sprd_wdt.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Spreadtrum watchdog driver
  4. * Copyright (C) 2017 Spreadtrum - http://www.spreadtrum.com
  5. */
  6. #include <linux/bitops.h>
  7. #include <linux/clk.h>
  8. #include <linux/delay.h>
  9. #include <linux/device.h>
  10. #include <linux/err.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/io.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/of.h>
  16. #include <linux/of_address.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/watchdog.h>
  19. #define SPRD_WDT_LOAD_LOW 0x0
  20. #define SPRD_WDT_LOAD_HIGH 0x4
  21. #define SPRD_WDT_CTRL 0x8
  22. #define SPRD_WDT_INT_CLR 0xc
  23. #define SPRD_WDT_INT_RAW 0x10
  24. #define SPRD_WDT_INT_MSK 0x14
  25. #define SPRD_WDT_CNT_LOW 0x18
  26. #define SPRD_WDT_CNT_HIGH 0x1c
  27. #define SPRD_WDT_LOCK 0x20
  28. #define SPRD_WDT_IRQ_LOAD_LOW 0x2c
  29. #define SPRD_WDT_IRQ_LOAD_HIGH 0x30
  30. /* WDT_CTRL */
  31. #define SPRD_WDT_INT_EN_BIT BIT(0)
  32. #define SPRD_WDT_CNT_EN_BIT BIT(1)
  33. #define SPRD_WDT_NEW_VER_EN BIT(2)
  34. #define SPRD_WDT_RST_EN_BIT BIT(3)
  35. /* WDT_INT_CLR */
  36. #define SPRD_WDT_INT_CLEAR_BIT BIT(0)
  37. #define SPRD_WDT_RST_CLEAR_BIT BIT(3)
  38. /* WDT_INT_RAW */
  39. #define SPRD_WDT_INT_RAW_BIT BIT(0)
  40. #define SPRD_WDT_RST_RAW_BIT BIT(3)
  41. #define SPRD_WDT_LD_BUSY_BIT BIT(4)
  42. /* 1s equal to 32768 counter steps */
  43. #define SPRD_WDT_CNT_STEP 32768
  44. #define SPRD_WDT_UNLOCK_KEY 0xe551
  45. #define SPRD_WDT_MIN_TIMEOUT 3
  46. #define SPRD_WDT_MAX_TIMEOUT 60
  47. #define SPRD_WDT_CNT_HIGH_SHIFT 16
  48. #define SPRD_WDT_LOW_VALUE_MASK GENMASK(15, 0)
  49. #define SPRD_WDT_LOAD_TIMEOUT 11
  50. struct sprd_wdt {
  51. void __iomem *base;
  52. struct watchdog_device wdd;
  53. struct clk *enable;
  54. struct clk *rtc_enable;
  55. int irq;
  56. };
  57. static inline struct sprd_wdt *to_sprd_wdt(struct watchdog_device *wdd)
  58. {
  59. return container_of(wdd, struct sprd_wdt, wdd);
  60. }
  61. static inline void sprd_wdt_lock(void __iomem *addr)
  62. {
  63. writel_relaxed(0x0, addr + SPRD_WDT_LOCK);
  64. }
  65. static inline void sprd_wdt_unlock(void __iomem *addr)
  66. {
  67. writel_relaxed(SPRD_WDT_UNLOCK_KEY, addr + SPRD_WDT_LOCK);
  68. }
  69. static irqreturn_t sprd_wdt_isr(int irq, void *dev_id)
  70. {
  71. struct sprd_wdt *wdt = (struct sprd_wdt *)dev_id;
  72. sprd_wdt_unlock(wdt->base);
  73. writel_relaxed(SPRD_WDT_INT_CLEAR_BIT, wdt->base + SPRD_WDT_INT_CLR);
  74. sprd_wdt_lock(wdt->base);
  75. watchdog_notify_pretimeout(&wdt->wdd);
  76. return IRQ_HANDLED;
  77. }
  78. static u32 sprd_wdt_get_cnt_value(struct sprd_wdt *wdt)
  79. {
  80. u32 val;
  81. val = readl_relaxed(wdt->base + SPRD_WDT_CNT_HIGH) <<
  82. SPRD_WDT_CNT_HIGH_SHIFT;
  83. val |= readl_relaxed(wdt->base + SPRD_WDT_CNT_LOW) &
  84. SPRD_WDT_LOW_VALUE_MASK;
  85. return val;
  86. }
  87. static int sprd_wdt_load_value(struct sprd_wdt *wdt, u32 timeout,
  88. u32 pretimeout)
  89. {
  90. u32 val, delay_cnt = 0;
  91. u32 tmr_step = timeout * SPRD_WDT_CNT_STEP;
  92. u32 prtmr_step = pretimeout * SPRD_WDT_CNT_STEP;
  93. /*
  94. * Checking busy bit to make sure the previous loading operation is
  95. * done. According to the specification, the busy bit would be set
  96. * after a new loading operation and last 2 or 3 RTC clock
  97. * cycles (about 60us~92us).
