intelfbhw.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <[email protected]>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/errno.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/delay.h>
  26. #include <linux/fb.h>
  27. #include <linux/ioport.h>
  28. #include <linux/init.h>
  29. #include <linux/pci.h>
  30. #include <linux/vmalloc.h>
  31. #include <linux/pagemap.h>
  32. #include <linux/interrupt.h>
  33. #include <asm/io.h>
  34. #include "intelfb.h"
  35. #include "intelfbhw.h"
  36. struct pll_min_max {
  37. int min_m, max_m, min_m1, max_m1;
  38. int min_m2, max_m2, min_n, max_n;
  39. int min_p, max_p, min_p1, max_p1;
  40. int min_vco, max_vco, p_transition_clk, ref_clk;
  41. int p_inc_lo, p_inc_hi;
  42. };
  43. #define PLLS_I8xx 0
  44. #define PLLS_I9xx 1
  45. #define PLLS_MAX 2
  46. static struct pll_min_max plls[PLLS_MAX] = {
  47. { 108, 140, 18, 26,
  48. 6, 16, 3, 16,
  49. 4, 128, 0, 31,
  50. 930000, 1400000, 165000, 48000,
  51. 4, 2 }, /* I8xx */
  52. { 75, 120, 10, 20,
  53. 5, 9, 4, 7,
  54. 5, 80, 1, 8,
  55. 1400000, 2800000, 200000, 96000,
  56. 10, 5 } /* I9xx */
  57. };
  58. int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  59. {
  60. u32 tmp;
  61. if (!pdev || !dinfo)
  62. return 1;
  63. switch (pdev->device) {
  64. case PCI_DEVICE_ID_INTEL_830M:
  65. dinfo->name = "Intel(R) 830M";
  66. dinfo->chipset = INTEL_830M;
  67. dinfo->mobile = 1;
  68. dinfo->pll_index = PLLS_I8xx;
  69. return 0;
  70. case PCI_DEVICE_ID_INTEL_845G:
  71. dinfo->name = "Intel(R) 845G";
  72. dinfo->chipset = INTEL_845G;
  73. dinfo->mobile = 0;
  74. dinfo->pll_index = PLLS_I8xx;
  75. return 0;
  76. case PCI_DEVICE_ID_INTEL_854:
  77. dinfo->mobile = 1;
  78. dinfo->name = "Intel(R) 854";
  79. dinfo->chipset = INTEL_854;
  80. return 0;
  81. case PCI_DEVICE_ID_INTEL_85XGM:
  82. tmp = 0;
  83. dinfo->mobile = 1;
  84. dinfo->pll_index = PLLS_I8xx;
  85. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  86. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  87. INTEL_85X_VARIANT_MASK) {
  88. case INTEL_VAR_855GME:
  89. dinfo->name = "Intel(R) 855GME";
  90. dinfo->chipset = INTEL_855GME;
  91. return 0;
  92. case INTEL_VAR_855GM:
  93. dinfo->name = "Intel(R) 855GM";
  94. dinfo->chipset = INTEL_855GM;
  95. return 0;
  96. case INTEL_VAR_852GME:
  97. dinfo->name = "Intel(R) 852GME";
  98. dinfo->chipset = INTEL_852GME;
  99. return 0;
  100. case INTEL_VAR_852GM:
  101. dinfo->name = "Intel(R) 852GM";
  102. dinfo->chipset = INTEL_852GM;
  103. return 0;
  104. default:
  105. dinfo->name = "Intel(R) 852GM/855GM";
  106. dinfo->chipset = INTEL_85XGM;
  107. return 0;
  108. }
  109. break;
  110. case PCI_DEVICE_ID_INTEL_865G:
  111. dinfo->name = "Intel(R) 865G";
  112. dinfo->chipset = INTEL_865G;
  113. dinfo->mobile = 0;
  114. dinfo->pll_index = PLLS_I8xx;
  115. return 0;
  116. case PCI_DEVICE_ID_INTEL_915G:
  117. dinfo->name = "Intel(R) 915G";
  118. dinfo->chipset = INTEL_915G;
  119. dinfo->mobile = 0;
  120. dinfo->pll_index = PLLS_I9xx;
  121. return 0;
  122. case PCI_DEVICE_ID_INTEL_915GM:
  123. dinfo->name = "Intel(R) 915GM";
  124. dinfo->chipset = INTEL_915GM;
  125. dinfo->mobile = 1;
  126. dinfo->pll_index = PLLS_I9xx;
  127. return 0;
  128. case PCI_DEVICE_ID_INTEL_945G:
  129. dinfo->name = "Intel(R) 945G";
  130. dinfo->chipset = INTEL_945G;
  131. dinfo->mobile = 0;
  132. dinfo->pll_index = PLLS_I9xx;
  133. return 0;
  134. case PCI_DEVICE_ID_INTEL_945GM:
  135. dinfo->name = "Intel(R) 945GM";
  136. dinfo->chipset = INTEL_945GM;
  137. dinfo->mobile = 1;
  138. dinfo->pll_index = PLLS_I9xx;
  139. return 0;
  140. case PCI_DEVICE_ID_INTEL_945GME:
  141. dinfo->name = "Intel(R) 945GME";
  142. dinfo->chipset = INTEL_945GME;
  143. dinfo->mobile = 1;
  144. dinfo->pll_index = PLLS_I9xx;
  145. return 0;
  146. case PCI_DEVICE_ID_INTEL_965G:
  147. dinfo->name = "Intel(R) 965G";
  148. dinfo->chipset = INTEL_965G;
  149. dinfo->mobile = 0;
  150. dinfo->pll_index = PLLS_I9xx;
  151. return 0;
  152. case PCI_DEVICE_ID_INTEL_965GM:
  153. dinfo->name = "Intel(R) 965GM";
  154. dinfo->chipset = INTEL_965GM;
  155. dinfo->mobile = 1;
  156. dinfo->pll_index = PLLS_I9xx;
  157. return 0;
  158. default:
  159. return 1;
  160. }
  161. }
  162. int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  163. int *stolen_size)
  164. {
  165. struct pci_dev *bridge_dev;
  166. u16 tmp;
  167. int stolen_overhead;
  168. if (!pdev || !aperture_size || !stolen_size)
  169. return 1;
  170. /* Find the bridge device. It is always 0:0.0 */
  171. bridge_dev = pci_get_domain_bus_and_slot(pci_domain_nr(pdev->bus), 0,
  172. PCI_DEVFN(0, 0));
  173. if (!bridge_dev) {
  174. ERR_MSG("cannot find bridge device\n");
  175. return 1;
  176. }
  177. /* Get the fb aperture size and "stolen" memory amount. */
  178. tmp = 0;
  179. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  180. pci_dev_put(bridge_dev);
  181. switch (pdev->device) {
  182. case PCI_DEVICE_ID_INTEL_915G:
  183. case PCI_DEVICE_ID_INTEL_915GM:
  184. case PCI_DEVICE_ID_INTEL_945G:
  185. case PCI_DEVICE_ID_INTEL_945GM:
  186. case PCI_DEVICE_ID_INTEL_945GME:
  187. case PCI_DEVICE_ID_INTEL_965G:
  188. case PCI_DEVICE_ID_INTEL_965GM:
  189. /*
  190. * 915, 945 and 965 chipsets support 64MB, 128MB or 256MB
  191. * aperture. Determine size from PCI resource length.
  192. */
  193. *aperture_size = pci_resource_len(pdev, 2);
  194. break;
  195. default:
  196. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  197. *aperture_size = MB(64);
  198. else
  199. *aperture_size = MB(128);
  200. break;
  201. }
  202. /* Stolen memory size is reduced by the GTT and the popup.
