video_gx.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Geode GX video processor device.
  4. *
  5. * Copyright (C) 2006 Arcom Control Systems Ltd.
  6. *
  7. * Portions from AMD's original 2.4 driver:
  8. * Copyright (C) 2004 Advanced Micro Devices, Inc.
  9. */
  10. #include <linux/fb.h>
  11. #include <linux/delay.h>
  12. #include <asm/io.h>
  13. #include <asm/delay.h>
  14. #include <asm/msr.h>
  15. #include <linux/cs5535.h>
  16. #include "gxfb.h"
  17. /*
  18. * Tables of register settings for various DOTCLKs.
  19. */
  20. struct gx_pll_entry {
  21. long pixclock; /* ps */
  22. u32 sys_rstpll_bits;
  23. u32 dotpll_value;
  24. };
  25. #define POSTDIV3 ((u32)MSR_GLCP_SYS_RSTPLL_DOTPOSTDIV3)
  26. #define PREMULT2 ((u32)MSR_GLCP_SYS_RSTPLL_DOTPREMULT2)
  27. #define PREDIV2 ((u32)MSR_GLCP_SYS_RSTPLL_DOTPOSTDIV3)
  28. static const struct gx_pll_entry gx_pll_table_48MHz[] = {
  29. { 40123, POSTDIV3, 0x00000BF2 }, /* 24.9230 */
  30. { 39721, 0, 0x00000037 }, /* 25.1750 */
  31. { 35308, POSTDIV3|PREMULT2, 0x00000B1A }, /* 28.3220 */
  32. { 31746, POSTDIV3, 0x000002D2 }, /* 31.5000 */
  33. { 27777, POSTDIV3|PREMULT2, 0x00000FE2 }, /* 36.0000 */
  34. { 26666, POSTDIV3, 0x0000057A }, /* 37.5000 */
  35. { 25000, POSTDIV3, 0x0000030A }, /* 40.0000 */
  36. { 22271, 0, 0x00000063 }, /* 44.9000 */
  37. { 20202, 0, 0x0000054B }, /* 49.5000 */
  38. { 20000, 0, 0x0000026E }, /* 50.0000 */
  39. { 19860, PREMULT2, 0x00000037 }, /* 50.3500 */
  40. { 18518, POSTDIV3|PREMULT2, 0x00000B0D }, /* 54.0000 */
  41. { 17777, 0, 0x00000577 }, /* 56.2500 */
  42. { 17733, 0, 0x000007F7 }, /* 56.3916 */
  43. { 17653, 0, 0x0000057B }, /* 56.6444 */
  44. { 16949, PREMULT2, 0x00000707 }, /* 59.0000 */
  45. { 15873, POSTDIV3|PREMULT2, 0x00000B39 }, /* 63.0000 */
  46. { 15384, POSTDIV3|PREMULT2, 0x00000B45 }, /* 65.0000 */
  47. { 14814, POSTDIV3|PREMULT2, 0x00000FC1 }, /* 67.5000 */
  48. { 14124, POSTDIV3, 0x00000561 }, /* 70.8000 */
  49. { 13888, POSTDIV3, 0x000007E1 }, /* 72.0000 */
  50. { 13426, PREMULT2, 0x00000F4A }, /* 74.4810 */
  51. { 13333, 0, 0x00000052 }, /* 75.0000 */
  52. { 12698, 0, 0x00000056 }, /* 78.7500 */
  53. { 12500, POSTDIV3|PREMULT2, 0x00000709 }, /* 80.0000 */
  54. { 11135, PREMULT2, 0x00000262 }, /* 89.8000 */
  55. { 10582, 0, 0x000002D2 }, /* 94.5000 */
  56. { 10101, PREMULT2, 0x00000B4A }, /* 99.0000 */
  57. { 10000, PREMULT2, 0x00000036 }, /* 100.0000 */
  58. { 9259, 0, 0x000007E2 }, /* 108.0000 */
  59. { 8888, 0, 0x000007F6 }, /* 112.5000 */
  60. { 7692, POSTDIV3|PREMULT2, 0x00000FB0 }, /* 130.0000 */
  61. { 7407, POSTDIV3|PREMULT2, 0x00000B50 }, /* 135.0000 */
  62. { 6349, 0, 0x00000055 }, /* 157.5000 */
  63. { 6172, 0, 0x000009C1 }, /* 162.0000 */
  64. { 5787, PREMULT2, 0x0000002D }, /* 172.798 */
