knav_dma.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (C) 2014 Texas Instruments Incorporated
  4. * Authors: Santosh Shilimkar <[email protected]>
  5. * Sandeep Nair <[email protected]>
  6. * Cyril Chemparathy <[email protected]>
  7. */
  8. #include <linux/io.h>
  9. #include <linux/sched.h>
  10. #include <linux/module.h>
  11. #include <linux/dma-direction.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/pm_runtime.h>
  14. #include <linux/of_dma.h>
  15. #include <linux/of_address.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/soc/ti/knav_dma.h>
  18. #include <linux/debugfs.h>
  19. #include <linux/seq_file.h>
  20. #define REG_MASK 0xffffffff
  21. #define DMA_LOOPBACK BIT(31)
  22. #define DMA_ENABLE BIT(31)
  23. #define DMA_TEARDOWN BIT(30)
  24. #define DMA_TX_FILT_PSWORDS BIT(29)
  25. #define DMA_TX_FILT_EINFO BIT(30)
  26. #define DMA_TX_PRIO_SHIFT 0
  27. #define DMA_RX_PRIO_SHIFT 16
  28. #define DMA_PRIO_MASK GENMASK(3, 0)
  29. #define DMA_PRIO_DEFAULT 0
  30. #define DMA_RX_TIMEOUT_DEFAULT 17500 /* cycles */
  31. #define DMA_RX_TIMEOUT_MASK GENMASK(16, 0)
  32. #define DMA_RX_TIMEOUT_SHIFT 0
  33. #define CHAN_HAS_EPIB BIT(30)
  34. #define CHAN_HAS_PSINFO BIT(29)
  35. #define CHAN_ERR_RETRY BIT(28)
  36. #define CHAN_PSINFO_AT_SOP BIT(25)
  37. #define CHAN_SOP_OFF_SHIFT 16
  38. #define CHAN_SOP_OFF_MASK GENMASK(9, 0)
  39. #define DESC_TYPE_SHIFT 26
  40. #define DESC_TYPE_MASK GENMASK(2, 0)
  41. /*
  42. * QMGR & QNUM together make up 14 bits with QMGR as the 2 MSb's in the logical
  43. * navigator cloud mapping scheme.
  44. * using the 14bit physical queue numbers directly maps into this scheme.
  45. */
  46. #define CHAN_QNUM_MASK GENMASK(14, 0)
  47. #define DMA_MAX_QMS 4
  48. #define DMA_TIMEOUT 1 /* msecs */
  49. #define DMA_INVALID_ID 0xffff
  50. struct reg_global {
  51. u32 revision;
  52. u32 perf_control;
  53. u32 emulation_control;
  54. u32 priority_control;
  55. u32 qm_base_address[DMA_MAX_QMS];
  56. };
  57. struct reg_chan {
  58. u32 control;
  59. u32 mode;
  60. u32 __rsvd[6];
  61. };
  62. struct reg_tx_sched {
  63. u32 prio;
  64. };
  65. struct reg_rx_flow {
  66. u32 control;
  67. u32 tags;
  68. u32 tag_sel;
  69. u32 fdq_sel[2];
  70. u32 thresh[3];
  71. };
  72. struct knav_dma_pool_device {
  73. struct device *dev;
  74. struct list_head list;
  75. };
  76. struct knav_dma_device {
  77. bool loopback, enable_all;
  78. unsigned tx_priority, rx_priority, rx_timeout;
  79. unsigned logical_queue_managers;
  80. unsigned qm_base_address[DMA_MAX_QMS];
  81. struct reg_global __iomem *reg_global;
  82. struct reg_chan __iomem *reg_tx_chan;
  83. struct reg_rx_flow __iomem *reg_rx_flow;
  84. struct reg_chan __iomem *reg_rx_chan;
  85. struct reg_tx_sched __iomem *reg_tx_sched;
  86. unsigned max_rx_chan, max_tx_chan;
  87. unsigned max_rx_flow;
  88. char name[32];
  89. atomic_t ref_count;
  90. struct list_head list;
  91. struct list_head chan_list;
  92. spinlock_t lock;
  93. };