  203. GTT is 1K per MB of aperture size, and popup is 4K. */
  204. stolen_overhead = (*aperture_size / MB(1)) + 4;
  205. switch(pdev->device) {
  206. case PCI_DEVICE_ID_INTEL_830M:
  207. case PCI_DEVICE_ID_INTEL_845G:
  208. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  209. case INTEL_830_GMCH_GMS_STOLEN_512:
  210. *stolen_size = KB(512) - KB(stolen_overhead);
  211. return 0;
  212. case INTEL_830_GMCH_GMS_STOLEN_1024:
  213. *stolen_size = MB(1) - KB(stolen_overhead);
  214. return 0;
  215. case INTEL_830_GMCH_GMS_STOLEN_8192:
  216. *stolen_size = MB(8) - KB(stolen_overhead);
  217. return 0;
  218. case INTEL_830_GMCH_GMS_LOCAL:
  219. ERR_MSG("only local memory found\n");
  220. return 1;
  221. case INTEL_830_GMCH_GMS_DISABLED:
  222. ERR_MSG("video memory is disabled\n");
  223. return 1;
  224. default:
  225. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  226. tmp & INTEL_830_GMCH_GMS_MASK);
  227. return 1;
  228. }
  229. break;
  230. default:
  231. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  232. case INTEL_855_GMCH_GMS_STOLEN_1M:
  233. *stolen_size = MB(1) - KB(stolen_overhead);
  234. return 0;
  235. case INTEL_855_GMCH_GMS_STOLEN_4M:
  236. *stolen_size = MB(4) - KB(stolen_overhead);
  237. return 0;
  238. case INTEL_855_GMCH_GMS_STOLEN_8M:
  239. *stolen_size = MB(8) - KB(stolen_overhead);
  240. return 0;
  241. case INTEL_855_GMCH_GMS_STOLEN_16M:
  242. *stolen_size = MB(16) - KB(stolen_overhead);
  243. return 0;
  244. case INTEL_855_GMCH_GMS_STOLEN_32M:
  245. *stolen_size = MB(32) - KB(stolen_overhead);
  246. return 0;
  247. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  248. *stolen_size = MB(48) - KB(stolen_overhead);
  249. return 0;
  250. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  251. *stolen_size = MB(64) - KB(stolen_overhead);
  252. return 0;
  253. case INTEL_855_GMCH_GMS_DISABLED:
  254. ERR_MSG("video memory is disabled\n");
  255. return 0;
  256. default:
  257. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  258. tmp & INTEL_855_GMCH_GMS_MASK);
  259. return 1;
  260. }
  261. }
  262. }
  263. int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  264. {
  265. int dvo = 0;
  266. if (INREG(LVDS) & PORT_ENABLE)
  267. dvo |= LVDS_PORT;
  268. if (INREG(DVOA) & PORT_ENABLE)
  269. dvo |= DVOA_PORT;
  270. if (INREG(DVOB) & PORT_ENABLE)
  271. dvo |= DVOB_PORT;
  272. if (INREG(DVOC) & PORT_ENABLE)
  273. dvo |= DVOC_PORT;
  274. return dvo;
  275. }
  276. const char * intelfbhw_dvo_to_string(int dvo)
  277. {
  278. if (dvo & DVOA_PORT)
  279. return "DVO port A";
  280. else if (dvo & DVOB_PORT)
  281. return "DVO port B";
  282. else if (dvo & DVOC_PORT)
  283. return "DVO port C";
  284. else if (dvo & LVDS_PORT)
  285. return "LVDS port";
  286. else
  287. return NULL;
  288. }
  289. int intelfbhw_validate_mode(struct intelfb_info *dinfo,
  290. struct fb_var_screeninfo *var)
  291. {
  292. int bytes_per_pixel;
  293. int tmp;
  294. #if VERBOSE > 0
  295. DBG_MSG("intelfbhw_validate_mode\n");
  296. #endif
  297. bytes_per_pixel = var->bits_per_pixel / 8;
  298. if (bytes_per_pixel == 3)
  299. bytes_per_pixel = 4;
  300. /* Check if enough video memory. */
  301. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  302. if (tmp > dinfo->fb.size) {
  303. WRN_MSG("Not enough video ram for mode "
  304. "(%d KByte vs %d KByte).\n",
  305. BtoKB(tmp), BtoKB(dinfo->fb.size));
  306. return 1;
  307. }
  308. /* Check if x/y limits are OK. */
  309. if (var->xres - 1 > HACTIVE_MASK) {
  310. WRN_MSG("X resolution too large (%d vs %d).\n",
  311. var->xres, HACTIVE_MASK + 1);
  312. return 1;
  313. }
  314. if (var->yres - 1 > VACTIVE_MASK) {
  315. WRN_MSG("Y resolution too large (%d vs %d).\n",
  316. var->yres, VACTIVE_MASK + 1);
  317. return 1;
  318. }
  319. if (var->xres < 4) {
  320. WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
  321. return 1;
  322. }
  323. if (var->yres < 4) {
  324. WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
  325. return 1;
  326. }
  327. /* Check for doublescan modes. */
  328. if (var->vmode & FB_VMODE_DOUBLE) {
  329. WRN_MSG("Mode is double-scan.\n");
  330. return 1;
  331. }
  332. if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
  333. WRN_MSG("Odd number of lines in interlaced mode\n");
  334. return 1;
  335. }
  336. /* Check if clock is OK. */
  337. tmp = 1000000000 / var->pixclock;
  338. if (tmp < MIN_CLOCK) {
  339. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  340. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  341. return 1;
  342. }
  343. if (tmp > MAX_CLOCK) {
  344. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  345. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  346. return 1;
  347. }
  348. return 0;
  349. }
  350. int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  351. {
  352. struct intelfb_info *dinfo = GET_DINFO(info);
  353. u32 offset, xoffset, yoffset;
  354. #if VERBOSE > 0
  355. DBG_MSG("intelfbhw_pan_display\n");
  356. #endif
  357. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  358. yoffset = var->yoffset;
  359. if ((xoffset + info->var.xres > info->var.xres_virtual) ||
  360. (yoffset + info->var.yres > info->var.yres_virtual))
  361. return -EINVAL;
  362. offset = (yoffset * dinfo->pitch) +
  363. (xoffset * info->var.bits_per_pixel) / 8;
  364. offset += dinfo->fb.offset << 12;
  365. dinfo->vsync.pan_offset = offset;
  366. if ((var->activate & FB_ACTIVATE_VBL) &&
  367. !intelfbhw_enable_irq(dinfo))
  368. dinfo->vsync.pan_display = 1;
  369. else {
  370. dinfo->vsync.pan_display = 0;
  371. OUTREG(DSPABASE, offset);
  372. }
  373. return 0;
  374. }
  375. /* Blank the screen. */
  376. void intelfbhw_do_blank(int blank, struct fb_info *info)
  377. {
  378. struct intelfb_info *dinfo = GET_DINFO(info);
  379. u32 tmp;
  380. #if VERBOSE > 0
  381. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  382. #endif
  383. /* Turn plane A on or off */
  384. tmp = INREG(DSPACNTR);
  385. if (blank)
  386. tmp &= ~DISPPLANE_PLANE_ENABLE;
  387. else
  388. tmp |= DISPPLANE_PLANE_ENABLE;
  389. OUTREG(DSPACNTR, tmp);
  390. /* Flush */
  391. tmp = INREG(DSPABASE);
  392. OUTREG(DSPABASE, tmp);
  393. /* Turn off/on the HW cursor */
  394. #if VERBOSE > 0
  395. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  396. #endif
  397. if (dinfo->cursor_on) {
  398. if (blank)
  399. intelfbhw_cursor_hide(dinfo);
  400. else
  401. intelfbhw_cursor_show(dinfo);
  402. dinfo->cursor_on = 1;
  403. }
  404. dinfo->cursor_blanked = blank;
  405. /* Set DPMS level */
  406. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  407. switch (blank) {
  408. case FB_BLANK_UNBLANK:
  409. case FB_BLANK_NORMAL:
  410. tmp |= ADPA_DPMS_D0;
  411. break;
  412. case FB_BLANK_VSYNC_SUSPEND:
  413. tmp |= ADPA_DPMS_D1;
  414. break;
  415. case FB_BLANK_HSYNC_SUSPEND:
  416. tmp |= ADPA_DPMS_D2;
  417. break;
  418. case FB_BLANK_POWERDOWN:
  419. tmp |= ADPA_DPMS_D3;
  420. break;
  421. }
  422. OUTREG(ADPA, tmp);
  423. return;
  424. }
  425. /* Check which pipe is connected to an active display plane. */
  426. int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
  427. {
  428. int pipe = -1;
  429. /* keep old default behaviour - prefer PIPE_A */
  430. if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
  431. pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
  432. pipe &= PIPE_MASK;
  433. if (unlikely(pipe == PIPE_A))
  434. return PIPE_A;
  435. }
  436. if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
  437. pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
  438. pipe &= PIPE_MASK;
  439. if (likely(pipe == PIPE_A))
  440. return PIPE_A;
  441. }
  442. /* Impossible that no pipe is selected - return PIPE_A */
  443. WARN_ON(pipe == -1);
  444. if (unlikely(pipe == -1))
  445. pipe = PIPE_A;
  446. return pipe;
  447. }
  448. void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  449. unsigned red, unsigned green, unsigned blue,
  450. unsigned transp)
  451. {