  98. */
  99. do {
  100. val = readl_relaxed(wdt->base + SPRD_WDT_INT_RAW);
  101. if (!(val & SPRD_WDT_LD_BUSY_BIT))
  102. break;
  103. usleep_range(10, 100);
  104. } while (delay_cnt++ < SPRD_WDT_LOAD_TIMEOUT);
  105. if (delay_cnt >= SPRD_WDT_LOAD_TIMEOUT)
  106. return -EBUSY;
  107. sprd_wdt_unlock(wdt->base);
  108. writel_relaxed((tmr_step >> SPRD_WDT_CNT_HIGH_SHIFT) &
  109. SPRD_WDT_LOW_VALUE_MASK, wdt->base + SPRD_WDT_LOAD_HIGH);
  110. writel_relaxed((tmr_step & SPRD_WDT_LOW_VALUE_MASK),
  111. wdt->base + SPRD_WDT_LOAD_LOW);
  112. writel_relaxed((prtmr_step >> SPRD_WDT_CNT_HIGH_SHIFT) &
  113. SPRD_WDT_LOW_VALUE_MASK,
  114. wdt->base + SPRD_WDT_IRQ_LOAD_HIGH);
  115. writel_relaxed(prtmr_step & SPRD_WDT_LOW_VALUE_MASK,
  116. wdt->base + SPRD_WDT_IRQ_LOAD_LOW);
  117. sprd_wdt_lock(wdt->base);
  118. return 0;
  119. }
  120. static int sprd_wdt_enable(struct sprd_wdt *wdt)
  121. {
  122. u32 val;
  123. int ret;
  124. ret = clk_prepare_enable(wdt->enable);
  125. if (ret)
  126. return ret;
  127. ret = clk_prepare_enable(wdt->rtc_enable);
  128. if (ret) {
  129. clk_disable_unprepare(wdt->enable);
  130. return ret;
  131. }
  132. sprd_wdt_unlock(wdt->base);
  133. val = readl_relaxed(wdt->base + SPRD_WDT_CTRL);
  134. val |= SPRD_WDT_NEW_VER_EN;
  135. writel_relaxed(val, wdt->base + SPRD_WDT_CTRL);
  136. sprd_wdt_lock(wdt->base);
  137. return 0;
  138. }
  139. static void sprd_wdt_disable(void *_data)
  140. {
  141. struct sprd_wdt *wdt = _data;
  142. sprd_wdt_unlock(wdt->base);
  143. writel_relaxed(0x0, wdt->base + SPRD_WDT_CTRL);
  144. sprd_wdt_lock(wdt->base);
  145. clk_disable_unprepare(wdt->rtc_enable);
  146. clk_disable_unprepare(wdt->enable);
  147. }
  148. static int sprd_wdt_start(struct watchdog_device *wdd)
  149. {
  150. struct sprd_wdt *wdt = to_sprd_wdt(wdd);
  151. u32 val;
  152. int ret;
  153. ret = sprd_wdt_load_value(wdt, wdd->timeout, wdd->pretimeout);
  154. if (ret)
  155. return ret;
  156. sprd_wdt_unlock(wdt->base);
  157. val = readl_relaxed(wdt->base + SPRD_WDT_CTRL);
  158. val |= SPRD_WDT_CNT_EN_BIT | SPRD_WDT_INT_EN_BIT | SPRD_WDT_RST_EN_BIT;
  159. writel_relaxed(val, wdt->base + SPRD_WDT_CTRL);
  160. sprd_wdt_lock(wdt->base);
  161. set_bit(WDOG_HW_RUNNING, &wdd->status);
  162. return 0;
  163. }
  164. static int sprd_wdt_stop(struct watchdog_device *wdd)
  165. {
  166. struct sprd_wdt *wdt = to_sprd_wdt(wdd);
  167. u32 val;
  168. sprd_wdt_unlock(wdt->base);
