  1585. static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
  1586. {
  1587. struct dentry *dentry;
  1588. char *dname;
  1589. int err;
  1590. dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
  1591. GFP_KERNEL);
  1592. if (!dentry)
  1593. return NULL;
  1594. /*
  1595. * We guarantee that the inline name is always NUL-terminated.
  1596. * This way the memcpy() done by the name switching in rename
  1597. * will still always have a NUL at the end, even if we might
  1598. * be overwriting an internal NUL character
  1599. */
  1600. dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
  1601. if (unlikely(!name)) {
  1602. name = &slash_name;
  1603. dname = dentry->d_iname;
  1604. } else if (name->len > DNAME_INLINE_LEN-1) {
  1605. size_t size = offsetof(struct external_name, name[1]);
  1606. struct external_name *p = kmalloc(size + name->len,
  1607. GFP_KERNEL_ACCOUNT |
  1608. __GFP_RECLAIMABLE);
  1609. if (!p) {
  1610. kmem_cache_free(dentry_cache, dentry);
  1611. return NULL;
  1612. }
  1613. atomic_set(&p->u.count, 1);
  1614. dname = p->name;
  1615. } else {
  1616. dname = dentry->d_iname;
  1617. }
  1618. dentry->d_name.len = name->len;
  1619. dentry->d_name.hash = name->hash;
  1620. memcpy(dname, name->name, name->len);
  1621. dname[name->len] = 0;
  1622. /* Make sure we always see the terminating NUL character */
  1623. smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
  1624. dentry->d_lockref.count = 1;
  1625. dentry->d_flags = 0;
  1626. spin_lock_init(&dentry->d_lock);
  1627. seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
  1628. dentry->d_inode = NULL;
  1629. dentry->d_parent = dentry;
  1630. dentry->d_sb = sb;
  1631. dentry->d_op = NULL;
  1632. dentry->d_fsdata = NULL;
  1633. INIT_HLIST_BL_NODE(&dentry->d_hash);
  1634. INIT_LIST_HEAD(&dentry->d_lru);
  1635. INIT_LIST_HEAD(&dentry->d_subdirs);
  1636. INIT_HLIST_NODE(&dentry->d_u.d_alias);
  1637. INIT_LIST_HEAD(&dentry->d_child);
  1638. d_set_d_op(dentry, dentry->d_sb->s_d_op);
  1639. if (dentry->d_op && dentry->d_op->d_init) {
  1640. err = dentry->d_op->d_init(dentry);
  1641. if (err) {
  1642. if (dname_external(dentry))
  1643. kfree(external_name(dentry));
  1644. kmem_cache_free(dentry_cache, dentry);
  1645. return NULL;
  1646. }
  1647. }
  1648. this_cpu_inc(nr_dentry);
  1649. return dentry;
  1650. }
  1651. /**
  1652. * d_alloc - allocate a dcache entry
  1653. * @parent: parent of entry to allocate
  1654. * @name: qstr of the name
  1655. *
  1656. * Allocates a dentry. It returns %NULL if there is insufficient memory
  1657. * available. On a success the dentry is returned. The name passed in is
  1658. * copied and the copy passed in may be reused after this call.
  1659. */
  1660. struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
  1661. {
  1662. struct dentry *dentry = __d_alloc(parent->d_sb, name);
  1663. if (!dentry)
  1664. return NULL;
  1665. spin_lock(&parent->d_lock);
  1666. /*
  1667. * don't need child lock because it is not subject
  1668. * to concurrency here
  1669. */
  1670. __dget_dlock(parent);
  1671. dentry->d_parent = parent;
  1672. list_add(&dentry->d_child, &parent->d_subdirs);
  1673. spin_unlock(&parent->d_lock);
  1674. return dentry;
  1675. }
  1676. EXPORT_SYMBOL(d_alloc);
  1677. struct dentry *d_alloc_anon(struct super_block *sb)
  1678. {
  1679. return __d_alloc(sb, NULL);
  1680. }
  1681. EXPORT_SYMBOL(d_alloc_anon);
  1682. struct dentry *d_alloc_cursor(struct dentry * parent)
  1683. {
  1684. struct dentry *dentry = d_alloc_anon(parent->d_sb);
  1685. if (dentry) {
  1686. dentry->d_flags |= DCACHE_DENTRY_CURSOR;
  1687. dentry->d_parent = dget(parent);
  1688. }
  1689. return dentry;
  1690. }
  1691. /**
  1692. * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
  1693. * @sb: the superblock
  1694. * @name: qstr of the name
  1695. *
  1696. * For a filesystem that just pins its dentries in memory and never
  1697. * performs lookups at all, return an unhashed IS_ROOT dentry.
  1698. * This is used for pipes, sockets et.al. - the stuff that should
  1699. * never be anyone's children or parents. Unlike all other
  1700. * dentries, these will not have RCU delay between dropping the
  1701. * last reference and freeing them.
  1702. *
  1703. * The only user is alloc_file_pseudo() and that's what should
  1704. * be considered a public interface. Don't use directly.
  1705. */
  1706. struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
  1707. {
  1708. struct dentry *dentry = __d_alloc(sb, name);
  1709. if (likely(dentry))
  1710. dentry->d_flags |= DCACHE_NORCU;
  1711. return dentry;
  1712. }
  1713. struct dentry *d_alloc_name(struct dentry *parent, const char *name)
  1714. {
  1715. struct qstr q;
  1716. q.name = name;
  1717. q.hash_len = hashlen_string(parent, name);
  1718. return d_alloc(parent, &q);
  1719. }
  1720. EXPORT_SYMBOL(d_alloc_name);
  1721. void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
  1722. {
  1723. WARN_ON_ONCE(dentry->d_op);
  1724. WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
  1725. DCACHE_OP_COMPARE |
  1726. DCACHE_OP_REVALIDATE |
  1727. DCACHE_OP_WEAK_REVALIDATE |
  1728. DCACHE_OP_DELETE |
  1729. DCACHE_OP_REAL));
  1730. dentry->d_op = op;
  1731. if (!op)
  1732. return;
  1733. if (op->d_hash)
  1734. dentry->d_flags |= DCACHE_OP_HASH;
  1735. if (op->d_compare)
  1736. dentry->d_flags |= DCACHE_OP_COMPARE;
  1737. if (op->d_revalidate)
  1738. dentry->d_flags |= DCACHE_OP_REVALIDATE;
  1739. if (op->d_weak_revalidate)
  1740. dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
  1741. if (op->d_delete)
  1742. dentry->d_flags |= DCACHE_OP_DELETE;
  1743. if (op->d_prune)
  1744. dentry->d_flags |= DCACHE_OP_PRUNE;
  1745. if (op->d_real)
  1746. dentry->d_flags |= DCACHE_OP_REAL;
  1747. }
  1748. EXPORT_SYMBOL(d_set_d_op);
  1749. /*
  1750. * d_set_fallthru - Mark a dentry as falling through to a lower layer
  1751. * @dentry - The dentry to mark
  1752. *
  1753. * Mark a dentry as falling through to the lower layer (as set with
  1754. * d_pin_lower()). This flag may be recorded on the medium.