  452. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  453. PALETTE_A : PALETTE_B;
  454. #if VERBOSE > 0
  455. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  456. regno, red, green, blue);
  457. #endif
  458. OUTREG(palette_reg + (regno << 2),
  459. (red << PALETTE_8_RED_SHIFT) |
  460. (green << PALETTE_8_GREEN_SHIFT) |
  461. (blue << PALETTE_8_BLUE_SHIFT));
  462. }
  463. int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
  464. struct intelfb_hwstate *hw, int flag)
  465. {
  466. int i;
  467. #if VERBOSE > 0
  468. DBG_MSG("intelfbhw_read_hw_state\n");
  469. #endif
  470. if (!hw || !dinfo)
  471. return -1;
  472. /* Read in as much of the HW state as possible. */
  473. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  474. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  475. hw->vga_pd = INREG(VGAPD);
  476. hw->dpll_a = INREG(DPLL_A);
  477. hw->dpll_b = INREG(DPLL_B);
  478. hw->fpa0 = INREG(FPA0);
  479. hw->fpa1 = INREG(FPA1);
  480. hw->fpb0 = INREG(FPB0);
  481. hw->fpb1 = INREG(FPB1);
  482. if (flag == 1)
  483. return flag;
  484. #if 0
  485. /* This seems to be a problem with the 852GM/855GM */
  486. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  487. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  488. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  489. }
  490. #endif
  491. if (flag == 2)
  492. return flag;
  493. hw->htotal_a = INREG(HTOTAL_A);
  494. hw->hblank_a = INREG(HBLANK_A);
  495. hw->hsync_a = INREG(HSYNC_A);
  496. hw->vtotal_a = INREG(VTOTAL_A);
  497. hw->vblank_a = INREG(VBLANK_A);
  498. hw->vsync_a = INREG(VSYNC_A);
  499. hw->src_size_a = INREG(SRC_SIZE_A);
  500. hw->bclrpat_a = INREG(BCLRPAT_A);
  501. hw->htotal_b = INREG(HTOTAL_B);
  502. hw->hblank_b = INREG(HBLANK_B);
  503. hw->hsync_b = INREG(HSYNC_B);
  504. hw->vtotal_b = INREG(VTOTAL_B);
  505. hw->vblank_b = INREG(VBLANK_B);
  506. hw->vsync_b = INREG(VSYNC_B);
  507. hw->src_size_b = INREG(SRC_SIZE_B);
  508. hw->bclrpat_b = INREG(BCLRPAT_B);
  509. if (flag == 3)
  510. return flag;
  511. hw->adpa = INREG(ADPA);
  512. hw->dvoa = INREG(DVOA);
  513. hw->dvob = INREG(DVOB);
  514. hw->dvoc = INREG(DVOC);
  515. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  516. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  517. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  518. hw->lvds = INREG(LVDS);
  519. if (flag == 4)
  520. return flag;
  521. hw->pipe_a_conf = INREG(PIPEACONF);
  522. hw->pipe_b_conf = INREG(PIPEBCONF);
  523. hw->disp_arb = INREG(DISPARB);
  524. if (flag == 5)
  525. return flag;
  526. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  527. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  528. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  529. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  530. if (flag == 6)
  531. return flag;
  532. for (i = 0; i < 4; i++) {
  533. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  534. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  535. }
  536. if (flag == 7)
  537. return flag;
  538. hw->cursor_size = INREG(CURSOR_SIZE);
  539. if (flag == 8)
  540. return flag;
  541. hw->disp_a_ctrl = INREG(DSPACNTR);
  542. hw->disp_b_ctrl = INREG(DSPBCNTR);
  543. hw->disp_a_base = INREG(DSPABASE);
  544. hw->disp_b_base = INREG(DSPBBASE);
  545. hw->disp_a_stride = INREG(DSPASTRIDE);
  546. hw->disp_b_stride = INREG(DSPBSTRIDE);
  547. if (flag == 9)
  548. return flag;
  549. hw->vgacntrl = INREG(VGACNTRL);
  550. if (flag == 10)
  551. return flag;
  552. hw->add_id = INREG(ADD_ID);
  553. if (flag == 11)
  554. return flag;
  555. for (i = 0; i < 7; i++) {
  556. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  557. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  558. if (i < 3)
  559. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  560. }
  561. for (i = 0; i < 8; i++)
  562. hw->fence[i] = INREG(FENCE + (i << 2));
  563. hw->instpm = INREG(INSTPM);
  564. hw->mem_mode = INREG(MEM_MODE);
  565. hw->fw_blc_0 = INREG(FW_BLC_0);
  566. hw->fw_blc_1 = INREG(FW_BLC_1);
  567. hw->hwstam = INREG16(HWSTAM);
  568. hw->ier = INREG16(IER);
  569. hw->iir = INREG16(IIR);
  570. hw->imr = INREG16(IMR);
  571. return 0;
  572. }
  573. static int calc_vclock3(int index, int m, int n, int p)
  574. {
  575. if (p == 0 || n == 0)
  576. return 0;
  577. return plls[index].ref_clk * m / n / p;
  578. }
  579. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
  580. int lvds)
  581. {
  582. struct pll_min_max *pll = &plls[index];
  583. u32 m, vco, p;
  584. m = (5 * (m1 + 2)) + (m2 + 2);
  585. n += 2;
  586. vco = pll->ref_clk * m / n;
  587. if (index == PLLS_I8xx)
  588. p = ((p1 + 2) * (1 << (p2 + 1)));
  589. else
  590. p = ((p1) * (p2 ? 5 : 10));
  591. return vco / p;
  592. }
  593. #if REGDUMP
  594. static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
  595. int *o_p1, int *o_p2)
  596. {
  597. int p1, p2;
  598. if (IS_I9XX(dinfo)) {
  599. if (dpll & DPLL_P1_FORCE_DIV2)
  600. p1 = 1;
  601. else
  602. p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
  603. p1 = ffs(p1);
  604. p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  605. } else {
  606. if (dpll & DPLL_P1_FORCE_DIV2)
  607. p1 = 0;
  608. else
  609. p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  610. p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  611. }
  612. *o_p1 = p1;
  613. *o_p2 = p2;
  614. }
  615. #endif
  616. void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
  617. struct intelfb_hwstate *hw)
  618. {
  619. #if REGDUMP
  620. int i, m1, m2, n, p1, p2;
  621. int index = dinfo->pll_index;
  622. DBG_MSG("intelfbhw_print_hw_state\n");
  623. if (!hw)
  624. return;
  625. /* Read in as much of the HW state as possible. */
  626. printk("hw state dump start\n");
  627. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  628. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  629. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  630. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  631. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  632. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  633. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  634. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  635. m1, m2, n, p1, p2);
  636. printk(" VGA0: clock is %d\n",
  637. calc_vclock(index, m1, m2, n, p1, p2, 0));
  638. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  639. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  640. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  641. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  642. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  643. m1, m2, n, p1, p2);
  644. printk(" VGA1: clock is %d\n",
  645. calc_vclock(index, m1, m2, n, p1, p2, 0));
  646. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  647. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  648. printk(" FPA0: 0x%08x\n", hw->fpa0);
  649. printk(" FPA1: 0x%08x\n", hw->fpa1);
  650. printk(" FPB0: 0x%08x\n", hw->fpb0);
  651. printk(" FPB1: 0x%08x\n", hw->fpb1);
  652. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  653. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  654. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  655. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  656. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  657. m1, m2, n, p1, p2);
  658. printk(" PLLA0: clock is %d\n",
  659. calc_vclock(index, m1, m2, n, p1, p2, 0));
  660. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  661. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  662. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  663. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  664. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  665. m1, m2, n, p1, p2);
  666. printk(" PLLA1: clock is %d\n",
  667. calc_vclock(index, m1, m2, n, p1, p2, 0));
  668. #if 0
  669. printk(" PALETTE_A:\n");
  670. for (i = 0; i < PALETTE_8_ENTRIES)
  671. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  672. printk(" PALETTE_B:\n");