  94. struct knav_dma_chan {
  95. enum dma_transfer_direction direction;
  96. struct knav_dma_device *dma;
  97. atomic_t ref_count;
  98. /* registers */
  99. struct reg_chan __iomem *reg_chan;
  100. struct reg_tx_sched __iomem *reg_tx_sched;
  101. struct reg_rx_flow __iomem *reg_rx_flow;
  102. /* configuration stuff */
  103. unsigned channel, flow;
  104. struct knav_dma_cfg cfg;
  105. struct list_head list;
  106. spinlock_t lock;
  107. };
  108. #define chan_number(ch) ((ch->direction == DMA_MEM_TO_DEV) ? \
  109. ch->channel : ch->flow)
  110. static struct knav_dma_pool_device *kdev;
  111. static bool device_ready;
  112. bool knav_dma_device_ready(void)
  113. {
  114. return device_ready;
  115. }
  116. EXPORT_SYMBOL_GPL(knav_dma_device_ready);
  117. static bool check_config(struct knav_dma_chan *chan, struct knav_dma_cfg *cfg)
  118. {
  119. if (!memcmp(&chan->cfg, cfg, sizeof(*cfg)))
  120. return true;
  121. else
  122. return false;
  123. }
  124. static int chan_start(struct knav_dma_chan *chan,
  125. struct knav_dma_cfg *cfg)
  126. {
  127. u32 v = 0;
  128. spin_lock(&chan->lock);
  129. if ((chan->direction == DMA_MEM_TO_DEV) && chan->reg_chan) {
  130. if (cfg->u.tx.filt_pswords)
  131. v |= DMA_TX_FILT_PSWORDS;
  132. if (cfg->u.tx.filt_einfo)
  133. v |= DMA_TX_FILT_EINFO;
  134. writel_relaxed(v, &chan->reg_chan->mode);
  135. writel_relaxed(DMA_ENABLE, &chan->reg_chan->control);
  136. }
  137. if (chan->reg_tx_sched)
  138. writel_relaxed(cfg->u.tx.priority, &chan->reg_tx_sched->prio);
  139. if (chan->reg_rx_flow) {
  140. v = 0;
  141. if (cfg->u.rx.einfo_present)
  142. v |= CHAN_HAS_EPIB;
  143. if (cfg->u.rx.psinfo_present)
  144. v |= CHAN_HAS_PSINFO;
  145. if (cfg->u.rx.err_mode == DMA_RETRY)
  146. v |= CHAN_ERR_RETRY;
  147. v |= (cfg->u.rx.desc_type & DESC_TYPE_MASK) << DESC_TYPE_SHIFT;
  148. if (cfg->u.rx.psinfo_at_sop)
  149. v |= CHAN_PSINFO_AT_SOP;
  150. v |= (cfg->u.rx.sop_offset & CHAN_SOP_OFF_MASK)
  151. << CHAN_SOP_OFF_SHIFT;
  152. v |= cfg->u.rx.dst_q & CHAN_QNUM_MASK;
  153. writel_relaxed(v, &chan->reg_rx_flow->control);
  154. writel_relaxed(0, &chan->reg_rx_flow->tags);
  155. writel_relaxed(0, &chan->reg_rx_flow->tag_sel);
  156. v = cfg->u.rx.fdq[0] << 16;
  157. v |= cfg->u.rx.fdq[1] & CHAN_QNUM_MASK;
  158. writel_relaxed(v, &chan->reg_rx_flow->fdq_sel[0]);
  159. v = cfg->u.rx.fdq[2] << 16;
  160. v |= cfg->u.rx.fdq[3] & CHAN_QNUM_MASK;
  161. writel_relaxed(v, &chan->reg_rx_flow->fdq_sel[1]);
  162. writel_relaxed(0, &chan->reg_rx_flow->thresh[0]);
  163. writel_relaxed(0, &chan->reg_rx_flow->thresh[1]);
  164. writel_relaxed(0, &chan->reg_rx_flow->thresh[2]);
  165. }
  166. /* Keep a copy of the cfg */
  167. memcpy(&chan->cfg, cfg, sizeof(*cfg));
  168. spin_unlock(&chan->lock);
  169. return 0;
  170. }
  171. static int chan_teardown(struct knav_dma_chan *chan)
  172. {
  173. unsigned long end, value;
  174. if (!chan->reg_chan)
  175. return 0;
  176. /* indicate teardown */
