dcc_v2.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/bitops.h>
  7. #include <linux/cdev.h>
  8. #include <linux/delay.h>
  9. #include <linux/io.h>
  10. #include <linux/iopoll.h>
  11. #include <linux/fs.h>
  12. #include <linux/of.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/slab.h>
  15. #include <linux/uaccess.h>
  16. #include <linux/suspend.h>
  17. #include <soc/qcom/memory_dump.h>
  18. #include <soc/qcom/minidump.h>
  19. #include <dt-bindings/soc/qcom,dcc_v2.h>
  20. #define TIMEOUT_US (100)
  21. #define BM(lsb, msb) ((BIT(msb) - BIT(lsb)) + BIT(msb))
  22. #define BMVAL(val, lsb, msb) ((val & BM(lsb, msb)) >> lsb)
  23. #define BVAL(val, n) ((val & BIT(n)) >> n)
  24. #define dcc_writel(drvdata, val, off) \
  25. __raw_writel((val), drvdata->base + dcc_offset_conv(drvdata, off))
  26. #define dcc_readl(drvdata, off) \
  27. __raw_readl(drvdata->base + dcc_offset_conv(drvdata, off))
  28. #define dcc_sram_readl(drvdata, off) \
  29. __raw_readl(drvdata->ram_base + off)
  30. #define HLOS_LIST_START 0
  31. /* DCC registers */
  32. #define DCC_HW_VERSION (0x00)
  33. #define DCC_HW_INFO (0x04)
  34. #define DCC_SRAM_SIZE_INFO (0x08)
  35. #define DCC_APU_INFO (0x0C)
  36. #define DCC_LL_NUM_INFO (0x10)
  37. #define DCC_TIMEOUT_SIGNATURE (0x14)
  38. #define DCC_EXEC_CTRL (0x18)
  39. #define DCC_STATUS (0x1C)
  40. #define DCC_CFG (0x20)
  41. #define DCC_FDA_CURR (0x24)
  42. #define DCC_LLA_CURR (0x28)
  43. #define DCC_QAD_VALUE (0x2C)
  44. #define DCC_LL_TO_CNTR_VAL (0x30)
  45. #define DCC_LL_LOCK(m) (0x34 + 0x80 * (m + HLOS_LIST_START))
  46. #define DCC_LL_CFG(m) (0x38 + 0x80 * (m + HLOS_LIST_START))
  47. #define DCC_LL_BASE(m) (0x3c + 0x80 * (m + HLOS_LIST_START))
  48. #define DCC_FD_BASE(m) (0x40 + 0x80 * (m + HLOS_LIST_START))
  49. #define DCC_LL_TIMEOUT(m) (0x44 + 0x80 * (m + HLOS_LIST_START))
  50. #define DCC_TRANS_TIMEOUT(m) (0x48 + 0x80 * (m + HLOS_LIST_START))
  51. #define DCC_LL_INT_ENABLE(m) (0x4C + 0x80 * (m + HLOS_LIST_START))
  52. #define DCC_LL_INT_STATUS(m) (0x50 + 0x80 * (m + HLOS_LIST_START))
  53. #define DCC_FDA_CAPTURED(m) (0x54 + 0x80 * (m + HLOS_LIST_START))
  54. #define DCC_LLA_CAPTURED(m) (0x58 + 0x80 * (m + HLOS_LIST_START))
  55. #define DCC_LL_CRC_CAPTURED(m) (0x5C + 0x80 * (m + HLOS_LIST_START))
  56. #define DCC_LL_SW_TRIGGER(m) (0x60 + 0x80 * (m + HLOS_LIST_START))
  57. #define DCC_LL_BUS_ACCESS_STATUS(m) (0x64 + 0x80 * (m + HLOS_LIST_START))
  58. #define DCC_CTI_TRIG(m) (0x68 + 0x80 * (m + HLOS_LIST_START))
  59. #define DCC_QAD_OUTPUT(m) (0x6C + 0x80 * (m + HLOS_LIST_START))
  60. #define DCC_MAP_LEVEL1 (0x18)
  61. #define DCC_MAP_LEVEL2 (0x34)
  62. #define DCC_MAP_LEVEL3 (0x4C)
  63. #define DCC_MAP_OFFSET1 (0x10)
  64. #define DCC_MAP_OFFSET2 (0x18)
  65. #define DCC_MAP_OFFSET3 (0x1C)
  66. #define DCC_MAP_OFFSET4 (0x8)
  67. #define DCC_FIX_LOOP_OFFSET (16)
  68. #define DCC_REG_DUMP_MAGIC_V2 (0x42445953)
  69. #define DCC_REG_DUMP_VER (1)
  70. #define MAX_DCC_OFFSET (0xFF * 4)
  71. #define MAX_DCC_LEN 0x7F
  72. #define MAX_LOOP_CNT 0xFF
  73. #define DCC_ADDR_DESCRIPTOR 0x00
  74. #define DCC_LOOP_DESCRIPTOR (BIT(30))
  75. #define DCC_RD_MOD_WR_DESCRIPTOR (BIT(31))
  76. #define DCC_LINK_DESCRIPTOR (BIT(31) | BIT(30))
  77. #define DCC_READ_IND 0x00
  78. #define DCC_WRITE_IND (BIT(28))
  79. #define DCC_AHB_IND 0x00
  80. #define DCC_APB_IND BIT(29)
  81. #define DCC_MAX_LINK_LIST 8
  82. #define DCC_INVALID_LINK_LIST 0xFF
  83. #define DEFAULT_TRANSACTION_TIMEOUT 0x3F
  84. enum dcc_func_type {
  85. DCC_FUNC_TYPE_CAPTURE,
  86. DCC_FUNC_TYPE_CRC,
  87. };
  88. static const char * const str_dcc_func_type[] = {
  89. [DCC_FUNC_TYPE_CAPTURE] = "cap",
  90. [DCC_FUNC_TYPE_CRC] = "crc",
  91. };
  92. enum dcc_data_sink {
  93. DCC_DATA_SINK_SRAM,
  94. DCC_DATA_SINK_ATB
  95. };
  96. enum dcc_descriptor_type {
  97. DCC_ADDR_TYPE,
  98. DCC_LOOP_TYPE,
  99. DCC_READ_WRITE_TYPE,
  100. DCC_WRITE_TYPE
  101. };
  102. enum dcc_mem_map_ver {
  103. DCC_MEM_MAP_VER1,
  104. DCC_MEM_MAP_VER2,
  105. DCC_MEM_MAP_VER3
  106. };
  107. static const char * const str_dcc_data_sink[] = {
  108. [DCC_DATA_SINK_SRAM] = "sram",
  109. [DCC_DATA_SINK_ATB] = "atb",
  110. };
  111. struct rpm_trig_req {
  112. uint32_t enable;
  113. uint32_t reserved;
  114. };
  115. struct dcc_config_entry {
  116. uint32_t base;
  117. uint32_t offset;
  118. uint32_t len;
  119. uint32_t index;
  120. uint32_t loop_cnt;
  121. uint32_t write_val;
  122. uint32_t mask;
  123. bool apb_bus;
  124. enum dcc_descriptor_type desc_type;
  125. struct list_head list;
  126. };
  127. /*
  128. * struct reg_state
  129. * offset: the offset of the reg to be preserved when dcc is without power
  130. * val : the val of the reg to be preserved when dcc is without power
  131. */
  132. struct reg_state {
  133. uint32_t offset;
  134. uint32_t val;
  135. };
  136. struct dcc_drvdata {
  137. void __iomem *base;
  138. uint32_t reg_size;
  139. struct device *dev;
  140. struct mutex mutex;
  141. void __iomem *ram_base;
  142. uint32_t ram_size;
  143. uint32_t ram_offset;
  144. enum dcc_data_sink *data_sink;
  145. enum dcc_func_type *func_type;
  146. enum dcc_mem_map_ver mem_map_ver;
  147. uint32_t ram_cfg;
  148. uint32_t ram_start;
  149. bool *enable;
  150. bool *hw_trig;
  151. bool *sw_trig;
  152. bool *configured;
  153. bool interrupt_disable;
  154. char *sram_node;
  155. struct cdev sram_dev;
  156. struct class *sram_class;
  157. struct list_head *cfg_head;
  158. uint32_t *nr_config;
  159. uint32_t nr_link_list;
  160. uint8_t curr_list;
  161. uint8_t *cti_trig;
  162. uint8_t loopoff;
  163. uint32_t ram_cpy_len;
  164. uint32_t per_ll_reg_cnt;
  165. int32_t ll_state_cnt;
  166. struct reg_state *ll_state;
  167. void *sram_state;
  168. uint8_t *qad_output;
  169. };
  170. static uint32_t dcc_offset_conv(struct dcc_drvdata *drvdata, uint32_t off)
  171. {
  172. if (drvdata->mem_map_ver == DCC_MEM_MAP_VER1) {
  173. if ((off & 0x7F) >= DCC_MAP_LEVEL3)
  174. return (off - DCC_MAP_OFFSET3);
  175. if ((off & 0x7F) >= DCC_MAP_LEVEL2)
  176. return (off - DCC_MAP_OFFSET2);
  177. else if ((off & 0x7F) >= DCC_MAP_LEVEL1)
  178. return (off - DCC_MAP_OFFSET1);
  179. } else if (drvdata->mem_map_ver == DCC_MEM_MAP_VER2) {
  180. if ((off & 0x7F) >= DCC_MAP_LEVEL2)
  181. return (off - DCC_MAP_OFFSET4);
  182. }
  183. return (off);
  184. }
  185. static int dcc_sram_writel(struct dcc_drvdata *drvdata,
  186. uint32_t val, uint32_t off)
  187. {
  188. if (unlikely(off > (drvdata->ram_size - 4)))
  189. return -EINVAL;
  190. __raw_writel((val), drvdata->ram_base + off);
  191. return 0;
  192. }
  193. static int dcc_sram_memcpy(void *to, const void __iomem *from,
  194. size_t count)
  195. {
  196. if (!count || (!IS_ALIGNED((unsigned long)from, 4) ||
  197. !IS_ALIGNED((unsigned long)to, 4) ||
  198. !IS_ALIGNED((unsigned long)count, 4))) {
  199. return -EINVAL;
  200. }
  201. while (count >= 4) {
  202. *(unsigned int *)to = __raw_readl(from);
  203. to += 4;
  204. from += 4;
  205. count -= 4;
  206. }
  207. return 0;
  208. }
  209. static bool dcc_ready(struct dcc_drvdata *drvdata)
  210. {
  211. uint32_t val;
  212. /* poll until DCC ready */
  213. if (!readl_poll_timeout((drvdata->base + DCC_STATUS), val,