  673. for (i = 0; i < PALETTE_8_ENTRIES)
  674. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  675. #endif
  676. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  677. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  678. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  679. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  680. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  681. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  682. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  683. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  684. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  685. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  686. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  687. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  688. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  689. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  690. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  691. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  692. printk(" ADPA: 0x%08x\n", hw->adpa);
  693. printk(" DVOA: 0x%08x\n", hw->dvoa);
  694. printk(" DVOB: 0x%08x\n", hw->dvob);
  695. printk(" DVOC: 0x%08x\n", hw->dvoc);
  696. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  697. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  698. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  699. printk(" LVDS: 0x%08x\n", hw->lvds);
  700. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  701. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  702. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  703. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  704. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  705. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  706. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  707. printk(" CURSOR_A_PALETTE: ");
  708. for (i = 0; i < 4; i++) {
  709. printk("0x%08x", hw->cursor_a_palette[i]);
  710. if (i < 3)
  711. printk(", ");
  712. }
  713. printk("\n");
  714. printk(" CURSOR_B_PALETTE: ");
  715. for (i = 0; i < 4; i++) {
  716. printk("0x%08x", hw->cursor_b_palette[i]);
  717. if (i < 3)
  718. printk(", ");
  719. }
  720. printk("\n");
  721. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  722. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  723. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  724. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  725. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  726. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  727. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  728. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  729. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  730. for (i = 0; i < 7; i++) {
  731. printk(" SWF0%d 0x%08x\n", i,
  732. hw->swf0x[i]);
  733. }
  734. for (i = 0; i < 7; i++) {
  735. printk(" SWF1%d 0x%08x\n", i,
  736. hw->swf1x[i]);
  737. }
  738. for (i = 0; i < 3; i++) {
  739. printk(" SWF3%d 0x%08x\n", i,
  740. hw->swf3x[i]);
  741. }
  742. for (i = 0; i < 8; i++)
  743. printk(" FENCE%d 0x%08x\n", i,
  744. hw->fence[i]);
  745. printk(" INSTPM 0x%08x\n", hw->instpm);
  746. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  747. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  748. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  749. printk(" HWSTAM 0x%04x\n", hw->hwstam);
  750. printk(" IER 0x%04x\n", hw->ier);
  751. printk(" IIR 0x%04x\n", hw->iir);
  752. printk(" IMR 0x%04x\n", hw->imr);
  753. printk("hw state dump end\n");
  754. #endif
  755. }
  756. /* Split the M parameter into M1 and M2. */
  757. static int splitm(int index, unsigned int m, unsigned int *retm1,
  758. unsigned int *retm2)
  759. {
  760. int m1, m2;
  761. int testm;
  762. struct pll_min_max *pll = &plls[index];
  763. /* no point optimising too much - brute force m */
  764. for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
  765. for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
  766. testm = (5 * (m1 + 2)) + (m2 + 2);
  767. if (testm == m) {
  768. *retm1 = (unsigned int)m1;
  769. *retm2 = (unsigned int)m2;
  770. return 0;
  771. }
  772. }
  773. }
  774. return 1;
  775. }
  776. /* Split the P parameter into P1 and P2. */
  777. static int splitp(int index, unsigned int p, unsigned int *retp1,
  778. unsigned int *retp2)
  779. {
  780. int p1, p2;
  781. struct pll_min_max *pll = &plls[index];
  782. if (index == PLLS_I9xx) {
  783. p2 = (p % 10) ? 1 : 0;
  784. p1 = p / (p2 ? 5 : 10);
  785. *retp1 = (unsigned int)p1;
  786. *retp2 = (unsigned int)p2;
  787. return 0;
  788. }
  789. if (p % 4 == 0)
  790. p2 = 1;
  791. else
  792. p2 = 0;
  793. p1 = (p / (1 << (p2 + 1))) - 2;
  794. if (p % 4 == 0 && p1 < pll->min_p1) {
  795. p2 = 0;
  796. p1 = (p / (1 << (p2 + 1))) - 2;
  797. }
  798. if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
  799. (p1 + 2) * (1 << (p2 + 1)) != p) {
  800. return 1;
  801. } else {
  802. *retp1 = (unsigned int)p1;
  803. *retp2 = (unsigned int)p2;
  804. return 0;
  805. }
  806. }
  807. static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
  808. u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
  809. {
  810. u32 m1, m2, n, p1, p2, n1, testm;
  811. u32 f_vco, p, p_best = 0, m, f_out = 0;
  812. u32 err_best = 10000000;
  813. u32 n_best = 0, m_best = 0, f_err;
  814. u32 p_min, p_max, p_inc, div_max;
  815. struct pll_min_max *pll = &plls[index];
  816. DBG_MSG("Clock is %d\n", clock);
  817. div_max = pll->max_vco / clock;
  818. p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
  819. p_min = p_inc;
  820. p_max = ROUND_DOWN_TO(div_max, p_inc);
  821. if (p_min < pll->min_p)
  822. p_min = pll->min_p;
  823. if (p_max > pll->max_p)
  824. p_max = pll->max_p;
  825. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  826. p = p_min;
  827. do {
  828. if (splitp(index, p, &p1, &p2)) {
  829. WRN_MSG("cannot split p = %d\n", p);
  830. p += p_inc;
  831. continue;
  832. }
  833. n = pll->min_n;
  834. f_vco = clock * p;
  835. do {
  836. m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
  837. if (m < pll->min_m)
  838. m = pll->min_m + 1;
  839. if (m > pll->max_m)
  840. m = pll->max_m - 1;
  841. for (testm = m - 1; testm <= m; testm++) {
  842. f_out = calc_vclock3(index, testm, n, p);
  843. if (splitm(index, testm, &m1, &m2)) {
  844. WRN_MSG("cannot split m = %d\n",
  845. testm);
  846. continue;
  847. }
  848. if (clock > f_out)
  849. f_err = clock - f_out;
  850. else/* slightly bias the error for bigger clocks */
  851. f_err = f_out - clock + 1;
  852. if (f_err < err_best) {
  853. m_best = testm;
  854. n_best = n;
  855. p_best = p;
  856. err_best = f_err;
  857. }
  858. }
  859. n++;
  860. } while ((n <= pll->max_n) && (f_out >= clock));
  861. p += p_inc;
  862. } while ((p <= p_max));
  863. if (!m_best) {
  864. WRN_MSG("cannot find parameters for clock %d\n", clock);
  865. return 1;
  866. }
  867. m = m_best;
  868. n = n_best;
  869. p = p_best;
  870. splitm(index, m, &m1, &m2);
  871. splitp(index, p, &p1, &p2);
  872. n1 = n - 2;
  873. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  874. "f: %d (%d), VCO: %d\n",
  875. m, m1, m2, n, n1, p, p1, p2,
  876. calc_vclock3(index, m, n, p),
  877. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  878. calc_vclock3(index, m, n, p) * p);
  879. *retm1 = m1;
  880. *retm2 = m2;
  881. *retn = n1;
  882. *retp1 = p1;
  883. *retp2 = p2;
  884. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  885. return 0;
  886. }
  887. static __inline__ int check_overflow(u32 value, u32 limit,
  888. const char *description)
  889. {
  890. if (value > limit) {
  891. WRN_MSG("%s value %d exceeds limit %d\n",
  892. description, value, limit);
  893. return 1;
  894. }
  895. return 0;
  896. }
  897. /* It is assumed that hw is filled in with the initial state information. */
  898. int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
  899. struct intelfb_hwstate *hw,
  900. struct fb_var_screeninfo *var)
  901. {
  902. int pipe = intelfbhw_active_pipe(hw);