  1755. */
  1756. void d_set_fallthru(struct dentry *dentry)
  1757. {
  1758. spin_lock(&dentry->d_lock);
  1759. dentry->d_flags |= DCACHE_FALLTHRU;
  1760. spin_unlock(&dentry->d_lock);
  1761. }
  1762. EXPORT_SYMBOL(d_set_fallthru);
  1763. static unsigned d_flags_for_inode(struct inode *inode)
  1764. {
  1765. unsigned add_flags = DCACHE_REGULAR_TYPE;
  1766. if (!inode)
  1767. return DCACHE_MISS_TYPE;
  1768. if (S_ISDIR(inode->i_mode)) {
  1769. add_flags = DCACHE_DIRECTORY_TYPE;
  1770. if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
  1771. if (unlikely(!inode->i_op->lookup))
  1772. add_flags = DCACHE_AUTODIR_TYPE;
  1773. else
  1774. inode->i_opflags |= IOP_LOOKUP;
  1775. }
  1776. goto type_determined;
  1777. }
  1778. if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
  1779. if (unlikely(inode->i_op->get_link)) {
  1780. add_flags = DCACHE_SYMLINK_TYPE;
  1781. goto type_determined;
  1782. }
  1783. inode->i_opflags |= IOP_NOFOLLOW;
  1784. }
  1785. if (unlikely(!S_ISREG(inode->i_mode)))
  1786. add_flags = DCACHE_SPECIAL_TYPE;
  1787. type_determined:
  1788. if (unlikely(IS_AUTOMOUNT(inode)))
  1789. add_flags |= DCACHE_NEED_AUTOMOUNT;
  1790. return add_flags;
  1791. }
  1792. static void __d_instantiate(struct dentry *dentry, struct inode *inode)
  1793. {
  1794. unsigned add_flags = d_flags_for_inode(inode);
  1795. WARN_ON(d_in_lookup(dentry));
  1796. spin_lock(&dentry->d_lock);
  1797. /*
  1798. * Decrement negative dentry count if it was in the LRU list.
  1799. */
  1800. if (dentry->d_flags & DCACHE_LRU_LIST)
  1801. this_cpu_dec(nr_dentry_negative);
  1802. hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
  1803. raw_write_seqcount_begin(&dentry->d_seq);
  1804. __d_set_inode_and_type(dentry, inode, add_flags);
  1805. raw_write_seqcount_end(&dentry->d_seq);
  1806. fsnotify_update_flags(dentry);
  1807. spin_unlock(&dentry->d_lock);
  1808. }
  1809. /**
  1810. * d_instantiate - fill in inode information for a dentry
  1811. * @entry: dentry to complete
  1812. * @inode: inode to attach to this dentry
  1813. *
  1814. * Fill in inode information in the entry.
  1815. *
  1816. * This turns negative dentries into productive full members
  1817. * of society.
  1818. *
  1819. * NOTE! This assumes that the inode count has been incremented
  1820. * (or otherwise set) by the caller to indicate that it is now
  1821. * in use by the dcache.
  1822. */
  1823. void d_instantiate(struct dentry *entry, struct inode * inode)
  1824. {
  1825. BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
  1826. if (inode) {
  1827. security_d_instantiate(entry, inode);
  1828. spin_lock(&inode->i_lock);
  1829. __d_instantiate(entry, inode);
  1830. spin_unlock(&inode->i_lock);
  1831. }
  1832. }
  1833. EXPORT_SYMBOL(d_instantiate);
  1834. /*
  1835. * This should be equivalent to d_instantiate() + unlock_new_inode(),
  1836. * with lockdep-related part of unlock_new_inode() done before
  1837. * anything else. Use that instead of open-coding d_instantiate()/
  1838. * unlock_new_inode() combinations.
  1839. */
  1840. void d_instantiate_new(struct dentry *entry, struct inode *inode)
  1841. {
  1842. BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
  1843. BUG_ON(!inode);
  1844. lockdep_annotate_inode_mutex_key(inode);
  1845. security_d_instantiate(entry, inode);
  1846. spin_lock(&inode->i_lock);
  1847. __d_instantiate(entry, inode);
  1848. WARN_ON(!(inode->i_state & I_NEW));
  1849. inode->i_state &= ~I_NEW & ~I_CREATING;
  1850. smp_mb();
  1851. wake_up_bit(&inode->i_state, __I_NEW);
  1852. spin_unlock(&inode->i_lock);
  1853. }
  1854. EXPORT_SYMBOL(d_instantiate_new);
  1855. struct dentry *d_make_root(struct inode *root_inode)
  1856. {
  1857. struct dentry *res = NULL;
  1858. if (root_inode) {
  1859. res = d_alloc_anon(root_inode->i_sb);
  1860. if (res)
  1861. d_instantiate(res, root_inode);
  1862. else
  1863. iput(root_inode);
  1864. }
  1865. return res;
  1866. }
  1867. EXPORT_SYMBOL(d_make_root);
  1868. static struct dentry *__d_instantiate_anon(struct dentry *dentry,
  1869. struct inode *inode,
  1870. bool disconnected)
  1871. {
  1872. struct dentry *res;
  1873. unsigned add_flags;
  1874. security_d_instantiate(dentry, inode);
  1875. spin_lock(&inode->i_lock);
  1876. res = __d_find_any_alias(inode);
  1877. if (res) {
  1878. spin_unlock(&inode->i_lock);
  1879. dput(dentry);
  1880. goto out_iput;
  1881. }
  1882. /* attach a disconnected dentry */
  1883. add_flags = d_flags_for_inode(inode);
  1884. if (disconnected)
  1885. add_flags |= DCACHE_DISCONNECTED;
  1886. spin_lock(&dentry->d_lock);
  1887. __d_set_inode_and_type(dentry, inode, add_flags);
  1888. hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
  1889. if (!disconnected) {
  1890. hlist_bl_lock(&dentry->d_sb->s_roots);
  1891. hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
  1892. hlist_bl_unlock(&dentry->d_sb->s_roots);
  1893. }
  1894. spin_unlock(&dentry->d_lock);
  1895. spin_unlock(&inode->i_lock);
  1896. return dentry;
  1897. out_iput:
  1898. iput(inode);
  1899. return res;
  1900. }
  1901. struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
  1902. {
  1903. return __d_instantiate_anon(dentry, inode, true);
  1904. }
  1905. EXPORT_SYMBOL(d_instantiate_anon);
  1906. static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
  1907. {
  1908. struct dentry *tmp;
  1909. struct dentry *res;
  1910. if (!inode)
  1911. return ERR_PTR(-ESTALE);
  1912. if (IS_ERR(inode))
  1913. return ERR_CAST(inode);
  1914. res = d_find_any_alias(inode);
  1915. if (res)
  1916. goto out_iput;
  1917. tmp = d_alloc_anon(inode->i_sb);
  1918. if (!tmp) {
  1919. res = ERR_PTR(-ENOMEM);
  1920. goto out_iput;
  1921. }
  1922. return __d_instantiate_anon(tmp, inode, disconnected);
  1923. out_iput:
  1924. iput(inode);
  1925. return res;
  1926. }
  1927. /**
  1928. * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
  1929. * @inode: inode to allocate the dentry for
  1930. *
  1931. * Obtain a dentry for an inode resulting from NFS filehandle conversion or
  1932. * similar open by handle operations. The returned dentry may be anonymous,
  1933. * or may have a full name (if the inode was already in the cache).
  1934. *
  1935. * When called on a directory inode, we must ensure that the inode only ever
  1936. * has one dentry. If a dentry is found, that is returned instead of
  1937. * allocating a new one.