  177. writel_relaxed(DMA_TEARDOWN, &chan->reg_chan->control);
  178. /* wait for the dma to shut itself down */
  179. end = jiffies + msecs_to_jiffies(DMA_TIMEOUT);
  180. do {
  181. value = readl_relaxed(&chan->reg_chan->control);
  182. if ((value & DMA_ENABLE) == 0)
  183. break;
  184. } while (time_after(end, jiffies));
  185. if (readl_relaxed(&chan->reg_chan->control) & DMA_ENABLE) {
  186. dev_err(kdev->dev, "timeout waiting for teardown\n");
  187. return -ETIMEDOUT;
  188. }
  189. return 0;
  190. }
  191. static void chan_stop(struct knav_dma_chan *chan)
  192. {
  193. spin_lock(&chan->lock);
  194. if (chan->reg_rx_flow) {
  195. /* first detach fdqs, starve out the flow */
  196. writel_relaxed(0, &chan->reg_rx_flow->fdq_sel[0]);
  197. writel_relaxed(0, &chan->reg_rx_flow->fdq_sel[1]);
  198. writel_relaxed(0, &chan->reg_rx_flow->thresh[0]);
  199. writel_relaxed(0, &chan->reg_rx_flow->thresh[1]);
  200. writel_relaxed(0, &chan->reg_rx_flow->thresh[2]);
  201. }
  202. /* teardown the dma channel */
  203. chan_teardown(chan);
  204. /* then disconnect the completion side */
  205. if (chan->reg_rx_flow) {
  206. writel_relaxed(0, &chan->reg_rx_flow->control);
  207. writel_relaxed(0, &chan->reg_rx_flow->tags);
  208. writel_relaxed(0, &chan->reg_rx_flow->tag_sel);
  209. }
  210. memset(&chan->cfg, 0, sizeof(struct knav_dma_cfg));
  211. spin_unlock(&chan->lock);
  212. dev_dbg(kdev->dev, "channel stopped\n");
  213. }
  214. static void dma_hw_enable_all(struct knav_dma_device *dma)
  215. {
  216. int i;
  217. for (i = 0; i < dma->max_tx_chan; i++) {
  218. writel_relaxed(0, &dma->reg_tx_chan[i].mode);
  219. writel_relaxed(DMA_ENABLE, &dma->reg_tx_chan[i].control);
  220. }
  221. }
  222. static void knav_dma_hw_init(struct knav_dma_device *dma)
  223. {
  224. unsigned v;
  225. int i;
  226. spin_lock(&dma->lock);
  227. v = dma->loopback ? DMA_LOOPBACK : 0;
  228. writel_relaxed(v, &dma->reg_global->emulation_control);
  229. v = readl_relaxed(&dma->reg_global->perf_control);
  230. v |= ((dma->rx_timeout & DMA_RX_TIMEOUT_MASK) << DMA_RX_TIMEOUT_SHIFT);
  231. writel_relaxed(v, &dma->reg_global->perf_control);
  232. v = ((dma->tx_priority << DMA_TX_PRIO_SHIFT) |
  233. (dma->rx_priority << DMA_RX_PRIO_SHIFT));
  234. writel_relaxed(v, &dma->reg_global->priority_control);
  235. /* Always enable all Rx channels. Rx paths are managed using flows */
  236. for (i = 0; i < dma->max_rx_chan; i++)
  237. writel_relaxed(DMA_ENABLE, &dma->reg_rx_chan[i].control);
  238. for (i = 0; i < dma->logical_queue_managers; i++)
  239. writel_relaxed(dma->qm_base_address[i],
  240. &dma->reg_global->qm_base_address[i]);
  241. spin_unlock(&dma->lock);
  242. }
  243. static void knav_dma_hw_destroy(struct knav_dma_device *dma)
  244. {
  245. int i;
  246. unsigned v;
  247. spin_lock(&dma->lock);
  248. v = ~DMA_ENABLE & REG_MASK;
  249. for (i = 0; i < dma->max_rx_chan; i++)
  250. writel_relaxed(v, &dma->reg_rx_chan[i].control);
  251. for (i = 0; i < dma->max_tx_chan; i++)