  903. u32 *dpll, *fp0, *fp1;
  904. u32 m1, m2, n, p1, p2, clock_target, clock;
  905. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  906. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  907. u32 vsync_pol, hsync_pol;
  908. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  909. u32 stride_alignment;
  910. DBG_MSG("intelfbhw_mode_to_hw\n");
  911. /* Disable VGA */
  912. hw->vgacntrl |= VGA_DISABLE;
  913. /* Set which pipe's registers will be set. */
  914. if (pipe == PIPE_B) {
  915. dpll = &hw->dpll_b;
  916. fp0 = &hw->fpb0;
  917. fp1 = &hw->fpb1;
  918. hs = &hw->hsync_b;
  919. hb = &hw->hblank_b;
  920. ht = &hw->htotal_b;
  921. vs = &hw->vsync_b;
  922. vb = &hw->vblank_b;
  923. vt = &hw->vtotal_b;
  924. ss = &hw->src_size_b;
  925. pipe_conf = &hw->pipe_b_conf;
  926. } else {
  927. dpll = &hw->dpll_a;
  928. fp0 = &hw->fpa0;
  929. fp1 = &hw->fpa1;
  930. hs = &hw->hsync_a;
  931. hb = &hw->hblank_a;
  932. ht = &hw->htotal_a;
  933. vs = &hw->vsync_a;
  934. vb = &hw->vblank_a;
  935. vt = &hw->vtotal_a;
  936. ss = &hw->src_size_a;
  937. pipe_conf = &hw->pipe_a_conf;
  938. }
  939. /* Use ADPA register for sync control. */
  940. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  941. /* sync polarity */
  942. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  943. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  944. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  945. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  946. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  947. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  948. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  949. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  950. /* Connect correct pipe to the analog port DAC */
  951. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  952. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  953. /* Set DPMS state to D0 (on) */
  954. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  955. hw->adpa |= ADPA_DPMS_D0;
  956. hw->adpa |= ADPA_DAC_ENABLE;
  957. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  958. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  959. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  960. /* Desired clock in kHz */
  961. clock_target = 1000000000 / var->pixclock;
  962. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  963. &n, &p1, &p2, &clock)) {
  964. WRN_MSG("calc_pll_params failed\n");
  965. return 1;
  966. }
  967. /* Check for overflow. */
  968. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  969. return 1;
  970. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  971. return 1;
  972. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  973. return 1;
  974. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  975. return 1;
  976. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  977. return 1;
  978. *dpll &= ~DPLL_P1_FORCE_DIV2;
  979. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  980. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  981. if (IS_I9XX(dinfo)) {
  982. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  983. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  984. } else
  985. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  986. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  987. (m1 << FP_M1_DIVISOR_SHIFT) |
  988. (m2 << FP_M2_DIVISOR_SHIFT);
  989. *fp1 = *fp0;
  990. hw->dvob &= ~PORT_ENABLE;
  991. hw->dvoc &= ~PORT_ENABLE;
  992. /* Use display plane A. */
  993. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  994. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  995. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  996. switch (intelfb_var_to_depth(var)) {
  997. case 8:
  998. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  999. break;
  1000. case 15:
  1001. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  1002. break;
  1003. case 16:
  1004. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  1005. break;
  1006. case 24:
  1007. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  1008. break;
  1009. }
  1010. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  1011. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  1012. /* Set CRTC registers. */
  1013. hactive = var->xres;
  1014. hsync_start = hactive + var->right_margin;
  1015. hsync_end = hsync_start + var->hsync_len;
  1016. htotal = hsync_end + var->left_margin;
  1017. hblank_start = hactive;
  1018. hblank_end = htotal;
  1019. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  1020. hactive, hsync_start, hsync_end, htotal, hblank_start,
  1021. hblank_end);
  1022. vactive = var->yres;
  1023. if (var->vmode & FB_VMODE_INTERLACED)
  1024. vactive--; /* the chip adds 2 halflines automatically */
  1025. vsync_start = vactive + var->lower_margin;
  1026. vsync_end = vsync_start + var->vsync_len;
  1027. vtotal = vsync_end + var->upper_margin;
  1028. vblank_start = vactive;
  1029. vblank_end = vsync_end + 1;
  1030. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  1031. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  1032. vblank_end);
  1033. /* Adjust for register values, and check for overflow. */
  1034. hactive--;
  1035. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  1036. return 1;
  1037. hsync_start--;
  1038. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  1039. return 1;
  1040. hsync_end--;
  1041. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  1042. return 1;
  1043. htotal--;
  1044. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  1045. return 1;
  1046. hblank_start--;
  1047. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  1048. return 1;
  1049. hblank_end--;
  1050. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  1051. return 1;
  1052. vactive--;
  1053. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  1054. return 1;
  1055. vsync_start--;
  1056. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  1057. return 1;
  1058. vsync_end--;
  1059. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1060. return 1;
  1061. vtotal--;
  1062. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1063. return 1;
  1064. vblank_start--;
  1065. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1066. return 1;
  1067. vblank_end--;
  1068. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1069. return 1;
  1070. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1071. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1072. (hblank_end << HSYNCEND_SHIFT);
  1073. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1074. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1075. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1076. (vblank_end << VSYNCEND_SHIFT);
  1077. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1078. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1079. (vactive << SRC_SIZE_VERT_SHIFT);
  1080. hw->disp_a_stride = dinfo->pitch;
  1081. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1082. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1083. var->xoffset * var->bits_per_pixel / 8;
  1084. hw->disp_a_base += dinfo->fb.offset << 12;
  1085. /* Check stride alignment. */
  1086. stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
  1087. STRIDE_ALIGNMENT;
  1088. if (hw->disp_a_stride % stride_alignment != 0) {
  1089. WRN_MSG("display stride %d has bad alignment %d\n",
  1090. hw->disp_a_stride, stride_alignment);
  1091. return 1;
  1092. }
  1093. /* Set the palette to 8-bit mode. */
  1094. *pipe_conf &= ~PIPECONF_GAMMA;
  1095. if (var->vmode & FB_VMODE_INTERLACED)
  1096. *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  1097. else
  1098. *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
  1099. return 0;
  1100. }
  1101. /* Program a (non-VGA) video mode. */
  1102. int intelfbhw_program_mode(struct intelfb_info *dinfo,
  1103. const struct intelfb_hwstate *hw, int blank)
  1104. {
  1105. u32 tmp;
  1106. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1107. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1108. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