  1938. *
  1939. * On successful return, the reference to the inode has been transferred
  1940. * to the dentry. In case of an error the reference on the inode is released.
  1941. * To make it easier to use in export operations a %NULL or IS_ERR inode may
  1942. * be passed in and the error will be propagated to the return value,
  1943. * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
  1944. */
  1945. struct dentry *d_obtain_alias(struct inode *inode)
  1946. {
  1947. return __d_obtain_alias(inode, true);
  1948. }
  1949. EXPORT_SYMBOL(d_obtain_alias);
  1950. /**
  1951. * d_obtain_root - find or allocate a dentry for a given inode
  1952. * @inode: inode to allocate the dentry for
  1953. *
  1954. * Obtain an IS_ROOT dentry for the root of a filesystem.
  1955. *
  1956. * We must ensure that directory inodes only ever have one dentry. If a
  1957. * dentry is found, that is returned instead of allocating a new one.
  1958. *
  1959. * On successful return, the reference to the inode has been transferred
  1960. * to the dentry. In case of an error the reference on the inode is
  1961. * released. A %NULL or IS_ERR inode may be passed in and will be the
  1962. * error will be propagate to the return value, with a %NULL @inode
  1963. * replaced by ERR_PTR(-ESTALE).
  1964. */
  1965. struct dentry *d_obtain_root(struct inode *inode)
  1966. {
  1967. return __d_obtain_alias(inode, false);
  1968. }
  1969. EXPORT_SYMBOL(d_obtain_root);
  1970. /**
  1971. * d_add_ci - lookup or allocate new dentry with case-exact name
  1972. * @inode: the inode case-insensitive lookup has found
  1973. * @dentry: the negative dentry that was passed to the parent's lookup func
  1974. * @name: the case-exact name to be associated with the returned dentry
  1975. *
  1976. * This is to avoid filling the dcache with case-insensitive names to the
  1977. * same inode, only the actual correct case is stored in the dcache for
  1978. * case-insensitive filesystems.
  1979. *
  1980. * For a case-insensitive lookup match and if the case-exact dentry
  1981. * already exists in the dcache, use it and return it.
  1982. *
  1983. * If no entry exists with the exact case name, allocate new dentry with
  1984. * the exact case, and return the spliced entry.
  1985. */
  1986. struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
  1987. struct qstr *name)
  1988. {
  1989. struct dentry *found, *res;
  1990. /*
  1991. * First check if a dentry matching the name already exists,
  1992. * if not go ahead and create it now.
  1993. */
  1994. found = d_hash_and_lookup(dentry->d_parent, name);
  1995. if (found) {
  1996. iput(inode);
  1997. return found;
  1998. }
  1999. if (d_in_lookup(dentry)) {
  2000. found = d_alloc_parallel(dentry->d_parent, name,
  2001. dentry->d_wait);
  2002. if (IS_ERR(found) || !d_in_lookup(found)) {
  2003. iput(inode);
  2004. return found;
  2005. }
  2006. } else {
  2007. found = d_alloc(dentry->d_parent, name);
  2008. if (!found) {
  2009. iput(inode);
  2010. return ERR_PTR(-ENOMEM);
  2011. }
  2012. }
  2013. res = d_splice_alias(inode, found);
  2014. if (res) {
  2015. d_lookup_done(found);
  2016. dput(found);
  2017. return res;
  2018. }
  2019. return found;
  2020. }
  2021. EXPORT_SYMBOL(d_add_ci);
  2022. /**
  2023. * d_same_name - compare dentry name with case-exact name
  2024. * @parent: parent dentry
  2025. * @dentry: the negative dentry that was passed to the parent's lookup func
  2026. * @name: the case-exact name to be associated with the returned dentry
  2027. *
  2028. * Return: true if names are same, or false
  2029. */
  2030. bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
  2031. const struct qstr *name)
  2032. {
  2033. if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
  2034. if (dentry->d_name.len != name->len)
  2035. return false;
  2036. return dentry_cmp(dentry, name->name, name->len) == 0;
  2037. }
  2038. return parent->d_op->d_compare(dentry,
  2039. dentry->d_name.len, dentry->d_name.name,
  2040. name) == 0;
  2041. }
  2042. EXPORT_SYMBOL_GPL(d_same_name);
  2043. /*
  2044. * This is __d_lookup_rcu() when the parent dentry has
  2045. * DCACHE_OP_COMPARE, which makes things much nastier.
  2046. */
  2047. static noinline struct dentry *__d_lookup_rcu_op_compare(
  2048. const struct dentry *parent,
  2049. const struct qstr *name,
  2050. unsigned *seqp)
  2051. {
  2052. u64 hashlen = name->hash_len;
  2053. struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
  2054. struct hlist_bl_node *node;
  2055. struct dentry *dentry;
  2056. hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
  2057. int tlen;
  2058. const char *tname;
  2059. unsigned seq;
  2060. seqretry:
  2061. seq = raw_seqcount_begin(&dentry->d_seq);
  2062. if (dentry->d_parent != parent)
  2063. continue;
  2064. if (d_unhashed(dentry))
  2065. continue;
  2066. if (dentry->d_name.hash != hashlen_hash(hashlen))
  2067. continue;
  2068. #ifdef CONFIG_KSU_SUSFS_SUS_PATH
  2069. if (dentry->d_inode && unlikely(dentry->d_inode->i_state & INODE_STATE_SUS_PATH) && likely(current->susfs_task_state & TASK_STRUCT_NON_ROOT_USER_APP_PROC)) {
  2070. continue;
  2071. }
  2072. #endif
  2073. tlen = dentry->d_name.len;
  2074. tname = dentry->d_name.name;
  2075. /* we want a consistent (name,len) pair */
  2076. if (read_seqcount_retry(&dentry->d_seq, seq)) {
  2077. cpu_relax();
  2078. goto seqretry;
  2079. }
  2080. if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
  2081. continue;
  2082. *seqp = seq;
  2083. return dentry;
  2084. }
  2085. return NULL;
  2086. }
  2087. /**
  2088. * __d_lookup_rcu - search for a dentry (racy, store-free)
  2089. * @parent: parent dentry
  2090. * @name: qstr of name we wish to find
  2091. * @seqp: returns d_seq value at the point where the dentry was found
  2092. * Returns: dentry, or NULL
  2093. *
  2094. * __d_lookup_rcu is the dcache lookup function for rcu-walk name
  2095. * resolution (store-free path walking) design described in
  2096. * Documentation/filesystems/path-lookup.txt.
  2097. *
  2098. * This is not to be used outside core vfs.
  2099. *
  2100. * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
  2101. * held, and rcu_read_lock held. The returned dentry must not be stored into
  2102. * without taking d_lock and checking d_seq sequence count against @seq
  2103. * returned here.
  2104. *
  2105. * A refcount may be taken on the found dentry with the d_rcu_to_refcount
  2106. * function.
  2107. *
  2108. * Alternatively, __d_lookup_rcu may be called again to look up the child of
  2109. * the returned dentry, so long as its parent's seqlock is checked after the
  2110. * child is looked up. Thus, an interlocking stepping of sequence lock checks
  2111. * is formed, giving integrity down the path walk.
  2112. *
  2113. * NOTE! The caller *has* to check the resulting dentry against the sequence
  2114. * number we've returned before using any of the resulting dentry state!