  65. { 5698, 0, 0x000002C1 }, /* 175.5000 */
  66. { 5291, 0, 0x000002D1 }, /* 189.0000 */
  67. { 4938, 0, 0x00000551 }, /* 202.5000 */
  68. { 4357, 0, 0x0000057D }, /* 229.5000 */
  69. };
  70. static const struct gx_pll_entry gx_pll_table_14MHz[] = {
  71. { 39721, 0, 0x00000037 }, /* 25.1750 */
  72. { 35308, 0, 0x00000B7B }, /* 28.3220 */
  73. { 31746, 0, 0x000004D3 }, /* 31.5000 */
  74. { 27777, 0, 0x00000BE3 }, /* 36.0000 */
  75. { 26666, 0, 0x0000074F }, /* 37.5000 */
  76. { 25000, 0, 0x0000050B }, /* 40.0000 */
  77. { 22271, 0, 0x00000063 }, /* 44.9000 */
  78. { 20202, 0, 0x0000054B }, /* 49.5000 */
  79. { 20000, 0, 0x0000026E }, /* 50.0000 */
  80. { 19860, 0, 0x000007C3 }, /* 50.3500 */
  81. { 18518, 0, 0x000007E3 }, /* 54.0000 */
  82. { 17777, 0, 0x00000577 }, /* 56.2500 */
  83. { 17733, 0, 0x000002FB }, /* 56.3916 */
  84. { 17653, 0, 0x0000057B }, /* 56.6444 */
  85. { 16949, 0, 0x0000058B }, /* 59.0000 */
  86. { 15873, 0, 0x0000095E }, /* 63.0000 */
  87. { 15384, 0, 0x0000096A }, /* 65.0000 */
  88. { 14814, 0, 0x00000BC2 }, /* 67.5000 */
  89. { 14124, 0, 0x0000098A }, /* 70.8000 */
  90. { 13888, 0, 0x00000BE2 }, /* 72.0000 */
  91. { 13333, 0, 0x00000052 }, /* 75.0000 */
  92. { 12698, 0, 0x00000056 }, /* 78.7500 */
  93. { 12500, 0, 0x0000050A }, /* 80.0000 */
  94. { 11135, 0, 0x0000078E }, /* 89.8000 */
  95. { 10582, 0, 0x000002D2 }, /* 94.5000 */
  96. { 10101, 0, 0x000011F6 }, /* 99.0000 */
  97. { 10000, 0, 0x0000054E }, /* 100.0000 */
  98. { 9259, 0, 0x000007E2 }, /* 108.0000 */
  99. { 8888, 0, 0x000002FA }, /* 112.5000 */
  100. { 7692, 0, 0x00000BB1 }, /* 130.0000 */
  101. { 7407, 0, 0x00000975 }, /* 135.0000 */
  102. { 6349, 0, 0x00000055 }, /* 157.5000 */
  103. { 6172, 0, 0x000009C1 }, /* 162.0000 */
  104. { 5698, 0, 0x000002C1 }, /* 175.5000 */
  105. { 5291, 0, 0x00000539 }, /* 189.0000 */
  106. { 4938, 0, 0x00000551 }, /* 202.5000 */
  107. { 4357, 0, 0x0000057D }, /* 229.5000 */
  108. };
  109. void gx_set_dclk_frequency(struct fb_info *info)
  110. {
  111. const struct gx_pll_entry *pll_table;
  112. int pll_table_len;
  113. int i, best_i;
  114. long min, diff;
  115. u64 dotpll, sys_rstpll;
  116. int timeout = 1000;
  117. /* Rev. 1 Geode GXs use a 14 MHz reference clock instead of 48 MHz. */
  118. if (cpu_data(0).x86_stepping == 1) {
  119. pll_table = gx_pll_table_14MHz;
  120. pll_table_len = ARRAY_SIZE(gx_pll_table_14MHz);
  121. } else {
  122. pll_table = gx_pll_table_48MHz;
  123. pll_table_len = ARRAY_SIZE(gx_pll_table_48MHz);
  124. }
  125. /* Search the table for the closest pixclock. */
  126. best_i = 0;
  127. min = abs(pll_table[0].pixclock - info->var.pixclock);
  128. for (i = 1; i < pll_table_len; i++) {
  129. diff = abs(pll_table[i].pixclock - info->var.pixclock);