  1109. u32 hsync_reg, htotal_reg, hblank_reg;
  1110. u32 vsync_reg, vtotal_reg, vblank_reg;
  1111. u32 src_size_reg;
  1112. u32 count, tmp_val[3];
  1113. /* Assume single pipe */
  1114. #if VERBOSE > 0
  1115. DBG_MSG("intelfbhw_program_mode\n");
  1116. #endif
  1117. /* Disable VGA */
  1118. tmp = INREG(VGACNTRL);
  1119. tmp |= VGA_DISABLE;
  1120. OUTREG(VGACNTRL, tmp);
  1121. dinfo->pipe = intelfbhw_active_pipe(hw);
  1122. if (dinfo->pipe == PIPE_B) {
  1123. dpll = &hw->dpll_b;
  1124. fp0 = &hw->fpb0;
  1125. fp1 = &hw->fpb1;
  1126. pipe_conf = &hw->pipe_b_conf;
  1127. hs = &hw->hsync_b;
  1128. hb = &hw->hblank_b;
  1129. ht = &hw->htotal_b;
  1130. vs = &hw->vsync_b;
  1131. vb = &hw->vblank_b;
  1132. vt = &hw->vtotal_b;
  1133. ss = &hw->src_size_b;
  1134. dpll_reg = DPLL_B;
  1135. fp0_reg = FPB0;
  1136. fp1_reg = FPB1;
  1137. pipe_conf_reg = PIPEBCONF;
  1138. pipe_stat_reg = PIPEBSTAT;
  1139. hsync_reg = HSYNC_B;
  1140. htotal_reg = HTOTAL_B;
  1141. hblank_reg = HBLANK_B;
  1142. vsync_reg = VSYNC_B;
  1143. vtotal_reg = VTOTAL_B;
  1144. vblank_reg = VBLANK_B;
  1145. src_size_reg = SRC_SIZE_B;
  1146. } else {
  1147. dpll = &hw->dpll_a;
  1148. fp0 = &hw->fpa0;
  1149. fp1 = &hw->fpa1;
  1150. pipe_conf = &hw->pipe_a_conf;
  1151. hs = &hw->hsync_a;
  1152. hb = &hw->hblank_a;
  1153. ht = &hw->htotal_a;
  1154. vs = &hw->vsync_a;
  1155. vb = &hw->vblank_a;
  1156. vt = &hw->vtotal_a;
  1157. ss = &hw->src_size_a;
  1158. dpll_reg = DPLL_A;
  1159. fp0_reg = FPA0;
  1160. fp1_reg = FPA1;
  1161. pipe_conf_reg = PIPEACONF;
  1162. pipe_stat_reg = PIPEASTAT;
  1163. hsync_reg = HSYNC_A;
  1164. htotal_reg = HTOTAL_A;
  1165. hblank_reg = HBLANK_A;
  1166. vsync_reg = VSYNC_A;
  1167. vtotal_reg = VTOTAL_A;
  1168. vblank_reg = VBLANK_A;
  1169. src_size_reg = SRC_SIZE_A;
  1170. }
  1171. /* turn off pipe */
  1172. tmp = INREG(pipe_conf_reg);
  1173. tmp &= ~PIPECONF_ENABLE;
  1174. OUTREG(pipe_conf_reg, tmp);
  1175. count = 0;
  1176. do {
  1177. tmp_val[count % 3] = INREG(PIPEA_DSL);
  1178. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
  1179. break;
  1180. count++;
  1181. udelay(1);
  1182. if (count % 200 == 0) {
  1183. tmp = INREG(pipe_conf_reg);
  1184. tmp &= ~PIPECONF_ENABLE;
  1185. OUTREG(pipe_conf_reg, tmp);
  1186. }
  1187. } while (count < 2000);
  1188. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1189. /* Disable planes A and B. */
  1190. tmp = INREG(DSPACNTR);
  1191. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1192. OUTREG(DSPACNTR, tmp);
  1193. tmp = INREG(DSPBCNTR);
  1194. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1195. OUTREG(DSPBCNTR, tmp);
  1196. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1197. mdelay(20);
  1198. OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
  1199. OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
  1200. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1201. /* Disable Sync */
  1202. tmp = INREG(ADPA);
  1203. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1204. tmp |= ADPA_DPMS_D3;
  1205. OUTREG(ADPA, tmp);
  1206. /* do some funky magic - xyzzy */
  1207. OUTREG(0x61204, 0xabcd0000);
  1208. /* turn off PLL */
  1209. tmp = INREG(dpll_reg);
  1210. tmp &= ~DPLL_VCO_ENABLE;
  1211. OUTREG(dpll_reg, tmp);
  1212. /* Set PLL parameters */
  1213. OUTREG(fp0_reg, *fp0);
  1214. OUTREG(fp1_reg, *fp1);
  1215. /* Enable PLL */
  1216. OUTREG(dpll_reg, *dpll);
  1217. /* Set DVOs B/C */
  1218. OUTREG(DVOB, hw->dvob);
  1219. OUTREG(DVOC, hw->dvoc);
  1220. /* undo funky magic */
  1221. OUTREG(0x61204, 0x00000000);
  1222. /* Set ADPA */
  1223. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1224. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1225. /* Set pipe parameters */
  1226. OUTREG(hsync_reg, *hs);
  1227. OUTREG(hblank_reg, *hb);
  1228. OUTREG(htotal_reg, *ht);
  1229. OUTREG(vsync_reg, *vs);
  1230. OUTREG(vblank_reg, *vb);
  1231. OUTREG(vtotal_reg, *vt);
  1232. OUTREG(src_size_reg, *ss);
  1233. switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
  1234. FB_VMODE_ODD_FLD_FIRST)) {
  1235. case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
  1236. OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
  1237. break;
  1238. case FB_VMODE_INTERLACED: /* even lines first */
  1239. OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
  1240. break;
  1241. default: /* non-interlaced */
  1242. OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
  1243. }
  1244. /* Enable pipe */
  1245. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1246. /* Enable sync */
  1247. tmp = INREG(ADPA);
  1248. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1249. tmp |= ADPA_DPMS_D0;
  1250. OUTREG(ADPA, tmp);
  1251. /* setup display plane */
  1252. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1253. /*
  1254. * i830M errata: the display plane must be enabled
  1255. * to allow writes to the other bits in the plane
  1256. * control register.
  1257. */
  1258. tmp = INREG(DSPACNTR);
  1259. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1260. tmp |= DISPPLANE_PLANE_ENABLE;
  1261. OUTREG(DSPACNTR, tmp);
  1262. OUTREG(DSPACNTR,
  1263. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1264. mdelay(1);
  1265. }
  1266. }
  1267. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1268. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1269. OUTREG(DSPABASE, hw->disp_a_base);
  1270. /* Enable plane */
  1271. if (!blank) {
  1272. tmp = INREG(DSPACNTR);
  1273. tmp |= DISPPLANE_PLANE_ENABLE;
  1274. OUTREG(DSPACNTR, tmp);
  1275. OUTREG(DSPABASE, hw->disp_a_base);
  1276. }
  1277. return 0;
  1278. }
  1279. /* forward declarations */
  1280. static void refresh_ring(struct intelfb_info *dinfo);
  1281. static void reset_state(struct intelfb_info *dinfo);
  1282. static void do_flush(struct intelfb_info *dinfo);
  1283. static u32 get_ring_space(struct intelfb_info *dinfo)
  1284. {
  1285. u32 ring_space;
  1286. if (dinfo->ring_tail >= dinfo->ring_head)
  1287. ring_space = dinfo->ring.size -
  1288. (dinfo->ring_tail - dinfo->ring_head);
  1289. else
  1290. ring_space = dinfo->ring_head - dinfo->ring_tail;
  1291. if (ring_space > RING_MIN_FREE)
  1292. ring_space -= RING_MIN_FREE;
  1293. else
  1294. ring_space = 0;
  1295. return ring_space;
  1296. }
  1297. static int wait_ring(struct intelfb_info *dinfo, int n)
  1298. {
  1299. int i = 0;
  1300. unsigned long end;
  1301. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1302. #if VERBOSE > 0
  1303. DBG_MSG("wait_ring: %d\n", n);
  1304. #endif
  1305. end = jiffies + (HZ * 3);
  1306. while (dinfo->ring_space < n) {
  1307. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1308. dinfo->ring_space = get_ring_space(dinfo);
  1309. if (dinfo->ring_head != last_head) {
  1310. end = jiffies + (HZ * 3);
  1311. last_head = dinfo->ring_head;
  1312. }
  1313. i++;
  1314. if (time_before(end, jiffies)) {
  1315. if (!i) {
  1316. /* Try again */
  1317. reset_state(dinfo);
  1318. refresh_ring(dinfo);
  1319. do_flush(dinfo);
  1320. end = jiffies + (HZ * 3);
  1321. i = 1;
  1322. } else {
  1323. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1324. dinfo->ring_space, n);
  1325. WRN_MSG("lockup - turning off hardware "
  1326. "acceleration\n");
  1327. dinfo->ring_lockup = 1;
  1328. break;
  1329. }
  1330. }
  1331. udelay(1);
  1332. }
  1333. return i;
  1334. }
  1335. static void do_flush(struct intelfb_info *dinfo)
  1336. {
  1337. START_RING(2);
  1338. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1339. OUT_RING(MI_NOOP);
  1340. ADVANCE_RING();
  1341. }
  1342. void intelfbhw_do_sync(struct intelfb_info *dinfo)
  1343. {
  1344. #if VERBOSE > 0
  1345. DBG_MSG("intelfbhw_do_sync\n");
  1346. #endif
  1347. if (!dinfo->accel)
  1348. return;
  1349. /*
  1350. * Send a flush, then wait until the ring is empty. This is what
  1351. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1352. * than the recommended method (both have problems).