  2115. */
  2116. struct dentry *__d_lookup_rcu(const struct dentry *parent,
  2117. const struct qstr *name,
  2118. unsigned *seqp)
  2119. {
  2120. u64 hashlen = name->hash_len;
  2121. const unsigned char *str = name->name;
  2122. struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
  2123. struct hlist_bl_node *node;
  2124. struct dentry *dentry;
  2125. /*
  2126. * Note: There is significant duplication with __d_lookup_rcu which is
  2127. * required to prevent single threaded performance regressions
  2128. * especially on architectures where smp_rmb (in seqcounts) are costly.
  2129. * Keep the two functions in sync.
  2130. */
  2131. if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
  2132. return __d_lookup_rcu_op_compare(parent, name, seqp);
  2133. /*
  2134. * The hash list is protected using RCU.
  2135. *
  2136. * Carefully use d_seq when comparing a candidate dentry, to avoid
  2137. * races with d_move().
  2138. *
  2139. * It is possible that concurrent renames can mess up our list
  2140. * walk here and result in missing our dentry, resulting in the
  2141. * false-negative result. d_lookup() protects against concurrent
  2142. * renames using rename_lock seqlock.
  2143. *
  2144. * See Documentation/filesystems/path-lookup.txt for more details.
  2145. */
  2146. hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
  2147. unsigned seq;
  2148. /*
  2149. * The dentry sequence count protects us from concurrent
  2150. * renames, and thus protects parent and name fields.
  2151. *
  2152. * The caller must perform a seqcount check in order
  2153. * to do anything useful with the returned dentry.
  2154. *
  2155. * NOTE! We do a "raw" seqcount_begin here. That means that
  2156. * we don't wait for the sequence count to stabilize if it
  2157. * is in the middle of a sequence change. If we do the slow
  2158. * dentry compare, we will do seqretries until it is stable,
  2159. * and if we end up with a successful lookup, we actually
  2160. * want to exit RCU lookup anyway.
  2161. *
  2162. * Note that raw_seqcount_begin still *does* smp_rmb(), so
  2163. * we are still guaranteed NUL-termination of ->d_name.name.
  2164. */
  2165. seq = raw_seqcount_begin(&dentry->d_seq);
  2166. if (dentry->d_parent != parent)
  2167. continue;
  2168. if (d_unhashed(dentry))
  2169. continue;
  2170. if (dentry->d_name.hash_len != hashlen)
  2171. continue;
  2172. if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
  2173. continue;
  2174. #ifdef CONFIG_KSU_SUSFS_SUS_PATH
  2175. if (dentry->d_inode && unlikely(dentry->d_inode->i_state & INODE_STATE_SUS_PATH) && likely(current->susfs_task_state & TASK_STRUCT_NON_ROOT_USER_APP_PROC)) {
  2176. continue;
  2177. }
  2178. #endif
  2179. *seqp = seq;
  2180. return dentry;
  2181. }
  2182. return NULL;
  2183. }
  2184. /**
  2185. * d_lookup - search for a dentry
  2186. * @parent: parent dentry
  2187. * @name: qstr of name we wish to find
  2188. * Returns: dentry, or NULL
  2189. *
  2190. * d_lookup searches the children of the parent dentry for the name in
  2191. * question. If the dentry is found its reference count is incremented and the
  2192. * dentry is returned. The caller must use dput to free the entry when it has
  2193. * finished using it. %NULL is returned if the dentry does not exist.
  2194. */
  2195. struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
  2196. {
  2197. struct dentry *dentry;
  2198. unsigned seq;
  2199. do {
  2200. seq = read_seqbegin(&rename_lock);
  2201. dentry = __d_lookup(parent, name);
  2202. if (dentry)
  2203. break;
  2204. } while (read_seqretry(&rename_lock, seq));
  2205. return dentry;
  2206. }
  2207. EXPORT_SYMBOL(d_lookup);
  2208. /**
  2209. * __d_lookup - search for a dentry (racy)
  2210. * @parent: parent dentry
  2211. * @name: qstr of name we wish to find
  2212. * Returns: dentry, or NULL
  2213. *
  2214. * __d_lookup is like d_lookup, however it may (rarely) return a
  2215. * false-negative result due to unrelated rename activity.
  2216. *
  2217. * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
  2218. * however it must be used carefully, eg. with a following d_lookup in
  2219. * the case of failure.
  2220. *
  2221. * __d_lookup callers must be commented.
  2222. */
  2223. struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
  2224. {
  2225. unsigned int hash = name->hash;
  2226. struct hlist_bl_head *b = d_hash(hash);
  2227. struct hlist_bl_node *node;
  2228. struct dentry *found = NULL;
  2229. struct dentry *dentry;
  2230. /*
  2231. * Note: There is significant duplication with __d_lookup_rcu which is
  2232. * required to prevent single threaded performance regressions
  2233. * especially on architectures where smp_rmb (in seqcounts) are costly.
  2234. * Keep the two functions in sync.
  2235. */
  2236. /*
  2237. * The hash list is protected using RCU.
  2238. *
  2239. * Take d_lock when comparing a candidate dentry, to avoid races
  2240. * with d_move().
  2241. *
  2242. * It is possible that concurrent renames can mess up our list
  2243. * walk here and result in missing our dentry, resulting in the
  2244. * false-negative result. d_lookup() protects against concurrent
  2245. * renames using rename_lock seqlock.
  2246. *
  2247. * See Documentation/filesystems/path-lookup.txt for more details.
  2248. */
  2249. rcu_read_lock();
  2250. hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
  2251. if (dentry->d_name.hash != hash)
  2252. continue;
  2253. #ifdef CONFIG_KSU_SUSFS_SUS_PATH
  2254. if (dentry->d_inode && unlikely(dentry->d_inode->i_state & INODE_STATE_SUS_PATH) && likely(current->susfs_task_state & TASK_STRUCT_NON_ROOT_USER_APP_PROC)) {
  2255. continue;
  2256. }
  2257. #endif
  2258. spin_lock(&dentry->d_lock);
  2259. if (dentry->d_parent != parent)
  2260. goto next;
  2261. if (d_unhashed(dentry))
  2262. goto next;
  2263. if (!d_same_name(dentry, parent, name))
  2264. goto next;
  2265. dentry->d_lockref.count++;
  2266. found = dentry;
  2267. spin_unlock(&dentry->d_lock);
  2268. break;
  2269. next:
  2270. spin_unlock(&dentry->d_lock);
  2271. }
  2272. rcu_read_unlock();
  2273. return found;
  2274. }
  2275. /**
  2276. * d_hash_and_lookup - hash the qstr then search for a dentry
  2277. * @dir: Directory to search in
  2278. * @name: qstr of name we wish to find
  2279. *
  2280. * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
  2281. */
  2282. struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
  2283. {
  2284. /*
  2285. * Check for a fs-specific hash function. Note that we must
  2286. * calculate the standard hash first, as the d_op->d_hash()
  2287. * routine may choose to leave the hash value unchanged.
  2288. */
  2289. name->hash = full_name_hash(dir, name->name, name->len);
  2290. if (dir->d_flags & DCACHE_OP_HASH) {
  2291. int err = dir->d_op->d_hash(dir, name);
  2292. if (unlikely(err < 0))
  2293. return ERR_PTR(err);
  2294. }
  2295. return d_lookup(dir, name);
  2296. }
  2297. EXPORT_SYMBOL(d_hash_and_lookup);
  2298. /*
  2299. * When a file is deleted, we have two options:
  2300. * - turn this dentry into a negative dentry
  2301. * - unhash this dentry and free it.