  169. val = readl_relaxed(wdt->base + SPRD_WDT_CTRL);
  170. val &= ~(SPRD_WDT_CNT_EN_BIT | SPRD_WDT_RST_EN_BIT |
  171. SPRD_WDT_INT_EN_BIT);
  172. writel_relaxed(val, wdt->base + SPRD_WDT_CTRL);
  173. sprd_wdt_lock(wdt->base);
  174. return 0;
  175. }
  176. static int sprd_wdt_set_timeout(struct watchdog_device *wdd,
  177. u32 timeout)
  178. {
  179. struct sprd_wdt *wdt = to_sprd_wdt(wdd);
  180. if (timeout == wdd->timeout)
  181. return 0;
  182. wdd->timeout = timeout;
  183. return sprd_wdt_load_value(wdt, timeout, wdd->pretimeout);
  184. }
  185. static int sprd_wdt_set_pretimeout(struct watchdog_device *wdd,
  186. u32 new_pretimeout)
  187. {
  188. struct sprd_wdt *wdt = to_sprd_wdt(wdd);
  189. if (new_pretimeout < wdd->min_timeout)
  190. return -EINVAL;
  191. wdd->pretimeout = new_pretimeout;
  192. return sprd_wdt_load_value(wdt, wdd->timeout, new_pretimeout);
  193. }
  194. static u32 sprd_wdt_get_timeleft(struct watchdog_device *wdd)
  195. {
  196. struct sprd_wdt *wdt = to_sprd_wdt(wdd);
  197. u32 val;
  198. val = sprd_wdt_get_cnt_value(wdt);
  199. return val / SPRD_WDT_CNT_STEP;
  200. }
  201. static const struct watchdog_ops sprd_wdt_ops = {
  202. .owner = THIS_MODULE,
  203. .start = sprd_wdt_start,
  204. .stop = sprd_wdt_stop,
  205. .set_timeout = sprd_wdt_set_timeout,
  206. .set_pretimeout = sprd_wdt_set_pretimeout,
  207. .get_timeleft = sprd_wdt_get_timeleft,
  208. };
  209. static const struct watchdog_info sprd_wdt_info = {
  210. .options = WDIOF_SETTIMEOUT |
  211. WDIOF_PRETIMEOUT |
  212. WDIOF_MAGICCLOSE |
  213. WDIOF_KEEPALIVEPING,
  214. .identity = "Spreadtrum Watchdog Timer",
  215. };
  216. static int sprd_wdt_probe(struct platform_device *pdev)
  217. {
  218. struct device *dev = &pdev->dev;
  219. struct sprd_wdt *wdt;
  220. int ret;
  221. wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL);
  222. if (!wdt)
  223. return -ENOMEM;
  224. wdt->base = devm_platform_ioremap_resource(pdev, 0);
  225. if (IS_ERR(wdt->base))
  226. return PTR_ERR(wdt->base);
  227. wdt->enable = devm_clk_get(dev, "enable");
  228. if (IS_ERR(wdt->enable)) {
  229. dev_err(dev, "can't get the enable clock\n");
  230. return PTR_ERR(wdt->enable);
  231. }
  232. wdt->rtc_enable = devm_clk_get(dev, "rtc_enable");
  233. if (IS_ERR(wdt->rtc_enable)) {
  234. dev_err(dev, "can't get the rtc enable clock\n");
  235. return PTR_ERR(wdt->rtc_enable);
  236. }
  237. wdt->irq = platform_get_irq(pdev, 0);