  214. (BMVAL(val, 0, 1) == 0), 1, TIMEOUT_US))
  215. return true;
  216. return false;
  217. }
  218. static int dcc_read_status(struct dcc_drvdata *drvdata)
  219. {
  220. int curr_list;
  221. uint32_t bus_status;
  222. uint32_t ll_cfg = 0;
  223. uint32_t tmp_ll_cfg = 0;
  224. for (curr_list = 0; curr_list < drvdata->nr_link_list; curr_list++) {
  225. if (!drvdata->enable[curr_list])
  226. continue;
  227. bus_status = dcc_readl(drvdata,
  228. DCC_LL_BUS_ACCESS_STATUS(curr_list));
  229. if (bus_status) {
  230. dev_err(drvdata->dev,
  231. "Read access error for list %d err: 0x%x.\n",
  232. curr_list, bus_status);
  233. ll_cfg = dcc_readl(drvdata, DCC_LL_CFG(curr_list));
  234. if (drvdata->mem_map_ver == DCC_MEM_MAP_VER3)
  235. tmp_ll_cfg = ll_cfg & ~BIT(8);
  236. else
  237. tmp_ll_cfg = ll_cfg & ~BIT(9);
  238. dcc_writel(drvdata, tmp_ll_cfg, DCC_LL_CFG(curr_list));
  239. dcc_writel(drvdata, 0x3,
  240. DCC_LL_BUS_ACCESS_STATUS(curr_list));
  241. dcc_writel(drvdata, ll_cfg, DCC_LL_CFG(curr_list));
  242. return -ENODATA;
  243. }
  244. }
  245. return 0;
  246. }
  247. static int dcc_sw_trigger(struct dcc_drvdata *drvdata)
  248. {
  249. int ret = 0;
  250. int curr_list;
  251. uint32_t ll_cfg = 0;
  252. uint32_t tmp_ll_cfg = 0;
  253. mutex_lock(&drvdata->mutex);
  254. for (curr_list = 0; curr_list < drvdata->nr_link_list; curr_list++) {
  255. if ((!drvdata->enable[curr_list]) || (!drvdata->sw_trig[curr_list]))
  256. continue;
  257. dev_info(drvdata->dev, "DCC SW trigger link list %d\n", curr_list);
  258. ll_cfg = dcc_readl(drvdata, DCC_LL_CFG(curr_list));
  259. if (drvdata->mem_map_ver == DCC_MEM_MAP_VER3)
  260. tmp_ll_cfg = ll_cfg & ~BIT(8);
  261. else
  262. tmp_ll_cfg = ll_cfg & ~BIT(9);
  263. dcc_writel(drvdata, tmp_ll_cfg, DCC_LL_CFG(curr_list));
  264. dcc_writel(drvdata, 1, DCC_LL_SW_TRIGGER(curr_list));
  265. dcc_writel(drvdata, ll_cfg, DCC_LL_CFG(curr_list));
  266. }
  267. if (!dcc_ready(drvdata)) {
  268. dev_err(drvdata->dev,
  269. "DCC is busy after receiving sw tigger.\n");
  270. ret = -EBUSY;
  271. goto err;
  272. }
  273. ret = dcc_read_status(drvdata);
  274. err:
  275. mutex_unlock(&drvdata->mutex);
  276. return ret;
  277. }
  278. static int __dcc_ll_cfg(struct dcc_drvdata *drvdata, int curr_list)
  279. {
  280. int ret = 0;
  281. uint32_t sram_offset = drvdata->ram_cfg * 4;
  282. uint32_t prev_addr, addr;
  283. uint32_t prev_off = 0, off;
  284. uint32_t loop_off = 0;
  285. uint32_t link;
  286. uint32_t pos, total_len = 0, loop_len = 0;
  287. uint32_t loop, loop_cnt = 0;
  288. bool loop_start = false;
  289. struct dcc_config_entry *entry;
  290. prev_addr = 0;
  291. addr = 0;
  292. link = 0;
  293. list_for_each_entry(entry, &drvdata->cfg_head[curr_list], list) {
  294. switch (entry->desc_type) {
  295. case DCC_READ_WRITE_TYPE:
  296. {
  297. if (link) {
  298. /* write new offset = 1 to continue
  299. * processing the list
  300. */
  301. ret = dcc_sram_writel(drvdata,
  302. link, sram_offset);
  303. if (ret)
  304. goto overstep;
  305. sram_offset += 4;
  306. /* Reset link and prev_off */
  307. addr = 0x00;
  308. link = 0;
  309. prev_off = 0;
  310. prev_addr = addr;
  311. }
  312. addr = DCC_RD_MOD_WR_DESCRIPTOR;
  313. ret = dcc_sram_writel(drvdata, addr, sram_offset);
  314. if (ret)
  315. goto overstep;
  316. sram_offset += 4;
  317. ret = dcc_sram_writel(drvdata,
  318. entry->mask, sram_offset);
  319. if (ret)
  320. goto overstep;
  321. sram_offset += 4;
  322. ret = dcc_sram_writel(drvdata,
  323. entry->write_val, sram_offset);
  324. if (ret)
  325. goto overstep;
  326. sram_offset += 4;
  327. addr = 0;
  328. break;
  329. }
  330. case DCC_LOOP_TYPE:
  331. {
  332. /* Check if we need to write link of prev entry */
  333. if (link) {
  334. ret = dcc_sram_writel(drvdata,
  335. link, sram_offset);
  336. if (ret)
  337. goto overstep;
  338. sram_offset += 4;
  339. }
  340. if (loop_start) {
  341. loop = (sram_offset - loop_off) / 4;
  342. loop |= (loop_cnt << drvdata->loopoff) &
  343. BM(drvdata->loopoff, 27);
  344. loop |= DCC_LOOP_DESCRIPTOR;
  345. total_len += (total_len - loop_len) * loop_cnt;
  346. ret = dcc_sram_writel(drvdata,
  347. loop, sram_offset);
  348. if (ret)
  349. goto overstep;
  350. sram_offset += 4;
  351. loop_start = false;
  352. loop_len = 0;
  353. loop_off = 0;
  354. } else {
  355. loop_start = true;
  356. loop_cnt = entry->loop_cnt - 1;
  357. loop_len = total_len;
  358. loop_off = sram_offset;
  359. }
  360. /* Reset link and prev_off */
  361. addr = 0x00;
  362. link = 0;
  363. prev_off = 0;
  364. prev_addr = addr;
  365. break;
  366. }
  367. case DCC_WRITE_TYPE:
  368. {
  369. if (link) {
  370. /* write new offset = 1 to continue
  371. * processing the list
  372. */
  373. ret = dcc_sram_writel(drvdata,
  374. link, sram_offset);
  375. if (ret)
  376. goto overstep;
  377. sram_offset += 4;
  378. /* Reset link and prev_off */
  379. addr = 0x00;
  380. prev_off = 0;
  381. prev_addr = addr;
  382. }
  383. off = entry->offset/4;
  384. /* write new offset-length pair to correct position */
  385. link |= ((off & BM(0, 7)) | BIT(15) |
  386. ((entry->len << 8) & BM(8, 14)));
  387. link |= DCC_LINK_DESCRIPTOR;
  388. /* Address type */
  389. addr = (entry->base >> 4) & BM(0, 27);
  390. if (entry->apb_bus)
  391. addr |= DCC_ADDR_DESCRIPTOR | DCC_WRITE_IND
  392. | DCC_APB_IND;
  393. else
  394. addr |= DCC_ADDR_DESCRIPTOR | DCC_WRITE_IND
  395. | DCC_AHB_IND;
  396. ret = dcc_sram_writel(drvdata, addr, sram_offset);
  397. if (ret)
  398. goto overstep;
  399. sram_offset += 4;
  400. ret = dcc_sram_writel(drvdata, link, sram_offset);
  401. if (ret)
  402. goto overstep;
  403. sram_offset += 4;
  404. ret = dcc_sram_writel(drvdata,
  405. entry->write_val, sram_offset);
  406. if (ret)
  407. goto overstep;
  408. sram_offset += 4;
  409. addr = 0x00;
  410. link = 0;
  411. break;
  412. }
  413. default:
  414. {
  415. /* Address type */
  416. addr = (entry->base >> 4) & BM(0, 27);
  417. if (entry->apb_bus)
  418. addr |= DCC_ADDR_DESCRIPTOR | DCC_READ_IND
  419. | DCC_APB_IND;
  420. else
  421. addr |= DCC_ADDR_DESCRIPTOR | DCC_READ_IND
  422. | DCC_AHB_IND;
  423. off = entry->offset/4;
  424. total_len += entry->len * 4;
  425. if (!prev_addr || prev_addr != addr || prev_off > off) {
  426. /* Check if we need to write prev link entry */
  427. if (link) {
  428. ret = dcc_sram_writel(drvdata,
  429. link, sram_offset);
  430. if (ret)
  431. goto overstep;
  432. sram_offset += 4;
  433. }
  434. dev_dbg(drvdata->dev,
  435. "DCC: sram address 0x%x\n",
  436. sram_offset);
  437. /* Write address */
  438. ret = dcc_sram_writel(drvdata,
  439. addr, sram_offset);
  440. if (ret)
  441. goto overstep;
  442. sram_offset += 4;
  443. /* Reset link and prev_off */
  444. link = 0;
  445. prev_off = 0;
  446. }
  447. if ((off - prev_off) > 0xFF ||
  448. entry->len > MAX_DCC_LEN) {
  449. dev_err(drvdata->dev,
  450. "DCC: Programming error Base: 0x%x, offset 0x%x\n",
  451. entry->base, entry->offset);
  452. ret = -EINVAL;
  453. goto err;
  454. }
  455. if (link) {
  456. /*
  457. * link already has one offset-length so new
  458. * offset-length needs to be placed at