  2302. *
  2303. * Usually, we want to just turn this into
  2304. * a negative dentry, but if anybody else is
  2305. * currently using the dentry or the inode
  2306. * we can't do that and we fall back on removing
  2307. * it from the hash queues and waiting for
  2308. * it to be deleted later when it has no users
  2309. */
  2310. /**
  2311. * d_delete - delete a dentry
  2312. * @dentry: The dentry to delete
  2313. *
  2314. * Turn the dentry into a negative dentry if possible, otherwise
  2315. * remove it from the hash queues so it can be deleted later
  2316. */
  2317. void d_delete(struct dentry * dentry)
  2318. {
  2319. struct inode *inode = dentry->d_inode;
  2320. spin_lock(&inode->i_lock);
  2321. spin_lock(&dentry->d_lock);
  2322. /*
  2323. * Are we the only user?
  2324. */
  2325. if (dentry->d_lockref.count == 1) {
  2326. dentry->d_flags &= ~DCACHE_CANT_MOUNT;
  2327. dentry_unlink_inode(dentry);
  2328. } else {
  2329. __d_drop(dentry);
  2330. spin_unlock(&dentry->d_lock);
  2331. spin_unlock(&inode->i_lock);
  2332. }
  2333. }
  2334. EXPORT_SYMBOL(d_delete);
  2335. static void __d_rehash(struct dentry *entry)
  2336. {
  2337. struct hlist_bl_head *b = d_hash(entry->d_name.hash);
  2338. hlist_bl_lock(b);
  2339. hlist_bl_add_head_rcu(&entry->d_hash, b);
  2340. hlist_bl_unlock(b);
  2341. }
  2342. /**
  2343. * d_rehash - add an entry back to the hash
  2344. * @entry: dentry to add to the hash
  2345. *
  2346. * Adds a dentry to the hash according to its name.
  2347. */
  2348. void d_rehash(struct dentry * entry)
  2349. {
  2350. spin_lock(&entry->d_lock);
  2351. __d_rehash(entry);
  2352. spin_unlock(&entry->d_lock);
  2353. }
  2354. EXPORT_SYMBOL(d_rehash);
  2355. static inline unsigned start_dir_add(struct inode *dir)
  2356. {
  2357. preempt_disable_nested();
  2358. for (;;) {
  2359. unsigned n = dir->i_dir_seq;
  2360. if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
  2361. return n;
  2362. cpu_relax();
  2363. }
  2364. }
  2365. static inline void end_dir_add(struct inode *dir, unsigned int n,
  2366. wait_queue_head_t *d_wait)
  2367. {
  2368. smp_store_release(&dir->i_dir_seq, n + 2);
  2369. preempt_enable_nested();
  2370. wake_up_all(d_wait);
  2371. }
  2372. static void d_wait_lookup(struct dentry *dentry)
  2373. {
  2374. if (d_in_lookup(dentry)) {
  2375. DECLARE_WAITQUEUE(wait, current);
  2376. add_wait_queue(dentry->d_wait, &wait);
  2377. do {
  2378. set_current_state(TASK_UNINTERRUPTIBLE);
  2379. spin_unlock(&dentry->d_lock);
  2380. schedule();
  2381. spin_lock(&dentry->d_lock);
  2382. } while (d_in_lookup(dentry));
  2383. }
  2384. }
  2385. struct dentry *d_alloc_parallel(struct dentry *parent,
  2386. const struct qstr *name,
  2387. wait_queue_head_t *wq)
  2388. {
  2389. unsigned int hash = name->hash;
  2390. struct hlist_bl_head *b = in_lookup_hash(parent, hash);
  2391. struct hlist_bl_node *node;
  2392. struct dentry *new = d_alloc(parent, name);
  2393. struct dentry *dentry;
  2394. unsigned seq, r_seq, d_seq;
  2395. if (unlikely(!new))
  2396. return ERR_PTR(-ENOMEM);
  2397. retry:
  2398. rcu_read_lock();
  2399. seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
  2400. r_seq = read_seqbegin(&rename_lock);
  2401. dentry = __d_lookup_rcu(parent, name, &d_seq);
  2402. if (unlikely(dentry)) {
  2403. if (!lockref_get_not_dead(&dentry->d_lockref)) {
  2404. rcu_read_unlock();
  2405. goto retry;
  2406. }
  2407. if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
  2408. rcu_read_unlock();
  2409. dput(dentry);
  2410. goto retry;
  2411. }
  2412. rcu_read_unlock();
  2413. dput(new);
  2414. return dentry;
  2415. }
  2416. if (unlikely(read_seqretry(&rename_lock, r_seq))) {
  2417. rcu_read_unlock();
  2418. goto retry;
  2419. }
  2420. if (unlikely(seq & 1)) {
  2421. rcu_read_unlock();
  2422. goto retry;
  2423. }
  2424. hlist_bl_lock(b);
  2425. if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
  2426. hlist_bl_unlock(b);
  2427. rcu_read_unlock();
  2428. goto retry;
  2429. }
  2430. /*
  2431. * No changes for the parent since the beginning of d_lookup().
  2432. * Since all removals from the chain happen with hlist_bl_lock(),
  2433. * any potential in-lookup matches are going to stay here until
  2434. * we unlock the chain. All fields are stable in everything
  2435. * we encounter.
  2436. */
  2437. hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
  2438. if (dentry->d_name.hash != hash)
  2439. continue;
  2440. if (dentry->d_parent != parent)
  2441. continue;
  2442. if (!d_same_name(dentry, parent, name))
  2443. continue;
  2444. hlist_bl_unlock(b);
  2445. /* now we can try to grab a reference */
  2446. if (!lockref_get_not_dead(&dentry->d_lockref)) {
  2447. rcu_read_unlock();
  2448. goto retry;
  2449. }
  2450. rcu_read_unlock();
  2451. /*
  2452. * somebody is likely to be still doing lookup for it;
  2453. * wait for them to finish
  2454. */
  2455. spin_lock(&dentry->d_lock);
  2456. d_wait_lookup(dentry);
  2457. /*
  2458. * it's not in-lookup anymore; in principle we should repeat
  2459. * everything from dcache lookup, but it's likely to be what
  2460. * d_lookup() would've found anyway. If it is, just return it;
  2461. * otherwise we really have to repeat the whole thing.