  252. writel_relaxed(v, &dma->reg_tx_chan[i].control);
  253. spin_unlock(&dma->lock);
  254. }
  255. static void dma_debug_show_channels(struct seq_file *s,
  256. struct knav_dma_chan *chan)
  257. {
  258. int i;
  259. seq_printf(s, "\t%s %d:\t",
  260. ((chan->direction == DMA_MEM_TO_DEV) ? "tx chan" : "rx flow"),
  261. chan_number(chan));
  262. if (chan->direction == DMA_MEM_TO_DEV) {
  263. seq_printf(s, "einfo - %d, pswords - %d, priority - %d\n",
  264. chan->cfg.u.tx.filt_einfo,
  265. chan->cfg.u.tx.filt_pswords,
  266. chan->cfg.u.tx.priority);
  267. } else {
  268. seq_printf(s, "einfo - %d, psinfo - %d, desc_type - %d\n",
  269. chan->cfg.u.rx.einfo_present,
  270. chan->cfg.u.rx.psinfo_present,
  271. chan->cfg.u.rx.desc_type);
  272. seq_printf(s, "\t\t\tdst_q: [%d], thresh: %d fdq: ",
  273. chan->cfg.u.rx.dst_q,
  274. chan->cfg.u.rx.thresh);
  275. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; i++)
  276. seq_printf(s, "[%d]", chan->cfg.u.rx.fdq[i]);
  277. seq_printf(s, "\n");
  278. }
  279. }
  280. static void dma_debug_show_devices(struct seq_file *s,
  281. struct knav_dma_device *dma)
  282. {
  283. struct knav_dma_chan *chan;
  284. list_for_each_entry(chan, &dma->chan_list, list) {
  285. if (atomic_read(&chan->ref_count))
  286. dma_debug_show_channels(s, chan);
  287. }
  288. }
  289. static int knav_dma_debug_show(struct seq_file *s, void *v)
  290. {
  291. struct knav_dma_device *dma;
  292. list_for_each_entry(dma, &kdev->list, list) {
  293. if (atomic_read(&dma->ref_count)) {
  294. seq_printf(s, "%s : max_tx_chan: (%d), max_rx_flows: (%d)\n",
  295. dma->name, dma->max_tx_chan, dma->max_rx_flow);
  296. dma_debug_show_devices(s, dma);
  297. }
  298. }
  299. return 0;
  300. }
  301. DEFINE_SHOW_ATTRIBUTE(knav_dma_debug);
  302. static int of_channel_match_helper(struct device_node *np, const char *name,
  303. const char **dma_instance)
  304. {
  305. struct of_phandle_args args;
  306. struct device_node *dma_node;
  307. int index;
  308. dma_node = of_parse_phandle(np, "ti,navigator-dmas", 0);
  309. if (!dma_node)
  310. return -ENODEV;
  311. *dma_instance = dma_node->name;
  312. index = of_property_match_string(np, "ti,navigator-dma-names", name);
  313. if (index < 0) {
  314. dev_err(kdev->dev, "No 'ti,navigator-dma-names' property\n");
  315. return -ENODEV;
  316. }
  317. if (of_parse_phandle_with_fixed_args(np, "ti,navigator-dmas",
  318. 1, index, &args)) {
  319. dev_err(kdev->dev, "Missing the phandle args name %s\n", name);
  320. return -ENODEV;
  321. }
  322. if (args.args[0] < 0) {
  323. dev_err(kdev->dev, "Missing args for %s\n", name);
  324. return -ENODEV;
  325. }
  326. return args.args[0];
  327. }
  328. /**
  329. * knav_dma_open_channel() - try to setup an exclusive slave channel
  330. * @dev: pointer to client device structure
  331. * @name: slave channel name
  332. * @config: dma configuration parameters
  333. *
  334. * Returns pointer to appropriate DMA channel on success or error.