  459. * bits [29:15]
  460. */
  461. pos = 15;
  462. /* Clear bits [31:16] */
  463. link &= BM(0, 14);
  464. } else {
  465. /*
  466. * link is empty, so new offset-length needs
  467. * to be placed at bits [15:0]
  468. */
  469. pos = 0;
  470. link = 1 << 15;
  471. }
  472. /* write new offset-length pair to correct position */
  473. link |= (((off-prev_off) & BM(0, 7)) |
  474. ((entry->len << 8) & BM(8, 14))) << pos;
  475. link |= DCC_LINK_DESCRIPTOR;
  476. if (pos) {
  477. ret = dcc_sram_writel(drvdata,
  478. link, sram_offset);
  479. if (ret)
  480. goto overstep;
  481. sram_offset += 4;
  482. link = 0;
  483. }
  484. prev_off = off + entry->len - 1;
  485. prev_addr = addr;
  486. }
  487. }
  488. }
  489. if (link) {
  490. ret = dcc_sram_writel(drvdata, link, sram_offset);
  491. if (ret)
  492. goto overstep;
  493. sram_offset += 4;
  494. }
  495. if (loop_start) {
  496. dev_err(drvdata->dev,
  497. "DCC: Programming error: Loop unterminated\n");
  498. ret = -EINVAL;
  499. goto err;
  500. }
  501. /* Handling special case of list ending with a rd_mod_wr */
  502. if (addr == DCC_RD_MOD_WR_DESCRIPTOR) {
  503. addr = (0xC105E) & BM(0, 27);
  504. addr |= DCC_ADDR_DESCRIPTOR;
  505. ret = dcc_sram_writel(drvdata, addr, sram_offset);
  506. if (ret)
  507. goto overstep;
  508. sram_offset += 4;
  509. }
  510. /* Setting zero to indicate end of the list */
  511. link = DCC_LINK_DESCRIPTOR;
  512. ret = dcc_sram_writel(drvdata, link, sram_offset);
  513. if (ret)
  514. goto overstep;
  515. sram_offset += 4;
  516. /* Update ram_cfg and check if the data will overstep */
  517. if (drvdata->data_sink[curr_list] == DCC_DATA_SINK_SRAM &&
  518. drvdata->func_type[curr_list] == DCC_FUNC_TYPE_CAPTURE) {
  519. drvdata->ram_cfg = (sram_offset + total_len) / 4;
  520. if (sram_offset + total_len > drvdata->ram_size) {
  521. sram_offset += total_len;
  522. goto overstep;
  523. }
  524. } else {
  525. drvdata->ram_cfg = sram_offset / 4;
  526. if (sram_offset > drvdata->ram_size)
  527. goto overstep;
  528. }
  529. drvdata->ram_start = sram_offset/4;
  530. return 0;
  531. overstep:
  532. ret = -EINVAL;
  533. memset_io(drvdata->ram_base, 0, drvdata->ram_size);
  534. dev_err(drvdata->dev, "DCC SRAM oversteps, 0x%x (0x%x)\n",
  535. sram_offset, drvdata->ram_size);
  536. err:
  537. return ret;
  538. }
  539. static void __dcc_first_crc(struct dcc_drvdata *drvdata)
  540. {
  541. int i;
  542. /*
  543. * Need to send 2 triggers to DCC. First trigger sets CRC error status
  544. * bit. So need second trigger to reset this bit.
  545. */
  546. for (i = 0; i < 2; i++) {
  547. if (!dcc_ready(drvdata))
  548. dev_err(drvdata->dev, "DCC is not ready\n");
  549. dcc_writel(drvdata, 1,
  550. DCC_LL_SW_TRIGGER(drvdata->curr_list));
  551. }
  552. /* Clear CRC error interrupt */
  553. dcc_writel(drvdata, BIT(1),
  554. DCC_LL_INT_STATUS(drvdata->curr_list));
  555. }
  556. static int dcc_valid_list(struct dcc_drvdata *drvdata, int curr_list)
  557. {
  558. uint32_t lock_reg;
  559. if (list_empty(&drvdata->cfg_head[curr_list]))
  560. return -EINVAL;
  561. if (drvdata->enable[curr_list]) {
  562. dev_err(drvdata->dev, "List %d is already enabled\n",
  563. curr_list);
  564. return -EINVAL;
  565. }
  566. lock_reg = dcc_readl(drvdata, DCC_LL_LOCK(curr_list));
  567. if (lock_reg & 0x1) {
  568. dev_err(drvdata->dev, "List %d is already locked\n",
  569. curr_list);
  570. return -EINVAL;
  571. }
  572. dev_info(drvdata->dev, "DCC list passed %d\n", curr_list);
  573. return 0;
  574. }
  575. static bool is_dcc_enabled(struct dcc_drvdata *drvdata)
  576. {
  577. bool dcc_enable = false;
  578. int list;
  579. for (list = 0; list < drvdata->nr_link_list; list++) {
  580. if (drvdata->enable[list]) {
  581. dcc_enable = true;
  582. break;
  583. }
  584. }
  585. return dcc_enable;
  586. }
  587. static int dcc_enable(struct dcc_drvdata *drvdata)
  588. {
  589. int ret = 0;
  590. int list;
  591. uint32_t ram_cfg_base;
  592. uint32_t hw_info;
  593. uint32_t transaction_timeout;
  594. struct device_node *node = drvdata->dev->of_node;
  595. mutex_lock(&drvdata->mutex);
  596. if (!is_dcc_enabled(drvdata))
  597. memset_io(drvdata->ram_base, 0xDE, drvdata->ram_size);
  598. for (list = 0; list < drvdata->nr_link_list; list++) {
  599. if (dcc_valid_list(drvdata, list))
  600. continue;
  601. /* 1. Take ownership of the list */
  602. dcc_writel(drvdata, BIT(0), DCC_LL_LOCK(list));
  603. /* 2. Program linked-list in the SRAM */
  604. ram_cfg_base = drvdata->ram_cfg;
  605. ret = __dcc_ll_cfg(drvdata, list);
  606. if (ret) {
  607. dcc_writel(drvdata, 0, DCC_LL_LOCK(list));
  608. dev_info(drvdata->dev, "DCC ram programming failed\n");
  609. goto err;
  610. }
  611. /* 3. program DCC_RAM_CFG reg */
  612. dcc_writel(drvdata, ram_cfg_base +
  613. drvdata->ram_offset/4, DCC_LL_BASE(list));
  614. dcc_writel(drvdata, drvdata->ram_start +
  615. drvdata->ram_offset/4, DCC_FD_BASE(list));
  616. dcc_writel(drvdata, 0xFFF, DCC_LL_TIMEOUT(list));
  617. hw_info = dcc_readl(drvdata, DCC_HW_INFO);
  618. if (hw_info & 0x80) {
  619. ret = of_property_read_u32(node,
  620. "qcom,transaction_timeout",
  621. &transaction_timeout);
  622. if (ret)
  623. transaction_timeout =
  624. DEFAULT_TRANSACTION_TIMEOUT;
  625. if (transaction_timeout)
  626. dcc_writel(drvdata, transaction_timeout,
  627. DCC_TRANS_TIMEOUT(list));
  628. }
  629. /* 4. Clears interrupt status register */
  630. dcc_writel(drvdata, 0, DCC_LL_INT_ENABLE(list));
  631. dcc_writel(drvdata, (BIT(0) | BIT(1) | BIT(2)),
  632. DCC_LL_INT_STATUS(list));
  633. dev_info(drvdata->dev, "All values written to enable.\n");
  634. /* Make sure all config is written in sram */
  635. mb();
  636. drvdata->enable[list] = true;
  637. if (drvdata->func_type[list] == DCC_FUNC_TYPE_CRC) {
  638. __dcc_first_crc(drvdata);
  639. /* Enable CRC error interrupt */
  640. if (!drvdata->interrupt_disable)
  641. dcc_writel(drvdata, BIT(1),
  642. DCC_LL_INT_ENABLE(list));
  643. }
  644. /* 5. Configure trigger */
  645. if (drvdata->mem_map_ver == DCC_MEM_MAP_VER3) {
  646. dcc_writel(drvdata, drvdata->qad_output[list],
  647. DCC_QAD_OUTPUT(list));
  648. dcc_writel(drvdata, drvdata->cti_trig[list],
  649. DCC_CTI_TRIG(list));
  650. if (drvdata->hw_trig[list])
  651. dcc_writel(drvdata, BIT(8) | ((drvdata->data_sink[list] << 4) |
  652. (drvdata->func_type[list])), DCC_LL_CFG(list));
  653. else
  654. dcc_writel(drvdata, ~BIT(8) & ((drvdata->data_sink[list] << 4) |
  655. (drvdata->func_type[list])), DCC_LL_CFG(list));
  656. } else {
  657. if (drvdata->hw_trig[list])
  658. dcc_writel(drvdata, BIT(9) | ((drvdata->cti_trig[list] << 8) |
  659. (drvdata->data_sink[list] << 4) |
  660. (drvdata->func_type[list])), DCC_LL_CFG(list));
  661. else
  662. dcc_writel(drvdata, ~BIT(9) & ((drvdata->cti_trig[list] << 8) |
  663. (drvdata->data_sink[list] << 4) |
  664. (drvdata->func_type[list])), DCC_LL_CFG(list));
  665. }
  666. }
  667. drvdata->ram_cpy_len = drvdata->ram_cfg * 4;
  668. err:
  669. mutex_unlock(&drvdata->mutex);
  670. return ret;
  671. }
  672. static void dcc_disable(struct dcc_drvdata *drvdata)
  673. {
  674. int curr_list;
  675. mutex_lock(&drvdata->mutex);
  676. if (!dcc_ready(drvdata))