  238. if (wdt->irq < 0)
  239. return wdt->irq;
  240. ret = devm_request_irq(dev, wdt->irq, sprd_wdt_isr, IRQF_NO_SUSPEND,
  241. "sprd-wdt", (void *)wdt);
  242. if (ret) {
  243. dev_err(dev, "failed to register irq\n");
  244. return ret;
  245. }
  246. wdt->wdd.info = &sprd_wdt_info;
  247. wdt->wdd.ops = &sprd_wdt_ops;
  248. wdt->wdd.parent = dev;
  249. wdt->wdd.min_timeout = SPRD_WDT_MIN_TIMEOUT;
  250. wdt->wdd.max_timeout = SPRD_WDT_MAX_TIMEOUT;
  251. wdt->wdd.timeout = SPRD_WDT_MAX_TIMEOUT;
  252. ret = sprd_wdt_enable(wdt);
  253. if (ret) {
  254. dev_err(dev, "failed to enable wdt\n");
  255. return ret;
  256. }
  257. ret = devm_add_action_or_reset(dev, sprd_wdt_disable, wdt);
  258. if (ret) {
  259. dev_err(dev, "Failed to add wdt disable action\n");
  260. return ret;
  261. }
  262. watchdog_set_nowayout(&wdt->wdd, WATCHDOG_NOWAYOUT);
  263. watchdog_init_timeout(&wdt->wdd, 0, dev);
  264. ret = devm_watchdog_register_device(dev, &wdt->wdd);
  265. if (ret) {
  266. sprd_wdt_disable(wdt);
  267. return ret;
  268. }
  269. platform_set_drvdata(pdev, wdt);
  270. return 0;
  271. }
  272. static int __maybe_unused sprd_wdt_pm_suspend(struct device *dev)
  273. {
  274. struct sprd_wdt *wdt = dev_get_drvdata(dev);
  275. if (watchdog_active(&wdt->wdd))
  276. sprd_wdt_stop(&wdt->wdd);
  277. sprd_wdt_disable(wdt);
  278. return 0;
  279. }
  280. static int __maybe_unused sprd_wdt_pm_resume(struct device *dev)
  281. {
  282. struct sprd_wdt *wdt = dev_get_drvdata(dev);
  283. int ret;
  284. ret = sprd_wdt_enable(wdt);
  285. if (ret)
  286. return ret;
  287. if (watchdog_active(&wdt->wdd))
  288. ret = sprd_wdt_start(&wdt->wdd);
  289. return ret;
  290. }
  291. static const struct dev_pm_ops sprd_wdt_pm_ops = {
  292. SET_SYSTEM_SLEEP_PM_OPS(sprd_wdt_pm_suspend,
  293. sprd_wdt_pm_resume)
  294. };
  295. static const struct of_device_id sprd_wdt_match_table[] = {
  296. { .compatible = "sprd,sp9860-wdt", },
  297. {},
  298. };
  299. MODULE_DEVICE_TABLE(of, sprd_wdt_match_table);
  300. static struct platform_driver sprd_watchdog_driver = {
  301. .probe = sprd_wdt_probe,
  302. .driver = {
  303. .name = "sprd-wdt",
  304. .of_match_table = sprd_wdt_match_table,
  305. .pm = &sprd_wdt_pm_ops,
  306. },
  307. };
  308. module_platform_driver(sprd_watchdog_driver);
  309. MODULE_AUTHOR("Eric Long <[email protected]>");
  310. MODULE_DESCRIPTION("Spreadtrum Watchdog Timer Controller Driver");
  311. MODULE_LICENSE("GPL v2");