  335. */
  336. void *knav_dma_open_channel(struct device *dev, const char *name,
  337. struct knav_dma_cfg *config)
  338. {
  339. struct knav_dma_device *dma = NULL, *iter1;
  340. struct knav_dma_chan *chan = NULL, *iter2;
  341. int chan_num = -1;
  342. const char *instance;
  343. if (!kdev) {
  344. pr_err("keystone-navigator-dma driver not registered\n");
  345. return (void *)-EINVAL;
  346. }
  347. chan_num = of_channel_match_helper(dev->of_node, name, &instance);
  348. if (chan_num < 0) {
  349. dev_err(kdev->dev, "No DMA instance with name %s\n", name);
  350. return (void *)-EINVAL;
  351. }
  352. dev_dbg(kdev->dev, "initializing %s channel %d from DMA %s\n",
  353. config->direction == DMA_MEM_TO_DEV ? "transmit" :
  354. config->direction == DMA_DEV_TO_MEM ? "receive" :
  355. "unknown", chan_num, instance);
  356. if (config->direction != DMA_MEM_TO_DEV &&
  357. config->direction != DMA_DEV_TO_MEM) {
  358. dev_err(kdev->dev, "bad direction\n");
  359. return (void *)-EINVAL;
  360. }
  361. /* Look for correct dma instance */
  362. list_for_each_entry(iter1, &kdev->list, list) {
  363. if (!strcmp(iter1->name, instance)) {
  364. dma = iter1;
  365. break;
  366. }
  367. }
  368. if (!dma) {
  369. dev_err(kdev->dev, "No DMA instance with name %s\n", instance);
  370. return (void *)-EINVAL;
  371. }
  372. /* Look for correct dma channel from dma instance */
  373. list_for_each_entry(iter2, &dma->chan_list, list) {
  374. if (config->direction == DMA_MEM_TO_DEV) {
  375. if (iter2->channel == chan_num) {
  376. chan = iter2;
  377. break;
  378. }
  379. } else {
  380. if (iter2->flow == chan_num) {
  381. chan = iter2;
  382. break;
  383. }
  384. }
  385. }
  386. if (!chan) {
  387. dev_err(kdev->dev, "channel %d is not in DMA %s\n",
  388. chan_num, instance);
  389. return (void *)-EINVAL;
  390. }
  391. if (atomic_read(&chan->ref_count) >= 1) {
  392. if (!check_config(chan, config)) {
  393. dev_err(kdev->dev, "channel %d config miss-match\n",
  394. chan_num);
  395. return (void *)-EINVAL;
  396. }
  397. }
  398. if (atomic_inc_return(&chan->dma->ref_count) <= 1)
  399. knav_dma_hw_init(chan->dma);
  400. if (atomic_inc_return(&chan->ref_count) <= 1)
  401. chan_start(chan, config);
  402. dev_dbg(kdev->dev, "channel %d opened from DMA %s\n",
  403. chan_num, instance);
  404. return chan;
  405. }
  406. EXPORT_SYMBOL_GPL(knav_dma_open_channel);
  407. /**
  408. * knav_dma_close_channel() - Destroy a dma channel
  409. *
  410. * @channel: dma channel handle
  411. *
  412. */
  413. void knav_dma_close_channel(void *channel)
  414. {
  415. struct knav_dma_chan *chan = channel;
  416. if (!kdev) {
  417. pr_err("keystone-navigator-dma driver not registered\n");
  418. return;
  419. }
  420. if (atomic_dec_return(&chan->ref_count) <= 0)
  421. chan_stop(chan);
  422. if (atomic_dec_return(&chan->dma->ref_count) <= 0)
  423. knav_dma_hw_destroy(chan->dma);
  424. dev_dbg(kdev->dev, "channel %d or flow %d closed from DMA %s\n",
  425. chan->channel, chan->flow, chan->dma->name);