  677. dev_err(drvdata->dev, "DCC is not ready Disabling DCC...\n");
  678. for (curr_list = 0; curr_list < drvdata->nr_link_list; curr_list++) {
  679. if (!drvdata->enable[curr_list])
  680. continue;
  681. dcc_writel(drvdata, 0, DCC_LL_CFG(curr_list));
  682. dcc_writel(drvdata, 0, DCC_LL_BASE(curr_list));
  683. dcc_writel(drvdata, 0, DCC_FD_BASE(curr_list));
  684. dcc_writel(drvdata, 0, DCC_LL_LOCK(curr_list));
  685. drvdata->enable[curr_list] = false;
  686. }
  687. memset_io(drvdata->ram_base, 0, drvdata->ram_size);
  688. drvdata->ram_cfg = 0;
  689. drvdata->ram_cpy_len = 0;
  690. drvdata->ram_start = 0;
  691. mutex_unlock(&drvdata->mutex);
  692. }
  693. static ssize_t curr_list_show(struct device *dev,
  694. struct device_attribute *attr, char *buf)
  695. {
  696. int ret;
  697. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  698. mutex_lock(&drvdata->mutex);
  699. if (drvdata->curr_list == DCC_INVALID_LINK_LIST) {
  700. dev_err(dev, "curr_list is not set.\n");
  701. ret = -EINVAL;
  702. goto err;
  703. }
  704. ret = scnprintf(buf, PAGE_SIZE, "%d\n", drvdata->curr_list);
  705. err:
  706. mutex_unlock(&drvdata->mutex);
  707. return ret;
  708. }
  709. static ssize_t curr_list_store(struct device *dev,
  710. struct device_attribute *attr,
  711. const char *buf, size_t size)
  712. {
  713. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  714. unsigned long val;
  715. uint32_t lock_reg;
  716. bool dcc_enable = false;
  717. if (kstrtoul(buf, 16, &val))
  718. return -EINVAL;
  719. if (val >= drvdata->nr_link_list)
  720. return -EINVAL;
  721. mutex_lock(&drvdata->mutex);
  722. dcc_enable = is_dcc_enabled(drvdata);
  723. if (drvdata->curr_list != DCC_INVALID_LINK_LIST && dcc_enable) {
  724. dev_err(drvdata->dev, "DCC is enabled, please disable it first.\n");
  725. mutex_unlock(&drvdata->mutex);
  726. return -EINVAL;
  727. }
  728. lock_reg = dcc_readl(drvdata, DCC_LL_LOCK(val));
  729. if (lock_reg & 0x1) {
  730. dev_err(drvdata->dev, "DCC linked list is already configured\n");
  731. mutex_unlock(&drvdata->mutex);
  732. return -EINVAL;
  733. }
  734. drvdata->curr_list = val;
  735. mutex_unlock(&drvdata->mutex);
  736. return size;
  737. }
  738. static DEVICE_ATTR_RW(curr_list);
  739. static ssize_t func_type_show(struct device *dev,
  740. struct device_attribute *attr, char *buf)
  741. {
  742. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  743. ssize_t len = 0;
  744. unsigned int i;
  745. for (i = 0; i < drvdata->nr_link_list; i++)
  746. len += scnprintf(buf + len, PAGE_SIZE - len, "%u :%s\n",
  747. i, str_dcc_func_type[drvdata->func_type[i]]);
  748. return len;
  749. }
  750. static ssize_t func_type_store(struct device *dev,
  751. struct device_attribute *attr,
  752. const char *buf, size_t size)
  753. {
  754. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  755. char str[10] = "";
  756. int ret;
  757. if (strlen(buf) >= 10)
  758. return -EINVAL;
  759. if (sscanf(buf, "%8s", str) != 1)
  760. return -EINVAL;
  761. mutex_lock(&drvdata->mutex);
  762. if (drvdata->curr_list >= drvdata->nr_link_list) {
  763. dev_err(dev,
  764. "Select link list to program using curr_list\n");
  765. ret = -EINVAL;
  766. goto out;
  767. }
  768. if (drvdata->enable[drvdata->curr_list]) {
  769. ret = -EBUSY;
  770. goto out;
  771. }
  772. if (!strcmp(str, str_dcc_func_type[DCC_FUNC_TYPE_CAPTURE]))
  773. drvdata->func_type[drvdata->curr_list] =
  774. DCC_FUNC_TYPE_CAPTURE;
  775. else if (!strcmp(str, str_dcc_func_type[DCC_FUNC_TYPE_CRC]))
  776. drvdata->func_type[drvdata->curr_list] =
  777. DCC_FUNC_TYPE_CRC;
  778. else {
  779. ret = -EINVAL;
  780. goto out;
  781. }
  782. ret = size;
  783. out:
  784. mutex_unlock(&drvdata->mutex);
  785. return ret;
  786. }
  787. static DEVICE_ATTR_RW(func_type);
  788. static ssize_t data_sink_show(struct device *dev,
  789. struct device_attribute *attr, char *buf)
  790. {
  791. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  792. ssize_t len = 0;
  793. unsigned int i;
  794. for (i = 0; i < drvdata->nr_link_list; i++)
  795. len += scnprintf(buf + len, PAGE_SIZE - len, "%u :%s\n",
  796. i, str_dcc_data_sink[drvdata->data_sink[i]]);
  797. return len;
  798. }
  799. static ssize_t data_sink_store(struct device *dev,
  800. struct device_attribute *attr,
  801. const char *buf, size_t size)
  802. {
  803. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  804. char str[10] = "";
  805. int ret;
  806. if (strlen(buf) >= 10)
  807. return -EINVAL;
  808. if (sscanf(buf, "%8s", str) != 1)
  809. return -EINVAL;
  810. mutex_lock(&drvdata->mutex);
  811. if (drvdata->curr_list >= drvdata->nr_link_list) {
  812. dev_err(dev,
  813. "Select link list to program using curr_list\n");
  814. ret = -EINVAL;
  815. goto out;
  816. }
  817. if (drvdata->enable[drvdata->curr_list]) {
  818. ret = -EBUSY;
  819. goto out;
  820. }
  821. if (!strcmp(str, str_dcc_data_sink[DCC_DATA_SINK_SRAM]))
  822. drvdata->data_sink[drvdata->curr_list] = DCC_DATA_SINK_SRAM;
  823. else if (!strcmp(str, str_dcc_data_sink[DCC_DATA_SINK_ATB]))
  824. drvdata->data_sink[drvdata->curr_list] = DCC_DATA_SINK_ATB;
  825. else {
  826. ret = -EINVAL;
  827. goto out;
  828. }
  829. ret = size;
  830. out:
  831. mutex_unlock(&drvdata->mutex);
  832. return ret;
  833. }
  834. static DEVICE_ATTR_RW(data_sink);
  835. static ssize_t trigger_store(struct device *dev,
  836. struct device_attribute *attr,
  837. const char *buf, size_t size)
  838. {
  839. int ret = 0;
  840. unsigned long val;
  841. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  842. if (kstrtoul(buf, 16, &val))
  843. return -EINVAL;
  844. if (val != 1)
  845. return -EINVAL;
  846. ret = dcc_sw_trigger(drvdata);
  847. if (!ret)
  848. ret = size;
  849. return ret;
  850. }
  851. static DEVICE_ATTR_WO(trigger);
  852. static ssize_t enable_show(struct device *dev,
  853. struct device_attribute *attr, char *buf)
  854. {
  855. int ret;
  856. bool dcc_enable = false;
  857. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  858. mutex_lock(&drvdata->mutex);
  859. if (drvdata->curr_list >= drvdata->nr_link_list) {
  860. dev_err(dev, "Select link list to program using curr_list\n");
  861. ret = -EINVAL;
  862. goto err;
  863. }
  864. dcc_enable = is_dcc_enabled(drvdata);
  865. ret = scnprintf(buf, PAGE_SIZE, "%u\n",
  866. (unsigned int)dcc_enable);
  867. err:
  868. mutex_unlock(&drvdata->mutex);
  869. return ret;
  870. }
  871. static ssize_t enable_store(struct device *dev,
  872. struct device_attribute *attr,
  873. const char *buf, size_t size)
  874. {
  875. int ret = 0;
  876. unsigned long val;
  877. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  878. if (kstrtoul(buf, 16, &val) || val > 1)
  879. return -EINVAL;
  880. if (val)
  881. ret = dcc_enable(drvdata);
  882. else
  883. dcc_disable(drvdata);
  884. if (!ret)
  885. ret = size;
  886. return ret;
  887. }
  888. static DEVICE_ATTR_RW(enable);
  889. static ssize_t ap_ns_qad_override_en_show(struct device *dev,
  890. struct device_attribute *attr, char *buf)
  891. {
  892. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  893. if (drvdata->mem_map_ver != DCC_MEM_MAP_VER3) {