  2462. */
  2463. if (unlikely(dentry->d_name.hash != hash))
  2464. goto mismatch;
  2465. if (unlikely(dentry->d_parent != parent))
  2466. goto mismatch;
  2467. if (unlikely(d_unhashed(dentry)))
  2468. goto mismatch;
  2469. if (unlikely(!d_same_name(dentry, parent, name)))
  2470. goto mismatch;
  2471. /* OK, it *is* a hashed match; return it */
  2472. spin_unlock(&dentry->d_lock);
  2473. dput(new);
  2474. return dentry;
  2475. }
  2476. rcu_read_unlock();
  2477. /* we can't take ->d_lock here; it's OK, though. */
  2478. new->d_flags |= DCACHE_PAR_LOOKUP;
  2479. new->d_wait = wq;
  2480. hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
  2481. hlist_bl_unlock(b);
  2482. return new;
  2483. mismatch:
  2484. spin_unlock(&dentry->d_lock);
  2485. dput(dentry);
  2486. goto retry;
  2487. }
  2488. EXPORT_SYMBOL(d_alloc_parallel);
  2489. /*
  2490. * - Unhash the dentry
  2491. * - Retrieve and clear the waitqueue head in dentry
  2492. * - Return the waitqueue head
  2493. */
  2494. static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
  2495. {
  2496. wait_queue_head_t *d_wait;
  2497. struct hlist_bl_head *b;
  2498. lockdep_assert_held(&dentry->d_lock);
  2499. b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
  2500. hlist_bl_lock(b);
  2501. dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
  2502. __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
  2503. d_wait = dentry->d_wait;
  2504. dentry->d_wait = NULL;
  2505. hlist_bl_unlock(b);
  2506. INIT_HLIST_NODE(&dentry->d_u.d_alias);
  2507. INIT_LIST_HEAD(&dentry->d_lru);
  2508. return d_wait;
  2509. }
  2510. void __d_lookup_unhash_wake(struct dentry *dentry)
  2511. {
  2512. spin_lock(&dentry->d_lock);
  2513. wake_up_all(__d_lookup_unhash(dentry));
  2514. spin_unlock(&dentry->d_lock);
  2515. }
  2516. EXPORT_SYMBOL(__d_lookup_unhash_wake);
  2517. /* inode->i_lock held if inode is non-NULL */
  2518. static inline void __d_add(struct dentry *dentry, struct inode *inode)
  2519. {
  2520. wait_queue_head_t *d_wait;
  2521. struct inode *dir = NULL;
  2522. unsigned n;
  2523. spin_lock(&dentry->d_lock);
  2524. if (unlikely(d_in_lookup(dentry))) {
  2525. dir = dentry->d_parent->d_inode;
  2526. n = start_dir_add(dir);
  2527. d_wait = __d_lookup_unhash(dentry);
  2528. }
  2529. if (inode) {
  2530. unsigned add_flags = d_flags_for_inode(inode);
  2531. hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
  2532. raw_write_seqcount_begin(&dentry->d_seq);
  2533. __d_set_inode_and_type(dentry, inode, add_flags);
  2534. raw_write_seqcount_end(&dentry->d_seq);
  2535. fsnotify_update_flags(dentry);
  2536. }
  2537. __d_rehash(dentry);
  2538. if (dir)
  2539. end_dir_add(dir, n, d_wait);
  2540. spin_unlock(&dentry->d_lock);
  2541. if (inode)
  2542. spin_unlock(&inode->i_lock);
  2543. }
  2544. /**
  2545. * d_add - add dentry to hash queues
  2546. * @entry: dentry to add
  2547. * @inode: The inode to attach to this dentry
  2548. *
  2549. * This adds the entry to the hash queues and initializes @inode.
  2550. * The entry was actually filled in earlier during d_alloc().
  2551. */
  2552. void d_add(struct dentry *entry, struct inode *inode)
  2553. {
  2554. if (inode) {
  2555. security_d_instantiate(entry, inode);
  2556. spin_lock(&inode->i_lock);
  2557. }
  2558. __d_add(entry, inode);
  2559. }
  2560. EXPORT_SYMBOL(d_add);
  2561. /**
  2562. * d_exact_alias - find and hash an exact unhashed alias
  2563. * @entry: dentry to add
  2564. * @inode: The inode to go with this dentry
  2565. *
  2566. * If an unhashed dentry with the same name/parent and desired
  2567. * inode already exists, hash and return it. Otherwise, return
  2568. * NULL.
  2569. *
  2570. * Parent directory should be locked.
  2571. */
  2572. struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
  2573. {
  2574. struct dentry *alias;
  2575. unsigned int hash = entry->d_name.hash;
  2576. spin_lock(&inode->i_lock);
  2577. hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
  2578. /*
  2579. * Don't need alias->d_lock here, because aliases with
  2580. * d_parent == entry->d_parent are not subject to name or
  2581. * parent changes, because the parent inode i_mutex is held.
  2582. */
  2583. if (alias->d_name.hash != hash)
  2584. continue;
  2585. if (alias->d_parent != entry->d_parent)
  2586. continue;
  2587. if (!d_same_name(alias, entry->d_parent, &entry->d_name))
  2588. continue;
  2589. spin_lock(&alias->d_lock);
  2590. if (!d_unhashed(alias)) {
  2591. spin_unlock(&alias->d_lock);
  2592. alias = NULL;
  2593. } else {
  2594. __dget_dlock(alias);
  2595. __d_rehash(alias);
  2596. spin_unlock(&alias->d_lock);
  2597. }
  2598. spin_unlock(&inode->i_lock);
  2599. return alias;
  2600. }
  2601. spin_unlock(&inode->i_lock);
  2602. return NULL;
  2603. }
  2604. EXPORT_SYMBOL(d_exact_alias);
  2605. static void swap_names(struct dentry *dentry, struct dentry *target)
  2606. {
  2607. if (unlikely(dname_external(target))) {
  2608. if (unlikely(dname_external(dentry))) {
  2609. /*
  2610. * Both external: swap the pointers
  2611. */
  2612. swap(target->d_name.name, dentry->d_name.name);
  2613. } else {
  2614. /*
  2615. * dentry:internal, target:external. Steal target's
  2616. * storage and make target internal.
  2617. */
  2618. memcpy(target->d_iname, dentry->d_name.name,
  2619. dentry->d_name.len + 1);
  2620. dentry->d_name.name = target->d_name.name;
  2621. target->d_name.name = target->d_iname;
  2622. }
  2623. } else {
  2624. if (unlikely(dname_external(dentry))) {
  2625. /*
  2626. * dentry:external, target:internal. Give dentry's
  2627. * storage to target and make dentry internal
  2628. */
  2629. memcpy(dentry->d_iname, target->d_name.name,
  2630. target->d_name.len + 1);
  2631. target->d_name.name = dentry->d_name.name;
  2632. dentry->d_name.name = dentry->d_iname;
  2633. } else {
  2634. /*
  2635. * Both are internal.