  426. }
  427. EXPORT_SYMBOL_GPL(knav_dma_close_channel);
  428. static void __iomem *pktdma_get_regs(struct knav_dma_device *dma,
  429. struct device_node *node,
  430. unsigned index, resource_size_t *_size)
  431. {
  432. struct device *dev = kdev->dev;
  433. struct resource res;
  434. void __iomem *regs;
  435. int ret;
  436. ret = of_address_to_resource(node, index, &res);
  437. if (ret) {
  438. dev_err(dev, "Can't translate of node(%pOFn) address for index(%d)\n",
  439. node, index);
  440. return ERR_PTR(ret);
  441. }
  442. regs = devm_ioremap_resource(kdev->dev, &res);
  443. if (IS_ERR(regs))
  444. dev_err(dev, "Failed to map register base for index(%d) node(%pOFn)\n",
  445. index, node);
  446. if (_size)
  447. *_size = resource_size(&res);
  448. return regs;
  449. }
  450. static int pktdma_init_rx_chan(struct knav_dma_chan *chan, u32 flow)
  451. {
  452. struct knav_dma_device *dma = chan->dma;
  453. chan->flow = flow;
  454. chan->reg_rx_flow = dma->reg_rx_flow + flow;
  455. chan->channel = DMA_INVALID_ID;
  456. dev_dbg(kdev->dev, "rx flow(%d) (%p)\n", chan->flow, chan->reg_rx_flow);
  457. return 0;
  458. }
  459. static int pktdma_init_tx_chan(struct knav_dma_chan *chan, u32 channel)
  460. {
  461. struct knav_dma_device *dma = chan->dma;
  462. chan->channel = channel;
  463. chan->reg_chan = dma->reg_tx_chan + channel;
  464. chan->reg_tx_sched = dma->reg_tx_sched + channel;
  465. chan->flow = DMA_INVALID_ID;
  466. dev_dbg(kdev->dev, "tx channel(%d) (%p)\n", chan->channel, chan->reg_chan);
  467. return 0;
  468. }
  469. static int pktdma_init_chan(struct knav_dma_device *dma,
  470. enum dma_transfer_direction dir,
  471. unsigned chan_num)
  472. {
  473. struct device *dev = kdev->dev;
  474. struct knav_dma_chan *chan;
  475. int ret = -EINVAL;
  476. chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL);
  477. if (!chan)
  478. return -ENOMEM;
  479. INIT_LIST_HEAD(&chan->list);
  480. chan->dma = dma;
  481. chan->direction = DMA_TRANS_NONE;
  482. atomic_set(&chan->ref_count, 0);
  483. spin_lock_init(&chan->lock);
  484. if (dir == DMA_MEM_TO_DEV) {
  485. chan->direction = dir;
  486. ret = pktdma_init_tx_chan(chan, chan_num);
  487. } else if (dir == DMA_DEV_TO_MEM) {
  488. chan->direction = dir;
  489. ret = pktdma_init_rx_chan(chan, chan_num);
  490. } else {
  491. dev_err(dev, "channel(%d) direction unknown\n", chan_num);
  492. }
  493. list_add_tail(&chan->list, &dma->chan_list);
  494. return ret;
  495. }
  496. static int dma_init(struct device_node *cloud, struct device_node *dma_node)
  497. {
  498. unsigned max_tx_chan, max_rx_chan, max_rx_flow, max_tx_sched;
  499. struct device_node *node = dma_node;
  500. struct knav_dma_device *dma;
  501. int ret, len, num_chan = 0;
  502. resource_size_t size;
  503. u32 timeout;
  504. u32 i;
  505. dma = devm_kzalloc(kdev->dev, sizeof(*dma), GFP_KERNEL);
  506. if (!dma) {
  507. dev_err(kdev->dev, "could not allocate driver mem\n");
  508. return -ENOMEM;
  509. }
  510. INIT_LIST_HEAD(&dma->list);