  894. dev_err(dev, "QAD output is not supported\n");
  895. return -EINVAL;
  896. }
  897. return scnprintf(buf, PAGE_SIZE, "%d\n", drvdata->qad_output[drvdata->curr_list]);
  898. }
  899. static ssize_t ap_ns_qad_override_en_store(struct device *dev,
  900. struct device_attribute *attr,
  901. const char *buf, size_t size)
  902. {
  903. int ret = 0;
  904. unsigned long val;
  905. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  906. if (drvdata->mem_map_ver != DCC_MEM_MAP_VER3) {
  907. dev_err(dev, "QAD output is not supported\n");
  908. return -EINVAL;
  909. }
  910. if (kstrtoul(buf, 16, &val) || val > 1)
  911. return -EINVAL;
  912. mutex_lock(&drvdata->mutex);
  913. if (drvdata->curr_list >= drvdata->nr_link_list) {
  914. dev_err(dev, "Select link list to program using curr_list\n");
  915. ret = -EINVAL;
  916. goto out;
  917. }
  918. if (drvdata->enable[drvdata->curr_list]) {
  919. ret = -EBUSY;
  920. goto out;
  921. }
  922. if (val)
  923. drvdata->qad_output[drvdata->curr_list] = 1;
  924. else
  925. drvdata->qad_output[drvdata->curr_list] = 0;
  926. ret = size;
  927. out:
  928. mutex_unlock(&drvdata->mutex);
  929. return ret;
  930. }
  931. static DEVICE_ATTR_RW(ap_ns_qad_override_en);
  932. static ssize_t hw_trig_show(struct device *dev,
  933. struct device_attribute *attr, char *buf)
  934. {
  935. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  936. int ret = 0;
  937. if (drvdata->curr_list >= drvdata->nr_link_list) {
  938. dev_err(dev, "Select link list to program using curr_list\n");
  939. ret = -EINVAL;
  940. goto err;
  941. }
  942. ret = scnprintf(buf, PAGE_SIZE, "%u\n",
  943. (unsigned int)drvdata->hw_trig[drvdata->curr_list]);
  944. err:
  945. return ret;
  946. }
  947. static ssize_t hw_trig_store(struct device *dev,
  948. struct device_attribute *attr,
  949. const char *buf, size_t size)
  950. {
  951. int ret = 0;
  952. unsigned long val;
  953. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  954. if ((kstrtoul(buf, 16, &val)) || val > 1)
  955. return -EINVAL;
  956. mutex_lock(&drvdata->mutex);
  957. if (drvdata->curr_list >= drvdata->nr_link_list) {
  958. dev_err(dev, "Select link list to program using curr_list\n");
  959. ret = -EINVAL;
  960. goto err;
  961. }
  962. if (drvdata->enable[drvdata->curr_list]) {
  963. ret = -EBUSY;
  964. goto err;
  965. }
  966. if (val)
  967. drvdata->hw_trig[drvdata->curr_list] = true;
  968. else
  969. drvdata->hw_trig[drvdata->curr_list] = false;
  970. ret = size;
  971. err:
  972. mutex_unlock(&drvdata->mutex);
  973. return ret;
  974. }
  975. static DEVICE_ATTR_RW(hw_trig);
  976. static ssize_t sw_trig_show(struct device *dev,
  977. struct device_attribute *attr, char *buf)
  978. {
  979. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  980. int ret = 0;
  981. if (drvdata->curr_list >= drvdata->nr_link_list) {
  982. dev_err(dev, "Select link list to program using curr_list\n");
  983. ret = -EINVAL;
  984. goto err;
  985. }
  986. ret = scnprintf(buf, PAGE_SIZE, "%u\n",
  987. (unsigned int)drvdata->sw_trig[drvdata->curr_list]);
  988. err:
  989. return ret;
  990. }
  991. static ssize_t sw_trig_store(struct device *dev,
  992. struct device_attribute *attr,
  993. const char *buf, size_t size)
  994. {
  995. int ret = 0;
  996. unsigned long val;
  997. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  998. if ((kstrtoul(buf, 16, &val)) || val > 1)
  999. return -EINVAL;
  1000. if (drvdata->curr_list >= drvdata->nr_link_list) {
  1001. dev_err(dev, "Select link list to program using curr_list\n");
  1002. ret = -EINVAL;
  1003. goto err;
  1004. }
  1005. if (val)
  1006. drvdata->sw_trig[drvdata->curr_list] = true;
  1007. else
  1008. drvdata->sw_trig[drvdata->curr_list] = false;
  1009. ret = size;
  1010. err:
  1011. return ret;
  1012. }
  1013. static DEVICE_ATTR_RW(sw_trig);
  1014. static ssize_t config_show(struct device *dev,
  1015. struct device_attribute *attr, char *buf)
  1016. {
  1017. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1018. struct dcc_config_entry *entry;
  1019. char local_buf[64];
  1020. int len = 0, count = 0;
  1021. buf[0] = '\0';
  1022. mutex_lock(&drvdata->mutex);
  1023. if (drvdata->curr_list >= drvdata->nr_link_list) {
  1024. dev_err(dev, "Select link list to program using curr_list\n");
  1025. count = -EINVAL;
  1026. goto err;
  1027. }
  1028. list_for_each_entry(entry,
  1029. &drvdata->cfg_head[drvdata->curr_list], list) {
  1030. switch (entry->desc_type) {
  1031. case DCC_READ_WRITE_TYPE:
  1032. len = scnprintf(local_buf, 64,
  1033. "Index: 0x%x, mask: 0x%x, val: 0x%x\n",
  1034. entry->index, entry->mask,
  1035. entry->write_val);
  1036. break;
  1037. case DCC_LOOP_TYPE:
  1038. len = scnprintf(local_buf, 64, "Index: 0x%x, Loop: %d\n",
  1039. entry->index, entry->loop_cnt);
  1040. break;
  1041. case DCC_WRITE_TYPE:
  1042. len = scnprintf(local_buf, 64,
  1043. "Write Index: 0x%x, Base: 0x%x, Offset: 0x%x, len: 0x%x APB: %d\n",
  1044. entry->index, entry->base,
  1045. entry->offset, entry->len,
  1046. entry->apb_bus);
  1047. break;
  1048. default:
  1049. len = scnprintf(local_buf, 64,
  1050. "Read Index: 0x%x, Base: 0x%x, Offset: 0x%x, len: 0x%x APB: %d\n",
  1051. entry->index, entry->base,
  1052. entry->offset, entry->len,
  1053. entry->apb_bus);
  1054. }
  1055. if ((count + len) > PAGE_SIZE) {
  1056. dev_err(dev, "DCC: Couldn't write complete config\n");
  1057. break;
  1058. }
  1059. strlcat(buf, local_buf, PAGE_SIZE);
  1060. count += len;
  1061. }
  1062. err:
  1063. mutex_unlock(&drvdata->mutex);
  1064. return count;
  1065. }
  1066. static int dcc_config_add(struct dcc_drvdata *drvdata, unsigned int addr,
  1067. unsigned int len, int apb_bus)
  1068. {
  1069. int ret;
  1070. struct dcc_config_entry *entry, *pentry;
  1071. unsigned int base, offset;
  1072. mutex_lock(&drvdata->mutex);
  1073. if (drvdata->curr_list >= drvdata->nr_link_list) {
  1074. dev_err(drvdata->dev, "Select link list to program using curr_list\n");
  1075. ret = -EINVAL;
  1076. goto err;
  1077. }
  1078. /* Check the len to avoid allocate huge memory */
  1079. if (!len || len > (drvdata->ram_size / 8)) {
  1080. dev_err(drvdata->dev, "DCC: Invalid length\n");
  1081. ret = -EINVAL;
  1082. goto err;
  1083. }
  1084. base = addr & BM(4, 31);
  1085. if (!list_empty(&drvdata->cfg_head[drvdata->curr_list])) {
  1086. pentry = list_last_entry(&drvdata->cfg_head[drvdata->curr_list],
  1087. struct dcc_config_entry, list);
  1088. if (pentry->desc_type == DCC_ADDR_TYPE &&
  1089. addr >= (pentry->base + pentry->offset) &&
  1090. addr <= (pentry->base + pentry->offset + MAX_DCC_OFFSET)) {
  1091. /* Re-use base address from last entry */
  1092. base = pentry->base;
  1093. /*
  1094. * Check if new address is contiguous to last entry's
  1095. * addresses. If yes then we can re-use last entry and
  1096. * just need to update its length.
  1097. */
  1098. if ((pentry->len * 4 + pentry->base + pentry->offset)
  1099. == addr) {
  1100. len += pentry->len;
  1101. /*
  1102. * Check if last entry can hold additional new
  1103. * length. If yes then we don't need to create
  1104. * a new entry else we need to add a new entry
  1105. * with same base but updated offset.