  1353. */
  1354. do_flush(dinfo);
  1355. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1356. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1357. }
  1358. static void refresh_ring(struct intelfb_info *dinfo)
  1359. {
  1360. #if VERBOSE > 0
  1361. DBG_MSG("refresh_ring\n");
  1362. #endif
  1363. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1364. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1365. dinfo->ring_space = get_ring_space(dinfo);
  1366. }
  1367. static void reset_state(struct intelfb_info *dinfo)
  1368. {
  1369. int i;
  1370. u32 tmp;
  1371. #if VERBOSE > 0
  1372. DBG_MSG("reset_state\n");
  1373. #endif
  1374. for (i = 0; i < FENCE_NUM; i++)
  1375. OUTREG(FENCE + (i << 2), 0);
  1376. /* Flush the ring buffer if it's enabled. */
  1377. tmp = INREG(PRI_RING_LENGTH);
  1378. if (tmp & RING_ENABLE) {
  1379. #if VERBOSE > 0
  1380. DBG_MSG("reset_state: ring was enabled\n");
  1381. #endif
  1382. refresh_ring(dinfo);
  1383. intelfbhw_do_sync(dinfo);
  1384. DO_RING_IDLE();
  1385. }
  1386. OUTREG(PRI_RING_LENGTH, 0);
  1387. OUTREG(PRI_RING_HEAD, 0);
  1388. OUTREG(PRI_RING_TAIL, 0);
  1389. OUTREG(PRI_RING_START, 0);
  1390. }
  1391. /* Stop the 2D engine, and turn off the ring buffer. */
  1392. void intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1393. {
  1394. #if VERBOSE > 0
  1395. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
  1396. dinfo->accel, dinfo->ring_active);
  1397. #endif
  1398. if (!dinfo->accel)
  1399. return;
  1400. dinfo->ring_active = 0;
  1401. reset_state(dinfo);
  1402. }
  1403. /*
  1404. * Enable the ring buffer, and initialise the 2D engine.
  1405. * It is assumed that the graphics engine has been stopped by previously
  1406. * calling intelfb_2d_stop().
  1407. */
  1408. void intelfbhw_2d_start(struct intelfb_info *dinfo)
  1409. {
  1410. #if VERBOSE > 0
  1411. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1412. dinfo->accel, dinfo->ring_active);
  1413. #endif
  1414. if (!dinfo->accel)
  1415. return;
  1416. /* Initialise the primary ring buffer. */
  1417. OUTREG(PRI_RING_LENGTH, 0);
  1418. OUTREG(PRI_RING_TAIL, 0);
  1419. OUTREG(PRI_RING_HEAD, 0);
  1420. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1421. OUTREG(PRI_RING_LENGTH,
  1422. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1423. RING_NO_REPORT | RING_ENABLE);
  1424. refresh_ring(dinfo);
  1425. dinfo->ring_active = 1;
  1426. }
  1427. /* 2D fillrect (solid fill or invert) */
  1428. void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
  1429. u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
  1430. {
  1431. u32 br00, br09, br13, br14, br16;
  1432. #if VERBOSE > 0
  1433. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1434. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1435. #endif
  1436. br00 = COLOR_BLT_CMD;
  1437. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1438. br13 = (rop << ROP_SHIFT) | pitch;
  1439. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1440. br16 = color;
  1441. switch (bpp) {
  1442. case 8:
  1443. br13 |= COLOR_DEPTH_8;
  1444. break;
  1445. case 16:
  1446. br13 |= COLOR_DEPTH_16;
  1447. break;
  1448. case 32:
  1449. br13 |= COLOR_DEPTH_32;
  1450. br00 |= WRITE_ALPHA | WRITE_RGB;
  1451. break;
  1452. }
  1453. START_RING(6);
  1454. OUT_RING(br00);
  1455. OUT_RING(br13);
  1456. OUT_RING(br14);
  1457. OUT_RING(br09);
  1458. OUT_RING(br16);
  1459. OUT_RING(MI_NOOP);
  1460. ADVANCE_RING();
  1461. #if VERBOSE > 0
  1462. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1463. dinfo->ring_tail, dinfo->ring_space);
  1464. #endif
  1465. }
  1466. void
  1467. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1468. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1469. {
  1470. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1471. #if VERBOSE > 0
  1472. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1473. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1474. #endif
  1475. br00 = XY_SRC_COPY_BLT_CMD;
  1476. br09 = dinfo->fb_start;
  1477. br11 = (pitch << PITCH_SHIFT);
  1478. br12 = dinfo->fb_start;
  1479. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1480. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1481. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1482. ((dsty + h) << HEIGHT_SHIFT);
  1483. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1484. switch (bpp) {
  1485. case 8:
  1486. br13 |= COLOR_DEPTH_8;
  1487. break;
  1488. case 16:
  1489. br13 |= COLOR_DEPTH_16;
  1490. break;
  1491. case 32:
  1492. br13 |= COLOR_DEPTH_32;
  1493. br00 |= WRITE_ALPHA | WRITE_RGB;
  1494. break;
  1495. }
  1496. START_RING(8);
  1497. OUT_RING(br00);
  1498. OUT_RING(br13);
  1499. OUT_RING(br22);
  1500. OUT_RING(br23);
  1501. OUT_RING(br09);
  1502. OUT_RING(br26);
  1503. OUT_RING(br11);
  1504. OUT_RING(br12);
  1505. ADVANCE_RING();
  1506. }
  1507. int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1508. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
  1509. u32 bpp)
  1510. {
  1511. int nbytes, ndwords, pad, tmp;
  1512. u32 br00, br09, br13, br18, br19, br22, br23;
  1513. int dat, ix, iy, iw;
  1514. int i, j;
  1515. #if VERBOSE > 0
  1516. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1517. #endif
  1518. /* size in bytes of a padded scanline */
  1519. nbytes = ROUND_UP_TO(w, 16) / 8;
  1520. /* Total bytes of padded scanline data to write out. */
  1521. nbytes = nbytes * h;
  1522. /*
  1523. * Check if the glyph data exceeds the immediate mode limit.
  1524. * It would take a large font (1K pixels) to hit this limit.