  2636. */
  2637. unsigned int i;
  2638. BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
  2639. for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
  2640. swap(((long *) &dentry->d_iname)[i],
  2641. ((long *) &target->d_iname)[i]);
  2642. }
  2643. }
  2644. }
  2645. swap(dentry->d_name.hash_len, target->d_name.hash_len);
  2646. }
  2647. static void copy_name(struct dentry *dentry, struct dentry *target)
  2648. {
  2649. struct external_name *old_name = NULL;
  2650. if (unlikely(dname_external(dentry)))
  2651. old_name = external_name(dentry);
  2652. if (unlikely(dname_external(target))) {
  2653. atomic_inc(&external_name(target)->u.count);
  2654. dentry->d_name = target->d_name;
  2655. } else {
  2656. memcpy(dentry->d_iname, target->d_name.name,
  2657. target->d_name.len + 1);
  2658. dentry->d_name.name = dentry->d_iname;
  2659. dentry->d_name.hash_len = target->d_name.hash_len;
  2660. }
  2661. if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
  2662. kfree_rcu(old_name, u.head);
  2663. }
  2664. /*
  2665. * __d_move - move a dentry
  2666. * @dentry: entry to move
  2667. * @target: new dentry
  2668. * @exchange: exchange the two dentries
  2669. *
  2670. * Update the dcache to reflect the move of a file name. Negative
  2671. * dcache entries should not be moved in this way. Caller must hold
  2672. * rename_lock, the i_mutex of the source and target directories,
  2673. * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
  2674. */
  2675. static void __d_move(struct dentry *dentry, struct dentry *target,
  2676. bool exchange)
  2677. {
  2678. struct dentry *old_parent, *p;
  2679. wait_queue_head_t *d_wait;
  2680. struct inode *dir = NULL;
  2681. unsigned n;
  2682. WARN_ON(!dentry->d_inode);
  2683. if (WARN_ON(dentry == target))
  2684. return;
  2685. BUG_ON(d_ancestor(target, dentry));
  2686. old_parent = dentry->d_parent;
  2687. p = d_ancestor(old_parent, target);
  2688. if (IS_ROOT(dentry)) {
  2689. BUG_ON(p);
  2690. spin_lock(&target->d_parent->d_lock);
  2691. } else if (!p) {
  2692. /* target is not a descendent of dentry->d_parent */
  2693. spin_lock(&target->d_parent->d_lock);
  2694. spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
  2695. } else {
  2696. BUG_ON(p == dentry);
  2697. spin_lock(&old_parent->d_lock);
  2698. if (p != target)
  2699. spin_lock_nested(&target->d_parent->d_lock,
  2700. DENTRY_D_LOCK_NESTED);
  2701. }
  2702. spin_lock_nested(&dentry->d_lock, 2);
  2703. spin_lock_nested(&target->d_lock, 3);
  2704. if (unlikely(d_in_lookup(target))) {
  2705. dir = target->d_parent->d_inode;
  2706. n = start_dir_add(dir);
  2707. d_wait = __d_lookup_unhash(target);
  2708. }
  2709. write_seqcount_begin(&dentry->d_seq);
  2710. write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
  2711. /* unhash both */
  2712. if (!d_unhashed(dentry))
  2713. ___d_drop(dentry);
  2714. if (!d_unhashed(target))
  2715. ___d_drop(target);
  2716. /* ... and switch them in the tree */
  2717. dentry->d_parent = target->d_parent;
  2718. if (!exchange) {
  2719. copy_name(dentry, target);
  2720. target->d_hash.pprev = NULL;
  2721. dentry->d_parent->d_lockref.count++;
  2722. if (dentry != old_parent) /* wasn't IS_ROOT */
  2723. WARN_ON(!--old_parent->d_lockref.count);
  2724. } else {
  2725. target->d_parent = old_parent;
  2726. swap_names(dentry, target);
  2727. list_move(&target->d_child, &target->d_parent->d_subdirs);
  2728. __d_rehash(target);
  2729. fsnotify_update_flags(target);
  2730. }
  2731. list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
  2732. __d_rehash(dentry);
  2733. fsnotify_update_flags(dentry);
  2734. fscrypt_handle_d_move(dentry);
  2735. write_seqcount_end(&target->d_seq);
  2736. write_seqcount_end(&dentry->d_seq);
  2737. if (dir)
  2738. end_dir_add(dir, n, d_wait);
  2739. if (dentry->d_parent != old_parent)
  2740. spin_unlock(&dentry->d_parent->d_lock);
  2741. if (dentry != old_parent)
  2742. spin_unlock(&old_parent->d_lock);
  2743. spin_unlock(&target->d_lock);
  2744. spin_unlock(&dentry->d_lock);
  2745. }
  2746. /*
  2747. * d_move - move a dentry
  2748. * @dentry: entry to move
  2749. * @target: new dentry
  2750. *
  2751. * Update the dcache to reflect the move of a file name. Negative
  2752. * dcache entries should not be moved in this way. See the locking
  2753. * requirements for __d_move.
  2754. */
  2755. void d_move(struct dentry *dentry, struct dentry *target)
  2756. {
  2757. write_seqlock(&rename_lock);
  2758. __d_move(dentry, target, false);
  2759. write_sequnlock(&rename_lock);
  2760. }
  2761. EXPORT_SYMBOL(d_move);
  2762. /*
  2763. * d_exchange - exchange two dentries
  2764. * @dentry1: first dentry
  2765. * @dentry2: second dentry
  2766. */
  2767. void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
  2768. {
  2769. write_seqlock(&rename_lock);
  2770. WARN_ON(!dentry1->d_inode);
  2771. WARN_ON(!dentry2->d_inode);
  2772. WARN_ON(IS_ROOT(dentry1));
  2773. WARN_ON(IS_ROOT(dentry2));
  2774. __d_move(dentry1, dentry2, true);
  2775. write_sequnlock(&rename_lock);
  2776. }
  2777. /**
  2778. * d_ancestor - search for an ancestor
  2779. * @p1: ancestor dentry
  2780. * @p2: child dentry
  2781. *
  2782. * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
  2783. * an ancestor of p2, else NULL.
  2784. */
  2785. struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
  2786. {
  2787. struct dentry *p;
  2788. for (p = p2; !IS_ROOT(p); p = p->d_parent) {
  2789. if (p->d_parent == p1)
  2790. return p;
  2791. }
  2792. return NULL;
  2793. }
  2794. /*
  2795. * This helper attempts to cope with remotely renamed directories
  2796. *
  2797. * It assumes that the caller is already holding
  2798. * dentry->d_parent->d_inode->i_mutex, and rename_lock
  2799. *
  2800. * Note: If ever the locking in lock_rename() changes, then please
  2801. * remember to update this too...
  2802. */
  2803. static int __d_unalias(struct inode *inode,
  2804. struct dentry *dentry, struct dentry *alias)
  2805. {
  2806. struct mutex *m1 = NULL;
  2807. struct rw_semaphore *m2 = NULL;
  2808. int ret = -ESTALE;
  2809. /* If alias and dentry share a parent, then no extra locks required */
  2810. if (alias->d_parent == dentry->d_parent)
  2811. goto out_unalias;
  2812. /* See lock_rename() */
  2813. if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
  2814. goto out_err;
  2815. m1 = &dentry->d_sb->s_vfs_rename_mutex;
  2816. if (!inode_trylock_shared(alias->d_parent->d_inode))
  2817. goto out_err;
  2818. m2 = &alias->d_parent->d_inode->i_rwsem;
  2819. out_unalias:
  2820. __d_move(alias, dentry, false);
  2821. ret = 0;
  2822. out_err:
  2823. if (m2)
  2824. up_read(m2);
  2825. if (m1)
  2826. mutex_unlock(m1);
  2827. return ret;
  2828. }
  2829. /**
  2830. * d_splice_alias - splice a disconnected dentry into the tree if one exists
  2831. * @inode: the inode which may have a disconnected dentry
  2832. * @dentry: a negative dentry which we want to point to the inode.
  2833. *
  2834. * If inode is a directory and has an IS_ROOT alias, then d_move that in
  2835. * place of the given dentry and return it, else simply d_add the inode
  2836. * to the dentry and return NULL.
  2837. *
  2838. * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
  2839. * we should error out: directories can't have multiple aliases.
  2840. *
  2841. * This is needed in the lookup routine of any filesystem that is exportable
  2842. * (via knfsd) so that we can build dcache paths to directories effectively.
  2843. *
  2844. * If a dentry was found and moved, then it is returned. Otherwise NULL
  2845. * is returned. This matches the expected return value of ->lookup.