  1106. */
  1107. if (len > MAX_DCC_LEN)
  1108. pentry->len = MAX_DCC_LEN;
  1109. else
  1110. pentry->len = len;
  1111. /*
  1112. * Update start addr and len for remaining
  1113. * addresses, which will be part of new
  1114. * entry.
  1115. */
  1116. addr = pentry->base + pentry->offset +
  1117. pentry->len * 4;
  1118. len -= pentry->len;
  1119. }
  1120. }
  1121. }
  1122. offset = addr - base;
  1123. while (len) {
  1124. entry = kzalloc(sizeof(*entry), GFP_KERNEL);
  1125. if (!entry) {
  1126. ret = -ENOMEM;
  1127. goto err;
  1128. }
  1129. entry->base = base;
  1130. entry->offset = offset;
  1131. entry->len = min_t(uint32_t, len, MAX_DCC_LEN);
  1132. entry->index = drvdata->nr_config[drvdata->curr_list]++;
  1133. entry->desc_type = DCC_ADDR_TYPE;
  1134. entry->apb_bus = apb_bus;
  1135. INIT_LIST_HEAD(&entry->list);
  1136. list_add_tail(&entry->list,
  1137. &drvdata->cfg_head[drvdata->curr_list]);
  1138. len -= entry->len;
  1139. offset += MAX_DCC_LEN * 4;
  1140. }
  1141. mutex_unlock(&drvdata->mutex);
  1142. return 0;
  1143. err:
  1144. mutex_unlock(&drvdata->mutex);
  1145. return ret;
  1146. }
  1147. static ssize_t config_store(struct device *dev,
  1148. struct device_attribute *attr,
  1149. const char *buf, size_t size)
  1150. {
  1151. int ret, len, apb_bus;
  1152. unsigned int base;
  1153. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1154. int nval;
  1155. nval = sscanf(buf, "%x %i %d", &base, &len, &apb_bus);
  1156. if ((nval <= 0 || nval > 3) || (apb_bus < 0 || apb_bus > 1))
  1157. return -EINVAL;
  1158. if (nval == 1) {
  1159. len = 1;
  1160. apb_bus = 0;
  1161. } else if (nval == 3 && apb_bus == 1) {
  1162. apb_bus = 1;
  1163. } else {
  1164. apb_bus = 0;
  1165. }
  1166. ret = dcc_config_add(drvdata, base, len, apb_bus);
  1167. if (ret)
  1168. return ret;
  1169. return size;
  1170. }
  1171. static DEVICE_ATTR_RW(config);
  1172. static void dcc_config_reset(struct dcc_drvdata *drvdata)
  1173. {
  1174. struct dcc_config_entry *entry, *temp;
  1175. int curr_list;
  1176. mutex_lock(&drvdata->mutex);
  1177. for (curr_list = 0; curr_list < drvdata->nr_link_list; curr_list++) {
  1178. list_for_each_entry_safe(entry, temp,
  1179. &drvdata->cfg_head[curr_list], list) {
  1180. list_del(&entry->list);
  1181. kfree(entry);
  1182. drvdata->nr_config[curr_list]--;
  1183. }
  1184. }
  1185. drvdata->ram_start = 0;
  1186. drvdata->ram_cfg = 0;
  1187. drvdata->ram_cpy_len = 0;
  1188. mutex_unlock(&drvdata->mutex);
  1189. }
  1190. static ssize_t config_reset_store(struct device *dev,
  1191. struct device_attribute *attr,
  1192. const char *buf, size_t size)
  1193. {
  1194. unsigned long val;
  1195. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1196. if (kstrtoul(buf, 16, &val) || val > 1)
  1197. return -EINVAL;
  1198. if (val)
  1199. dcc_config_reset(drvdata);
  1200. return size;
  1201. }
  1202. static DEVICE_ATTR_WO(config_reset);
  1203. static ssize_t crc_error_show(struct device *dev,
  1204. struct device_attribute *attr, char *buf)
  1205. {
  1206. int ret;
  1207. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1208. mutex_lock(&drvdata->mutex);
  1209. if (drvdata->curr_list >= drvdata->nr_link_list) {
  1210. dev_err(dev, "Select link list to program using curr_list\n");
  1211. ret = -EINVAL;
  1212. goto err;
  1213. }
  1214. if (!drvdata->enable[drvdata->curr_list]) {
  1215. ret = -EINVAL;
  1216. goto err;
  1217. }
  1218. ret = scnprintf(buf, PAGE_SIZE, "%u\n",
  1219. (unsigned int)BVAL(dcc_readl(
  1220. drvdata, DCC_LL_INT_STATUS(drvdata->curr_list)), 1));
  1221. err:
  1222. mutex_unlock(&drvdata->mutex);
  1223. return ret;
  1224. }
  1225. static DEVICE_ATTR_RO(crc_error);
  1226. static ssize_t ready_show(struct device *dev,
  1227. struct device_attribute *attr, char *buf)
  1228. {
  1229. int ret;
  1230. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1231. mutex_lock(&drvdata->mutex);
  1232. if (drvdata->curr_list >= drvdata->nr_link_list) {
  1233. dev_err(dev, "Select link list to program using curr_list\n");
  1234. ret = -EINVAL;
  1235. goto err;
  1236. }
  1237. if (!drvdata->enable[drvdata->curr_list]) {
  1238. ret = -EINVAL;
  1239. goto err;
  1240. }
  1241. ret = scnprintf(buf, PAGE_SIZE, "%u\n",
  1242. (unsigned int)BVAL(dcc_readl(drvdata, DCC_STATUS), 1));
  1243. err:
  1244. mutex_unlock(&drvdata->mutex);
  1245. return ret;
  1246. }
  1247. static DEVICE_ATTR_RO(ready);
  1248. static ssize_t interrupt_disable_show(struct device *dev,
  1249. struct device_attribute *attr,
  1250. char *buf)
  1251. {
  1252. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1253. return scnprintf(buf, PAGE_SIZE, "%u\n",
  1254. (unsigned int)drvdata->interrupt_disable);
  1255. }
  1256. static ssize_t interrupt_disable_store(struct device *dev,
  1257. struct device_attribute *attr,
  1258. const char *buf, size_t size)
  1259. {
  1260. unsigned long val;
  1261. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1262. if (kstrtoul(buf, 16, &val) || val > 1)
  1263. return -EINVAL;
  1264. mutex_lock(&drvdata->mutex);
  1265. drvdata->interrupt_disable = (val ? 1:0);
  1266. mutex_unlock(&drvdata->mutex);
  1267. return size;
  1268. }
  1269. static DEVICE_ATTR_RW(interrupt_disable);
  1270. static int dcc_add_loop(struct dcc_drvdata *drvdata, unsigned long loop_cnt)
  1271. {
  1272. struct dcc_config_entry *entry;
  1273. entry = kzalloc(sizeof(*entry), GFP_KERNEL);
  1274. if (!entry)
  1275. return -ENOMEM;
  1276. entry->loop_cnt = min_t(uint32_t, loop_cnt, MAX_LOOP_CNT);
  1277. entry->index = drvdata->nr_config[drvdata->curr_list]++;
  1278. entry->desc_type = DCC_LOOP_TYPE;
  1279. INIT_LIST_HEAD(&entry->list);
  1280. list_add_tail(&entry->list, &drvdata->cfg_head[drvdata->curr_list]);
  1281. return 0;
  1282. }
  1283. static ssize_t loop_store(struct device *dev,
  1284. struct device_attribute *attr,
  1285. const char *buf, size_t size)
  1286. {
  1287. int ret;
  1288. unsigned long loop_cnt;
  1289. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1290. mutex_lock(&drvdata->mutex);
  1291. if (kstrtoul(buf, 16, &loop_cnt)) {
  1292. ret = -EINVAL;
  1293. goto err;
  1294. }
  1295. if (drvdata->curr_list >= drvdata->nr_link_list) {
  1296. dev_err(dev, "Select link list to program using curr_list\n");
  1297. ret = -EINVAL;
  1298. goto err;
  1299. }
  1300. ret = dcc_add_loop(drvdata, loop_cnt);
  1301. if (ret)
  1302. goto err;
  1303. mutex_unlock(&drvdata->mutex);
  1304. return size;
  1305. err:
  1306. mutex_unlock(&drvdata->mutex);
  1307. return ret;
  1308. }
  1309. static DEVICE_ATTR_WO(loop);
  1310. static int dcc_rd_mod_wr_add(struct dcc_drvdata *drvdata, unsigned int mask,
  1311. unsigned int val)
  1312. {
  1313. int ret = 0;
  1314. struct dcc_config_entry *entry;
  1315. mutex_lock(&drvdata->mutex);
  1316. if (drvdata->curr_list >= drvdata->nr_link_list) {
  1317. dev_err(drvdata->dev, "Select link list to program using curr_list\n");
  1318. ret = -EINVAL;
  1319. goto err;
  1320. }
  1321. if (list_empty(&drvdata->cfg_head[drvdata->curr_list])) {
  1322. dev_err(drvdata->dev, "DCC: No read address programmed\n");
  1323. ret = -EPERM;
  1324. goto err;
  1325. }
  1326. entry = kzalloc(sizeof(*entry), GFP_KERNEL);
  1327. if (!entry) {
  1328. ret = -ENOMEM;
  1329. goto err;
  1330. }
  1331. entry->desc_type = DCC_READ_WRITE_TYPE;