  1525. */
  1526. if (nbytes > MAX_MONO_IMM_SIZE)
  1527. return 0;
  1528. /* Src data is packaged a dword (32-bit) at a time. */
  1529. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1530. /*
  1531. * Ring has to be padded to a quad word. But because the command starts
  1532. with 7 bytes, pad only if there is an even number of ndwords
  1533. */
  1534. pad = !(ndwords % 2);
  1535. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1536. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1537. br09 = dinfo->fb_start;
  1538. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1539. br18 = bg;
  1540. br19 = fg;
  1541. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1542. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1543. switch (bpp) {
  1544. case 8:
  1545. br13 |= COLOR_DEPTH_8;
  1546. break;
  1547. case 16:
  1548. br13 |= COLOR_DEPTH_16;
  1549. break;
  1550. case 32:
  1551. br13 |= COLOR_DEPTH_32;
  1552. br00 |= WRITE_ALPHA | WRITE_RGB;
  1553. break;
  1554. }
  1555. START_RING(8 + ndwords);
  1556. OUT_RING(br00);
  1557. OUT_RING(br13);
  1558. OUT_RING(br22);
  1559. OUT_RING(br23);
  1560. OUT_RING(br09);
  1561. OUT_RING(br18);
  1562. OUT_RING(br19);
  1563. ix = iy = 0;
  1564. iw = ROUND_UP_TO(w, 8) / 8;
  1565. while (ndwords--) {
  1566. dat = 0;
  1567. for (j = 0; j < 2; ++j) {
  1568. for (i = 0; i < 2; ++i) {
  1569. if (ix != iw || i == 0)
  1570. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1571. }
  1572. if (ix == iw && iy != (h-1)) {
  1573. ix = 0;
  1574. ++iy;
  1575. }
  1576. }
  1577. OUT_RING(dat);
  1578. }
  1579. if (pad)
  1580. OUT_RING(MI_NOOP);
  1581. ADVANCE_RING();
  1582. return 1;
  1583. }
  1584. /* HW cursor functions. */
  1585. void intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1586. {
  1587. u32 tmp;
  1588. #if VERBOSE > 0
  1589. DBG_MSG("intelfbhw_cursor_init\n");
  1590. #endif
  1591. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1592. if (!dinfo->cursor.physical)
  1593. return;
  1594. tmp = INREG(CURSOR_A_CONTROL);
  1595. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1596. CURSOR_MEM_TYPE_LOCAL |
  1597. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1598. tmp |= CURSOR_MODE_DISABLE;
  1599. OUTREG(CURSOR_A_CONTROL, tmp);
  1600. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1601. } else {
  1602. tmp = INREG(CURSOR_CONTROL);
  1603. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1604. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1605. tmp |= CURSOR_FORMAT_3C;
  1606. OUTREG(CURSOR_CONTROL, tmp);
  1607. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1608. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1609. (64 << CURSOR_SIZE_V_SHIFT);
  1610. OUTREG(CURSOR_SIZE, tmp);
  1611. }
  1612. }
  1613. void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1614. {
  1615. u32 tmp;
  1616. #if VERBOSE > 0
  1617. DBG_MSG("intelfbhw_cursor_hide\n");
  1618. #endif
  1619. dinfo->cursor_on = 0;
  1620. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1621. if (!dinfo->cursor.physical)
  1622. return;
  1623. tmp = INREG(CURSOR_A_CONTROL);
  1624. tmp &= ~CURSOR_MODE_MASK;
  1625. tmp |= CURSOR_MODE_DISABLE;
  1626. OUTREG(CURSOR_A_CONTROL, tmp);
  1627. /* Flush changes */
  1628. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1629. } else {
  1630. tmp = INREG(CURSOR_CONTROL);
  1631. tmp &= ~CURSOR_ENABLE;
  1632. OUTREG(CURSOR_CONTROL, tmp);
  1633. }
  1634. }
  1635. void intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1636. {
  1637. u32 tmp;
  1638. #if VERBOSE > 0
  1639. DBG_MSG("intelfbhw_cursor_show\n");
  1640. #endif
  1641. dinfo->cursor_on = 1;
  1642. if (dinfo->cursor_blanked)
  1643. return;
  1644. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1645. if (!dinfo->cursor.physical)
  1646. return;
  1647. tmp = INREG(CURSOR_A_CONTROL);
  1648. tmp &= ~CURSOR_MODE_MASK;
  1649. tmp |= CURSOR_MODE_64_4C_AX;
  1650. OUTREG(CURSOR_A_CONTROL, tmp);
  1651. /* Flush changes */
  1652. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1653. } else {
  1654. tmp = INREG(CURSOR_CONTROL);
  1655. tmp |= CURSOR_ENABLE;
  1656. OUTREG(CURSOR_CONTROL, tmp);
  1657. }
  1658. }
  1659. void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1660. {
  1661. u32 tmp;
  1662. #if VERBOSE > 0
  1663. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1664. #endif
  1665. /*
  1666. * Sets the position. The coordinates are assumed to already
  1667. * have any offset adjusted. Assume that the cursor is never
  1668. * completely off-screen, and that x, y are always >= 0.
  1669. */
  1670. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1671. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1672. OUTREG(CURSOR_A_POSITION, tmp);
  1673. if (IS_I9XX(dinfo))
  1674. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1675. }
  1676. void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1677. {
  1678. #if VERBOSE > 0
  1679. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1680. #endif
  1681. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1682. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1683. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1684. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1685. }
  1686. void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1687. u8 *data)
  1688. {
  1689. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1690. int i, j, w = width / 8;
  1691. int mod = width % 8, t_mask, d_mask;
  1692. #if VERBOSE > 0
  1693. DBG_MSG("intelfbhw_cursor_load\n");
  1694. #endif
  1695. if (!dinfo->cursor.virtual)
  1696. return;
  1697. t_mask = 0xff >> mod;
  1698. d_mask = ~(0xff >> mod);
  1699. for (i = height; i--; ) {
  1700. for (j = 0; j < w; j++) {
  1701. writeb(0x00, addr + j);
  1702. writeb(*(data++), addr + j+8);
  1703. }
  1704. if (mod) {
  1705. writeb(t_mask, addr + j);
  1706. writeb(*(data++) & d_mask, addr + j+8);
  1707. }
  1708. addr += 16;
  1709. }
  1710. }
  1711. void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
  1712. {
  1713. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1714. int i, j;
  1715. #if VERBOSE > 0
  1716. DBG_MSG("intelfbhw_cursor_reset\n");
  1717. #endif
  1718. if (!dinfo->cursor.virtual)
  1719. return;
  1720. for (i = 64; i--; ) {
  1721. for (j = 0; j < 8; j++) {
  1722. writeb(0xff, addr + j+0);
  1723. writeb(0x00, addr + j+8);
  1724. }
  1725. addr += 16;
  1726. }
  1727. }
  1728. static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
  1729. {
  1730. u16 tmp;
  1731. struct intelfb_info *dinfo = dev_id;
  1732. spin_lock(&dinfo->int_lock);
  1733. tmp = INREG16(IIR);
  1734. if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
  1735. tmp &= PIPE_A_EVENT_INTERRUPT;
  1736. else
  1737. tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
  1738. if (tmp == 0) {
  1739. spin_unlock(&dinfo->int_lock);
  1740. return IRQ_RETVAL(0); /* not us */
  1741. }
  1742. /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
  1743. OUTREG(PIPEASTAT, INREG(PIPEASTAT));
  1744. OUTREG16(IIR, tmp);
  1745. if (dinfo->vsync.pan_display) {
  1746. dinfo->vsync.pan_display = 0;
  1747. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1748. }
  1749. dinfo->vsync.count++;
  1750. wake_up_interruptible(&dinfo->vsync.wait);
  1751. spin_unlock(&dinfo->int_lock);
  1752. return IRQ_RETVAL(1);
  1753. }
  1754. int intelfbhw_enable_irq(struct intelfb_info *dinfo)
  1755. {
  1756. u16 tmp;
  1757. if (!test_and_set_bit(0, &dinfo->irq_flags)) {
  1758. if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
  1759. "intelfb", dinfo)) {
  1760. clear_bit(0, &dinfo->irq_flags);
  1761. return -EINVAL;
  1762. }
  1763. spin_lock_irq(&dinfo->int_lock);
  1764. OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
  1765. OUTREG16(IMR, 0);
  1766. } else
  1767. spin_lock_irq(&dinfo->int_lock);
  1768. if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
  1769. tmp = PIPE_A_EVENT_INTERRUPT;
  1770. else
  1771. tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
  1772. if (tmp != INREG16(IER)) {
  1773. DBG_MSG("changing IER to 0x%X\n", tmp);
  1774. OUTREG16(IER, tmp);
  1775. }
  1776. spin_unlock_irq(&dinfo->int_lock);
  1777. return 0;
  1778. }
  1779. void intelfbhw_disable_irq(struct intelfb_info *dinfo)
  1780. {
  1781. if (test_and_clear_bit(0, &dinfo->irq_flags)) {
  1782. if (dinfo->vsync.pan_display) {
  1783. dinfo->vsync.pan_display = 0;
  1784. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1785. }
  1786. spin_lock_irq(&dinfo->int_lock);
  1787. OUTREG16(HWSTAM, 0xffff);
  1788. OUTREG16(IMR, 0xffff);
  1789. OUTREG16(IER, 0x0);
  1790. OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
  1791. spin_unlock_irq(&dinfo->int_lock);
  1792. free_irq(dinfo->pdev->irq, dinfo);
  1793. }
  1794. }
  1795. int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
  1796. {
  1797. struct intelfb_vsync *vsync;
  1798. unsigned int count;
  1799. int ret;
  1800. switch (pipe) {
  1801. case 0:
  1802. vsync = &dinfo->vsync;
  1803. break;
  1804. default:
  1805. return -ENODEV;
  1806. }
  1807. ret = intelfbhw_enable_irq(dinfo);
  1808. if (ret)
  1809. return ret;
  1810. count = vsync->count;
  1811. ret = wait_event_interruptible_timeout(vsync->wait,
  1812. count != vsync->count, HZ / 10);
  1813. if (ret < 0)
  1814. return ret;
  1815. if (ret == 0) {
  1816. DBG_MSG("wait_for_vsync timed out!\n");
  1817. return -ETIMEDOUT;
  1818. }
  1819. return 0;
  1820. }