  2846. *
  2847. * Cluster filesystems may call this function with a negative, hashed dentry.
  2848. * In that case, we know that the inode will be a regular file, and also this
  2849. * will only occur during atomic_open. So we need to check for the dentry
  2850. * being already hashed only in the final case.
  2851. */
  2852. struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
  2853. {
  2854. if (IS_ERR(inode))
  2855. return ERR_CAST(inode);
  2856. BUG_ON(!d_unhashed(dentry));
  2857. if (!inode)
  2858. goto out;
  2859. security_d_instantiate(dentry, inode);
  2860. spin_lock(&inode->i_lock);
  2861. if (S_ISDIR(inode->i_mode)) {
  2862. struct dentry *new = __d_find_any_alias(inode);
  2863. if (unlikely(new)) {
  2864. /* The reference to new ensures it remains an alias */
  2865. spin_unlock(&inode->i_lock);
  2866. write_seqlock(&rename_lock);
  2867. if (unlikely(d_ancestor(new, dentry))) {
  2868. write_sequnlock(&rename_lock);
  2869. dput(new);
  2870. new = ERR_PTR(-ELOOP);
  2871. pr_warn_ratelimited(
  2872. "VFS: Lookup of '%s' in %s %s"
  2873. " would have caused loop\n",
  2874. dentry->d_name.name,
  2875. inode->i_sb->s_type->name,
  2876. inode->i_sb->s_id);
  2877. } else if (!IS_ROOT(new)) {
  2878. struct dentry *old_parent = dget(new->d_parent);
  2879. int err = __d_unalias(inode, dentry, new);
  2880. write_sequnlock(&rename_lock);
  2881. if (err) {
  2882. dput(new);
  2883. new = ERR_PTR(err);
  2884. }
  2885. dput(old_parent);
  2886. } else {
  2887. __d_move(new, dentry, false);
  2888. write_sequnlock(&rename_lock);
  2889. }
  2890. iput(inode);
  2891. return new;
  2892. }
  2893. }
  2894. out:
  2895. __d_add(dentry, inode);
  2896. return NULL;
  2897. }
  2898. EXPORT_SYMBOL(d_splice_alias);
  2899. /*
  2900. * Test whether new_dentry is a subdirectory of old_dentry.
  2901. *
  2902. * Trivially implemented using the dcache structure
  2903. */
  2904. /**
  2905. * is_subdir - is new dentry a subdirectory of old_dentry
  2906. * @new_dentry: new dentry
  2907. * @old_dentry: old dentry
  2908. *
  2909. * Returns true if new_dentry is a subdirectory of the parent (at any depth).
  2910. * Returns false otherwise.
  2911. * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
  2912. */
  2913. bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
  2914. {
  2915. bool result;
  2916. unsigned seq;
  2917. if (new_dentry == old_dentry)
  2918. return true;
  2919. do {
  2920. /* for restarting inner loop in case of seq retry */
  2921. seq = read_seqbegin(&rename_lock);
  2922. /*
  2923. * Need rcu_readlock to protect against the d_parent trashing
  2924. * due to d_move
  2925. */
  2926. rcu_read_lock();
  2927. if (d_ancestor(old_dentry, new_dentry))
  2928. result = true;
  2929. else
  2930. result = false;
  2931. rcu_read_unlock();
  2932. } while (read_seqretry(&rename_lock, seq));
  2933. return result;
  2934. }
  2935. EXPORT_SYMBOL(is_subdir);
  2936. static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
  2937. {
  2938. struct dentry *root = data;
  2939. if (dentry != root) {
  2940. if (d_unhashed(dentry) || !dentry->d_inode)
  2941. return D_WALK_SKIP;
  2942. if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
  2943. dentry->d_flags |= DCACHE_GENOCIDE;
  2944. dentry->d_lockref.count--;
  2945. }
  2946. }
  2947. return D_WALK_CONTINUE;
  2948. }
  2949. void d_genocide(struct dentry *parent)
  2950. {
  2951. d_walk(parent, parent, d_genocide_kill);
  2952. }
  2953. EXPORT_SYMBOL(d_genocide);
  2954. void d_tmpfile(struct file *file, struct inode *inode)
  2955. {
  2956. struct dentry *dentry = file->f_path.dentry;
  2957. inode_dec_link_count(inode);
  2958. BUG_ON(dentry->d_name.name != dentry->d_iname ||
  2959. !hlist_unhashed(&dentry->d_u.d_alias) ||
  2960. !d_unlinked(dentry));
  2961. spin_lock(&dentry->d_parent->d_lock);
  2962. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  2963. dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
  2964. (unsigned long long)inode->i_ino);
  2965. spin_unlock(&dentry->d_lock);
  2966. spin_unlock(&dentry->d_parent->d_lock);
  2967. d_instantiate(dentry, inode);
  2968. }
  2969. EXPORT_SYMBOL(d_tmpfile);
  2970. static __initdata unsigned long dhash_entries;
  2971. static int __init set_dhash_entries(char *str)
  2972. {
  2973. if (!str)
  2974. return 0;
  2975. dhash_entries = simple_strtoul(str, &str, 0);
  2976. return 1;
  2977. }
  2978. __setup("dhash_entries=", set_dhash_entries);
  2979. static void __init dcache_init_early(void)
  2980. {
  2981. /* If hashes are distributed across NUMA nodes, defer
  2982. * hash allocation until vmalloc space is available.
  2983. */
  2984. if (hashdist)
  2985. return;
  2986. dentry_hashtable =
  2987. alloc_large_system_hash("Dentry cache",
  2988. sizeof(struct hlist_bl_head),
  2989. dhash_entries,
  2990. 13,
  2991. HASH_EARLY | HASH_ZERO,
  2992. &d_hash_shift,
  2993. NULL,
  2994. 0,
  2995. 0);
  2996. d_hash_shift = 32 - d_hash_shift;
  2997. }
  2998. static void __init dcache_init(void)
  2999. {
  3000. /*
  3001. * A constructor could be added for stable state like the lists,
  3002. * but it is probably not worth it because of the cache nature
  3003. * of the dcache.
  3004. */
  3005. dentry_cache = KMEM_CACHE_USERCOPY(dentry,
  3006. SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
  3007. d_iname);
  3008. /* Hash may have been set up in dcache_init_early */
  3009. if (!hashdist)
  3010. return;
  3011. dentry_hashtable =
  3012. alloc_large_system_hash("Dentry cache",
  3013. sizeof(struct hlist_bl_head),
  3014. dhash_entries,
  3015. 13,
  3016. HASH_ZERO,
  3017. &d_hash_shift,
  3018. NULL,
  3019. 0,
  3020. 0);
  3021. d_hash_shift = 32 - d_hash_shift;
  3022. }
  3023. /* SLAB cache for __getname() consumers */
  3024. struct kmem_cache *names_cachep __read_mostly;
  3025. EXPORT_SYMBOL(names_cachep);
  3026. void __init vfs_caches_init_early(void)
  3027. {
  3028. int i;
  3029. for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
  3030. INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
  3031. dcache_init_early();
  3032. inode_init_early();
  3033. }
  3034. void __init vfs_caches_init(void)
  3035. {
  3036. names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
  3037. SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
  3038. dcache_init();
  3039. inode_init();
  3040. files_init();
  3041. files_maxfiles_init();
  3042. mnt_init();
  3043. bdev_cache_init();
  3044. chrdev_init();
  3045. }