  1332. entry->mask = mask;
  1333. entry->write_val = val;
  1334. entry->index = drvdata->nr_config[drvdata->curr_list]++;
  1335. INIT_LIST_HEAD(&entry->list);
  1336. list_add_tail(&entry->list, &drvdata->cfg_head[drvdata->curr_list]);
  1337. err:
  1338. mutex_unlock(&drvdata->mutex);
  1339. return ret;
  1340. }
  1341. static ssize_t rd_mod_wr_store(struct device *dev,
  1342. struct device_attribute *attr,
  1343. const char *buf, size_t size)
  1344. {
  1345. int ret;
  1346. int nval;
  1347. unsigned int mask, val;
  1348. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1349. nval = sscanf(buf, "%x %x", &mask, &val);
  1350. if (nval <= 1 || nval > 2)
  1351. return -EINVAL;
  1352. ret = dcc_rd_mod_wr_add(drvdata, mask, val);
  1353. if (ret)
  1354. return ret;
  1355. return size;
  1356. }
  1357. static DEVICE_ATTR_WO(rd_mod_wr);
  1358. static int dcc_add_write(struct dcc_drvdata *drvdata, unsigned int addr,
  1359. unsigned int write_val, int apb_bus)
  1360. {
  1361. struct dcc_config_entry *entry;
  1362. entry = kzalloc(sizeof(*entry), GFP_KERNEL);
  1363. if (!entry)
  1364. return -ENOMEM;
  1365. entry->desc_type = DCC_WRITE_TYPE;
  1366. entry->base = addr & BM(4, 31);
  1367. entry->offset = addr - entry->base;
  1368. entry->write_val = write_val;
  1369. entry->index = drvdata->nr_config[drvdata->curr_list]++;
  1370. entry->len = 1;
  1371. entry->apb_bus = apb_bus;
  1372. INIT_LIST_HEAD(&entry->list);
  1373. list_add_tail(&entry->list, &drvdata->cfg_head[drvdata->curr_list]);
  1374. return 0;
  1375. }
  1376. static ssize_t config_write_store(struct device *dev,
  1377. struct device_attribute *attr,
  1378. const char *buf, size_t size)
  1379. {
  1380. int ret;
  1381. int nval;
  1382. unsigned int addr, write_val;
  1383. int apb_bus = 0;
  1384. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1385. mutex_lock(&drvdata->mutex);
  1386. nval = sscanf(buf, "%x %x %d", &addr, &write_val, &apb_bus);
  1387. if ((nval <= 1 || nval > 3) || (apb_bus < 0 || apb_bus > 1)) {
  1388. ret = -EINVAL;
  1389. goto err;
  1390. }
  1391. if (drvdata->curr_list >= drvdata->nr_link_list) {
  1392. dev_err(dev, "Select link list to program using curr_list\n");
  1393. ret = -EINVAL;
  1394. goto err;
  1395. }
  1396. if (nval == 3 && apb_bus == 1)
  1397. apb_bus = 1;
  1398. ret = dcc_add_write(drvdata, addr, write_val, apb_bus);
  1399. if (ret)
  1400. goto err;
  1401. mutex_unlock(&drvdata->mutex);
  1402. return size;
  1403. err:
  1404. mutex_unlock(&drvdata->mutex);
  1405. return ret;
  1406. }
  1407. static DEVICE_ATTR_WO(config_write);
  1408. static ssize_t cti_trig_show(struct device *dev,
  1409. struct device_attribute *attr, char *buf)
  1410. {
  1411. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1412. return scnprintf(buf, PAGE_SIZE, "%d\n", drvdata->cti_trig[drvdata->curr_list]);
  1413. }
  1414. static ssize_t cti_trig_store(struct device *dev,
  1415. struct device_attribute *attr,
  1416. const char *buf, size_t size)
  1417. {
  1418. unsigned long val;
  1419. int ret = 0;
  1420. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1421. if (kstrtoul(buf, 16, &val) || val > 1)
  1422. return -EINVAL;
  1423. mutex_lock(&drvdata->mutex);
  1424. if (drvdata->curr_list >= drvdata->nr_link_list) {
  1425. dev_err(dev, "Select link list to program using curr_list\n");
  1426. ret = -EINVAL;
  1427. goto out;
  1428. }
  1429. if (drvdata->enable[drvdata->curr_list]) {
  1430. ret = -EBUSY;
  1431. goto out;
  1432. }
  1433. if (val)
  1434. drvdata->cti_trig[drvdata->curr_list] = 1;
  1435. else
  1436. drvdata->cti_trig[drvdata->curr_list] = 0;
  1437. ret = size;
  1438. out:
  1439. mutex_unlock(&drvdata->mutex);
  1440. return ret;
  1441. }
  1442. static DEVICE_ATTR_RW(cti_trig);
  1443. static const struct device_attribute *dcc_attrs[] = {
  1444. &dev_attr_func_type,
  1445. &dev_attr_data_sink,
  1446. &dev_attr_trigger,
  1447. &dev_attr_enable,
  1448. &dev_attr_hw_trig,
  1449. &dev_attr_sw_trig,
  1450. &dev_attr_config,
  1451. &dev_attr_config_reset,
  1452. &dev_attr_ready,
  1453. &dev_attr_crc_error,
  1454. &dev_attr_interrupt_disable,
  1455. &dev_attr_loop,
  1456. &dev_attr_rd_mod_wr,
  1457. &dev_attr_curr_list,
  1458. &dev_attr_config_write,
  1459. &dev_attr_cti_trig,
  1460. &dev_attr_ap_ns_qad_override_en,
  1461. NULL,
  1462. };
  1463. static int dcc_create_files(struct device *dev,
  1464. const struct device_attribute **attrs)
  1465. {
  1466. int ret = 0, i;
  1467. for (i = 0; attrs[i] != NULL; i++) {
  1468. ret = device_create_file(dev, attrs[i]);
  1469. if (ret) {
  1470. dev_err(dev, "DCC: Couldn't create sysfs attribute: %s\n",
  1471. attrs[i]->attr.name);
  1472. break;
  1473. }
  1474. }
  1475. return ret;
  1476. }
  1477. static int dcc_sram_open(struct inode *inode, struct file *file)
  1478. {
  1479. struct dcc_drvdata *drvdata = container_of(inode->i_cdev,
  1480. struct dcc_drvdata,
  1481. sram_dev);
  1482. file->private_data = drvdata;
  1483. return 0;
  1484. }
  1485. static ssize_t dcc_sram_read(struct file *file, char __user *data,
  1486. size_t len, loff_t *ppos)
  1487. {
  1488. unsigned char *buf;
  1489. struct dcc_drvdata *drvdata = file->private_data;
  1490. int ret;
  1491. /* EOF check */
  1492. if (drvdata->ram_size <= *ppos)
  1493. return 0;
  1494. if ((*ppos + len) < len
  1495. || (*ppos + len) > drvdata->ram_size)
  1496. len = (drvdata->ram_size - *ppos);
  1497. buf = kzalloc(len, GFP_KERNEL);
  1498. if (!buf)
  1499. return -ENOMEM;
  1500. ret = dcc_sram_memcpy(buf, (drvdata->ram_base + *ppos), len);
  1501. if (ret) {
  1502. dev_err(drvdata->dev,
  1503. "Target address or size not aligned with 4 bytes\n");
  1504. kfree(buf);
  1505. return ret;
  1506. }
  1507. if (copy_to_user(data, buf, len)) {
  1508. dev_err(drvdata->dev,
  1509. "DCC: Couldn't copy all data to user\n");
  1510. kfree(buf);
  1511. return -EFAULT;
  1512. }
  1513. *ppos += len;
  1514. kfree(buf);
  1515. return len;
  1516. }
  1517. static const struct file_operations dcc_sram_fops = {
  1518. .owner = THIS_MODULE,
  1519. .open = dcc_sram_open,
  1520. .read = dcc_sram_read,
  1521. .llseek = no_llseek,
  1522. };
  1523. static int dcc_sram_dev_register(struct dcc_drvdata *drvdata)
  1524. {
  1525. int ret;
  1526. struct device *device;
  1527. dev_t dev;
  1528. ret = alloc_chrdev_region(&dev, 0, 1, drvdata->sram_node);
  1529. if (ret)
  1530. goto err_alloc;
  1531. cdev_init(&drvdata->sram_dev, &dcc_sram_fops);
  1532. drvdata->sram_dev.owner = THIS_MODULE;
  1533. ret = cdev_add(&drvdata->sram_dev, dev, 1);
  1534. if (ret)
  1535. goto err_cdev_add;
  1536. drvdata->sram_class = class_create(THIS_MODULE,
  1537. drvdata->sram_node);
  1538. if (IS_ERR(drvdata->sram_class)) {
  1539. ret = PTR_ERR(drvdata->sram_class);
  1540. goto err_class_create;
  1541. }
  1542. device = device_create(drvdata->sram_class, NULL,
  1543. drvdata->sram_dev.dev, drvdata,
  1544. drvdata->sram_node);
  1545. if (IS_ERR(device)) {
  1546. ret = PTR_ERR(device);
  1547. goto err_dev_create;
  1548. }
  1549. return 0;
  1550. err_dev_create:
  1551. class_destroy(drvdata->sram_class);
  1552. err_class_create:
  1553. cdev_del(&drvdata->sram_dev);
  1554. err_cdev_add:
  1555. unregister_chrdev_region(drvdata->sram_dev.dev, 1);
  1556. err_alloc:
  1557. return ret;
  1558. }