  511. INIT_LIST_HEAD(&dma->chan_list);
  512. if (!of_find_property(cloud, "ti,navigator-cloud-address", &len)) {
  513. dev_err(kdev->dev, "unspecified navigator cloud addresses\n");
  514. return -ENODEV;
  515. }
  516. dma->logical_queue_managers = len / sizeof(u32);
  517. if (dma->logical_queue_managers > DMA_MAX_QMS) {
  518. dev_warn(kdev->dev, "too many queue mgrs(>%d) rest ignored\n",
  519. dma->logical_queue_managers);
  520. dma->logical_queue_managers = DMA_MAX_QMS;
  521. }
  522. ret = of_property_read_u32_array(cloud, "ti,navigator-cloud-address",
  523. dma->qm_base_address,
  524. dma->logical_queue_managers);
  525. if (ret) {
  526. dev_err(kdev->dev, "invalid navigator cloud addresses\n");
  527. return -ENODEV;
  528. }
  529. dma->reg_global = pktdma_get_regs(dma, node, 0, &size);
  530. if (IS_ERR(dma->reg_global))
  531. return PTR_ERR(dma->reg_global);
  532. if (size < sizeof(struct reg_global)) {
  533. dev_err(kdev->dev, "bad size %pa for global regs\n", &size);
  534. return -ENODEV;
  535. }
  536. dma->reg_tx_chan = pktdma_get_regs(dma, node, 1, &size);
  537. if (IS_ERR(dma->reg_tx_chan))
  538. return PTR_ERR(dma->reg_tx_chan);
  539. max_tx_chan = size / sizeof(struct reg_chan);
  540. dma->reg_rx_chan = pktdma_get_regs(dma, node, 2, &size);
  541. if (IS_ERR(dma->reg_rx_chan))
  542. return PTR_ERR(dma->reg_rx_chan);
  543. max_rx_chan = size / sizeof(struct reg_chan);
  544. dma->reg_tx_sched = pktdma_get_regs(dma, node, 3, &size);
  545. if (IS_ERR(dma->reg_tx_sched))
  546. return PTR_ERR(dma->reg_tx_sched);
  547. max_tx_sched = size / sizeof(struct reg_tx_sched);
  548. dma->reg_rx_flow = pktdma_get_regs(dma, node, 4, &size);
  549. if (IS_ERR(dma->reg_rx_flow))
  550. return PTR_ERR(dma->reg_rx_flow);
  551. max_rx_flow = size / sizeof(struct reg_rx_flow);
  552. dma->rx_priority = DMA_PRIO_DEFAULT;
  553. dma->tx_priority = DMA_PRIO_DEFAULT;
  554. dma->enable_all = (of_get_property(node, "ti,enable-all", NULL) != NULL);
  555. dma->loopback = (of_get_property(node, "ti,loop-back", NULL) != NULL);
  556. ret = of_property_read_u32(node, "ti,rx-retry-timeout", &timeout);
  557. if (ret < 0) {
  558. dev_dbg(kdev->dev, "unspecified rx timeout using value %d\n",
  559. DMA_RX_TIMEOUT_DEFAULT);
  560. timeout = DMA_RX_TIMEOUT_DEFAULT;
  561. }
  562. dma->rx_timeout = timeout;
  563. dma->max_rx_chan = max_rx_chan;
  564. dma->max_rx_flow = max_rx_flow;
  565. dma->max_tx_chan = min(max_tx_chan, max_tx_sched);
  566. atomic_set(&dma->ref_count, 0);
  567. strcpy(dma->name, node->name);
  568. spin_lock_init(&dma->lock);
  569. for (i = 0; i < dma->max_tx_chan; i++) {
  570. if (pktdma_init_chan(dma, DMA_MEM_TO_DEV, i) >= 0)
  571. num_chan++;
  572. }
  573. for (i = 0; i < dma->max_rx_flow; i++) {
  574. if (pktdma_init_chan(dma, DMA_DEV_TO_MEM, i) >= 0)
  575. num_chan++;
  576. }
  577. list_add_tail(&dma->list, &kdev->list);
  578. /*
  579. * For DSP software usecases or userpace transport software, setup all
  580. * the DMA hardware resources.