  130. if (diff < min) {
  131. min = diff;
  132. best_i = i;
  133. }
  134. }
  135. rdmsrl(MSR_GLCP_SYS_RSTPLL, sys_rstpll);
  136. rdmsrl(MSR_GLCP_DOTPLL, dotpll);
  137. /* Program new M, N and P. */
  138. dotpll &= 0x00000000ffffffffull;
  139. dotpll |= (u64)pll_table[best_i].dotpll_value << 32;
  140. dotpll |= MSR_GLCP_DOTPLL_DOTRESET;
  141. dotpll &= ~MSR_GLCP_DOTPLL_BYPASS;
  142. wrmsrl(MSR_GLCP_DOTPLL, dotpll);
  143. /* Program dividers. */
  144. sys_rstpll &= ~( MSR_GLCP_SYS_RSTPLL_DOTPREDIV2
  145. | MSR_GLCP_SYS_RSTPLL_DOTPREMULT2
  146. | MSR_GLCP_SYS_RSTPLL_DOTPOSTDIV3 );
  147. sys_rstpll |= pll_table[best_i].sys_rstpll_bits;
  148. wrmsrl(MSR_GLCP_SYS_RSTPLL, sys_rstpll);
  149. /* Clear reset bit to start PLL. */
  150. dotpll &= ~(MSR_GLCP_DOTPLL_DOTRESET);
  151. wrmsrl(MSR_GLCP_DOTPLL, dotpll);
  152. /* Wait for LOCK bit. */
  153. do {
  154. rdmsrl(MSR_GLCP_DOTPLL, dotpll);
  155. } while (timeout-- && !(dotpll & MSR_GLCP_DOTPLL_LOCK));
  156. }
  157. static void
  158. gx_configure_tft(struct fb_info *info)
  159. {
  160. struct gxfb_par *par = info->par;
  161. unsigned long val;
  162. unsigned long fp;
  163. /* Set up the DF pad select MSR */
  164. rdmsrl(MSR_GX_MSR_PADSEL, val);
  165. val &= ~MSR_GX_MSR_PADSEL_MASK;
  166. val |= MSR_GX_MSR_PADSEL_TFT;
  167. wrmsrl(MSR_GX_MSR_PADSEL, val);
  168. /* Turn off the panel */
  169. fp = read_fp(par, FP_PM);
  170. fp &= ~FP_PM_P;
  171. write_fp(par, FP_PM, fp);
  172. /* Set timing 1 */
  173. fp = read_fp(par, FP_PT1);
  174. fp &= FP_PT1_VSIZE_MASK;
  175. fp |= info->var.yres << FP_PT1_VSIZE_SHIFT;
  176. write_fp(par, FP_PT1, fp);
  177. /* Timing 2 */
  178. /* Set bits that are always on for TFT */
  179. fp = 0x0F100000;
  180. /* Configure sync polarity */
  181. if (!(info->var.sync & FB_SYNC_VERT_HIGH_ACT))
  182. fp |= FP_PT2_VSP;
  183. if (!(info->var.sync & FB_SYNC_HOR_HIGH_ACT))
  184. fp |= FP_PT2_HSP;
  185. write_fp(par, FP_PT2, fp);
  186. /* Set the dither control */
  187. write_fp(par, FP_DFC, FP_DFC_NFI);
  188. /* Enable the FP data and power (in case the BIOS didn't) */
  189. fp = read_vp(par, VP_DCFG);
  190. fp |= VP_DCFG_FP_PWR_EN | VP_DCFG_FP_DATA_EN;
  191. write_vp(par, VP_DCFG, fp);
  192. /* Unblank the panel */
  193. fp = read_fp(par, FP_PM);
  194. fp |= FP_PM_P;
  195. write_fp(par, FP_PM, fp);
  196. }
  197. void gx_configure_display(struct fb_info *info)
  198. {
  199. struct gxfb_par *par = info->par;
  200. u32 dcfg, misc;
  201. /* Write the display configuration */
  202. dcfg = read_vp(par, VP_DCFG);
  203. /* Disable hsync and vsync */
  204. dcfg &= ~(VP_DCFG_VSYNC_EN | VP_DCFG_HSYNC_EN);
  205. write_vp(par, VP_DCFG, dcfg);
  206. /* Clear bits from existing mode. */
  207. dcfg &= ~(VP_DCFG_CRT_SYNC_SKW