  581. */
  582. if (dma->enable_all) {
  583. atomic_inc(&dma->ref_count);
  584. knav_dma_hw_init(dma);
  585. dma_hw_enable_all(dma);
  586. }
  587. dev_info(kdev->dev, "DMA %s registered %d logical channels, flows %d, tx chans: %d, rx chans: %d%s\n",
  588. dma->name, num_chan, dma->max_rx_flow,
  589. dma->max_tx_chan, dma->max_rx_chan,
  590. dma->loopback ? ", loopback" : "");
  591. return 0;
  592. }
  593. static int knav_dma_probe(struct platform_device *pdev)
  594. {
  595. struct device *dev = &pdev->dev;
  596. struct device_node *node = pdev->dev.of_node;
  597. struct device_node *child;
  598. int ret = 0;
  599. if (!node) {
  600. dev_err(&pdev->dev, "could not find device info\n");
  601. return -EINVAL;
  602. }
  603. kdev = devm_kzalloc(dev,
  604. sizeof(struct knav_dma_pool_device), GFP_KERNEL);
  605. if (!kdev) {
  606. dev_err(dev, "could not allocate driver mem\n");
  607. return -ENOMEM;
  608. }
  609. kdev->dev = dev;
  610. INIT_LIST_HEAD(&kdev->list);
  611. pm_runtime_enable(kdev->dev);
  612. ret = pm_runtime_resume_and_get(kdev->dev);
  613. if (ret < 0) {
  614. dev_err(kdev->dev, "unable to enable pktdma, err %d\n", ret);
  615. goto err_pm_disable;
  616. }
  617. /* Initialise all packet dmas */
  618. for_each_child_of_node(node, child) {
  619. ret = dma_init(node, child);
  620. if (ret) {
  621. of_node_put(child);
  622. dev_err(&pdev->dev, "init failed with %d\n", ret);
  623. break;
  624. }
  625. }
  626. if (list_empty(&kdev->list)) {
  627. dev_err(dev, "no valid dma instance\n");
  628. ret = -ENODEV;
  629. goto err_put_sync;
  630. }
  631. debugfs_create_file("knav_dma", S_IFREG | S_IRUGO, NULL, NULL,
  632. &knav_dma_debug_fops);
  633. device_ready = true;
  634. return ret;
  635. err_put_sync:
  636. pm_runtime_put_sync(kdev->dev);
  637. err_pm_disable:
  638. pm_runtime_disable(kdev->dev);
  639. return ret;
  640. }
  641. static int knav_dma_remove(struct platform_device *pdev)
  642. {
  643. struct knav_dma_device *dma;
  644. list_for_each_entry(dma, &kdev->list, list) {
  645. if (atomic_dec_return(&dma->ref_count) == 0)
  646. knav_dma_hw_destroy(dma);
  647. }
  648. pm_runtime_put_sync(&pdev->dev);
  649. pm_runtime_disable(&pdev->dev);
  650. return 0;
  651. }
  652. static struct of_device_id of_match[] = {
  653. { .compatible = "ti,keystone-navigator-dma", },
  654. {},
  655. };
  656. MODULE_DEVICE_TABLE(of, of_match);
  657. static struct platform_driver knav_dma_driver = {
  658. .probe = knav_dma_probe,
  659. .remove = knav_dma_remove,
  660. .driver = {
  661. .name = "keystone-navigator-dma",
  662. .of_match_table = of_match,
  663. },
  664. };
  665. module_platform_driver(knav_dma_driver);
  666. MODULE_LICENSE("GPL v2");
  667. MODULE_DESCRIPTION("TI Keystone Navigator Packet DMA driver");
  668. MODULE_AUTHOR("Sandeep Nair <[email protected]>");
  669. MODULE_AUTHOR("Santosh Shilimkar <[email protected]>");