  208. | VP_DCFG_CRT_HSYNC_POL | VP_DCFG_CRT_VSYNC_POL
  209. | VP_DCFG_VSYNC_EN | VP_DCFG_HSYNC_EN);
  210. /* Set default sync skew. */
  211. dcfg |= VP_DCFG_CRT_SYNC_SKW_DEFAULT;
  212. /* Enable hsync and vsync. */
  213. dcfg |= VP_DCFG_HSYNC_EN | VP_DCFG_VSYNC_EN;
  214. misc = read_vp(par, VP_MISC);
  215. /* Disable gamma correction */
  216. misc |= VP_MISC_GAM_EN;
  217. if (par->enable_crt) {
  218. /* Power up the CRT DACs */
  219. misc &= ~(VP_MISC_APWRDN | VP_MISC_DACPWRDN);
  220. write_vp(par, VP_MISC, misc);
  221. /* Only change the sync polarities if we are running
  222. * in CRT mode. The FP polarities will be handled in
  223. * gxfb_configure_tft */
  224. if (!(info->var.sync & FB_SYNC_HOR_HIGH_ACT))
  225. dcfg |= VP_DCFG_CRT_HSYNC_POL;
  226. if (!(info->var.sync & FB_SYNC_VERT_HIGH_ACT))
  227. dcfg |= VP_DCFG_CRT_VSYNC_POL;
  228. } else {
  229. /* Power down the CRT DACs if in FP mode */
  230. misc |= (VP_MISC_APWRDN | VP_MISC_DACPWRDN);
  231. write_vp(par, VP_MISC, misc);
  232. }
  233. /* Enable the display logic */
  234. /* Set up the DACS to blank normally */
  235. dcfg |= VP_DCFG_CRT_EN | VP_DCFG_DAC_BL_EN;
  236. /* Enable the external DAC VREF? */
  237. write_vp(par, VP_DCFG, dcfg);
  238. /* Set up the flat panel (if it is enabled) */
  239. if (par->enable_crt == 0)
  240. gx_configure_tft(info);
  241. }
  242. int gx_blank_display(struct fb_info *info, int blank_mode)
  243. {
  244. struct gxfb_par *par = info->par;
  245. u32 dcfg, fp_pm;
  246. int blank, hsync, vsync, crt;
  247. /* CRT power saving modes. */
  248. switch (blank_mode) {
  249. case FB_BLANK_UNBLANK:
  250. blank = 0; hsync = 1; vsync = 1; crt = 1;
  251. break;
  252. case FB_BLANK_NORMAL:
  253. blank = 1; hsync = 1; vsync = 1; crt = 1;
  254. break;
  255. case FB_BLANK_VSYNC_SUSPEND:
  256. blank = 1; hsync = 1; vsync = 0; crt = 1;
  257. break;
  258. case FB_BLANK_HSYNC_SUSPEND:
  259. blank = 1; hsync = 0; vsync = 1; crt = 1;
  260. break;
  261. case FB_BLANK_POWERDOWN:
  262. blank = 1; hsync = 0; vsync = 0; crt = 0;
  263. break;
  264. default:
  265. return -EINVAL;
  266. }
  267. dcfg = read_vp(par, VP_DCFG);
  268. dcfg &= ~(VP_DCFG_DAC_BL_EN | VP_DCFG_HSYNC_EN | VP_DCFG_VSYNC_EN |
  269. VP_DCFG_CRT_EN);
  270. if (!blank)
  271. dcfg |= VP_DCFG_DAC_BL_EN;
  272. if (hsync)
  273. dcfg |= VP_DCFG_HSYNC_EN;
  274. if (vsync)
  275. dcfg |= VP_DCFG_VSYNC_EN;
  276. if (crt)
  277. dcfg |= VP_DCFG_CRT_EN;
  278. write_vp(par, VP_DCFG, dcfg);
  279. /* Power on/off flat panel. */
  280. if (par->enable_crt == 0) {
  281. fp_pm = read_fp(par, FP_PM);
  282. if (blank_mode == FB_BLANK_POWERDOWN)
  283. fp_pm &= ~FP_PM_P;
  284. else
  285. fp_pm |= FP_PM_P;
  286. write_fp(par, FP_PM, fp_pm);
  287. }
  288. return 0;
  289. }