  1559. static void dcc_sram_dev_deregister(struct dcc_drvdata *drvdata)
  1560. {
  1561. device_destroy(drvdata->sram_class, drvdata->sram_dev.dev);
  1562. class_destroy(drvdata->sram_class);
  1563. cdev_del(&drvdata->sram_dev);
  1564. unregister_chrdev_region(drvdata->sram_dev.dev, 1);
  1565. }
  1566. static int dcc_sram_dev_init(struct dcc_drvdata *drvdata)
  1567. {
  1568. int ret = 0;
  1569. size_t node_size;
  1570. char *node_name = "dcc_sram";
  1571. struct device *dev = drvdata->dev;
  1572. node_size = strlen(node_name) + 1;
  1573. drvdata->sram_node = devm_kzalloc(dev, node_size, GFP_KERNEL);
  1574. if (!drvdata->sram_node)
  1575. return -ENOMEM;
  1576. strscpy(drvdata->sram_node, node_name, node_size);
  1577. ret = dcc_sram_dev_register(drvdata);
  1578. if (ret)
  1579. dev_err(drvdata->dev, "DCC: sram node not registered.\n");
  1580. return ret;
  1581. }
  1582. static void dcc_sram_dev_exit(struct dcc_drvdata *drvdata)
  1583. {
  1584. dcc_sram_dev_deregister(drvdata);
  1585. }
  1586. static bool is_valid_for_sec_debug_level(const struct device_node *np);
  1587. static int dcc_dt_parse(struct dcc_drvdata *drvdata, struct device_node *np)
  1588. {
  1589. int i, ret = -1;
  1590. const __be32 *prop;
  1591. uint32_t len, entry, val1, val2, apb_bus;
  1592. uint32_t curr_link_list;
  1593. const char *data_sink;
  1594. if (!is_valid_for_sec_debug_level(np)) {
  1595. dev_warn(drvdata->dev, "List not suitable for this debug level (%s)\n",
  1596. np->name);
  1597. return 0; /* should return '0' to keep going. */
  1598. }
  1599. ret = of_property_read_u32(np, "qcom,curr-link-list",
  1600. &curr_link_list);
  1601. if (ret)
  1602. return ret;
  1603. if (curr_link_list >= drvdata->nr_link_list) {
  1604. dev_err(drvdata->dev, "List configuration failed.\n");
  1605. return ret;
  1606. }
  1607. drvdata->curr_list = curr_link_list;
  1608. if (of_property_read_bool(np, "qcom,ap-qad-override"))
  1609. drvdata->qad_output[drvdata->curr_list] = 1;
  1610. drvdata->data_sink[curr_link_list] = DCC_DATA_SINK_SRAM;
  1611. ret = of_property_read_string(np, "qcom,data-sink",
  1612. &data_sink);
  1613. if (!ret) {
  1614. for (i = 0; i < ARRAY_SIZE(str_dcc_data_sink); i++)
  1615. if (!strcmp(data_sink, str_dcc_data_sink[i])) {
  1616. drvdata->data_sink[curr_link_list] = i;
  1617. break;
  1618. }
  1619. if (i == ARRAY_SIZE(str_dcc_data_sink)) {
  1620. dev_err(drvdata->dev, "Unknown sink type for DCC Using '%s' as data sink\n",
  1621. str_dcc_data_sink[drvdata->data_sink[curr_link_list]]);
  1622. }
  1623. }
  1624. prop = of_get_property(np, "qcom,link-list", &len);
  1625. if (prop) {
  1626. len /= sizeof(__be32);
  1627. i = 0;
  1628. while (i < len) {
  1629. entry = be32_to_cpu(prop[i++]);
  1630. val1 = be32_to_cpu(prop[i++]);
  1631. val2 = be32_to_cpu(prop[i++]);
  1632. apb_bus = be32_to_cpu(prop[i++]);
  1633. switch (entry) {
  1634. case DCC_READ:
  1635. ret = dcc_config_add(drvdata, val1,
  1636. val2, apb_bus);
  1637. break;
  1638. case DCC_READ_WRITE:
  1639. ret = dcc_rd_mod_wr_add(drvdata, val1,
  1640. val2);
  1641. break;
  1642. case DCC_WRITE:
  1643. ret = dcc_add_write(drvdata, val1,
  1644. val2, apb_bus);
  1645. break;
  1646. case DCC_LOOP:
  1647. ret = dcc_add_loop(drvdata, val1);
  1648. break;
  1649. default:
  1650. ret = -EINVAL;
  1651. }
  1652. if (ret) {
  1653. dev_err(drvdata->dev,
  1654. "DCC init time config failed err:%d\n",
  1655. ret);
  1656. break;
  1657. }
  1658. }
  1659. }
  1660. return ret;
  1661. }
  1662. static void dcc_configure_list(struct dcc_drvdata *drvdata,
  1663. struct device_node *np)
  1664. {
  1665. int ret = -1;
  1666. struct device_node *link_node = NULL;
  1667. for_each_available_child_of_node(np, link_node) {
  1668. ret = dcc_dt_parse(drvdata, link_node);
  1669. if (ret) {
  1670. dev_err(drvdata->dev,
  1671. "DCC link list config failed err:%d\n", ret);
  1672. break;
  1673. }
  1674. }
  1675. if (ret == -1)
  1676. ret = dcc_dt_parse(drvdata, np);
  1677. if (!ret)
  1678. dcc_enable(drvdata);
  1679. }
  1680. static int dcc_probe(struct platform_device *pdev)
  1681. {
  1682. int ret, i;
  1683. struct device *dev = &pdev->dev;
  1684. struct dcc_drvdata *drvdata;
  1685. struct resource *res;
  1686. struct md_region md_entry;
  1687. drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
  1688. if (!drvdata)
  1689. return -ENOMEM;
  1690. drvdata->dev = &pdev->dev;
  1691. platform_set_drvdata(pdev, drvdata);
  1692. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dcc-base");
  1693. if (!res)
  1694. return -EINVAL;
  1695. drvdata->reg_size = resource_size(res);
  1696. drvdata->base = devm_ioremap(dev, res->start, resource_size(res));
  1697. if (!drvdata->base)
  1698. return -ENOMEM;
  1699. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  1700. "dcc-ram-base");
  1701. if (!res)
  1702. return -EINVAL;
  1703. drvdata->ram_size = resource_size(res);
  1704. drvdata->ram_base = devm_ioremap(dev, res->start, resource_size(res));
  1705. if (!drvdata->ram_base)
  1706. return -ENOMEM;
  1707. ret = of_property_read_u32(pdev->dev.of_node, "dcc-ram-offset",
  1708. &drvdata->ram_offset);
  1709. if (ret)
  1710. return -EINVAL;
  1711. drvdata->ll_state_cnt = of_property_count_elems_of_size(dev->of_node,
  1712. "ll-reg-offsets", sizeof(u32)); /* optional */
  1713. if (drvdata->ll_state_cnt <= 0) {
  1714. dev_info(dev, "ll-reg-offsets property doesn't exist\n");
  1715. drvdata->ll_state_cnt = 0;
  1716. } else {
  1717. ret = of_property_read_u32(pdev->dev.of_node, "per-ll-reg-cnt",
  1718. &drvdata->per_ll_reg_cnt);
  1719. if (ret)
  1720. return -EINVAL;
  1721. }
  1722. ret = of_property_read_u32(pdev->dev.of_node, "dcc-mem-map-ver",
  1723. &drvdata->mem_map_ver);
  1724. if (ret) {
  1725. if (BVAL(dcc_readl(drvdata, DCC_HW_INFO), 9))
  1726. drvdata->mem_map_ver = DCC_MEM_MAP_VER3;
  1727. else if ((dcc_readl(drvdata, DCC_HW_INFO) & 0x3F) == 0x3F)
  1728. drvdata->mem_map_ver = DCC_MEM_MAP_VER2;
  1729. else
  1730. drvdata->mem_map_ver = DCC_MEM_MAP_VER1;
  1731. }
  1732. if (drvdata->mem_map_ver < DCC_MEM_MAP_VER1
  1733. || drvdata->mem_map_ver > DCC_MEM_MAP_VER3)
  1734. return -EINVAL;
  1735. if (drvdata->mem_map_ver) {
  1736. drvdata->nr_link_list = dcc_readl(drvdata, DCC_LL_NUM_INFO);
  1737. if (drvdata->nr_link_list == 0)
  1738. return -EINVAL;
  1739. } else {
  1740. drvdata->nr_link_list = DCC_MAX_LINK_LIST;
  1741. }
  1742. if ((dcc_readl(drvdata, DCC_HW_INFO) & BIT(6)) == BIT(6))
  1743. drvdata->loopoff = DCC_FIX_LOOP_OFFSET;
  1744. else
  1745. drvdata->loopoff = get_bitmask_order((drvdata->ram_size +
  1746. drvdata->ram_offset) / 4 - 1);
  1747. mutex_init(&drvdata->mutex);
  1748. drvdata->data_sink = devm_kzalloc(dev, drvdata->nr_link_list *
  1749. sizeof(enum dcc_data_sink), GFP_KERNEL);
  1750. if (!drvdata->data_sink)
  1751. return -ENOMEM;
  1752. drvdata->func_type = devm_kzalloc(dev, drvdata->nr_link_list *
  1753. sizeof(enum dcc_func_type), GFP_KERNEL);
  1754. if (!drvdata->func_type)
  1755. return -ENOMEM;
  1756. drvdata->enable = devm_kzalloc(dev, drvdata->nr_link_list *
  1757. sizeof(bool), GFP_KERNEL);
  1758. if (!drvdata->enable)
  1759. return -ENOMEM;
  1760. drvdata->hw_trig = devm_kzalloc(dev, drvdata->nr_link_list *
  1761. sizeof(bool), GFP_KERNEL);
  1762. if (!drvdata->hw_trig)
  1763. return -ENOMEM;
  1764. drvdata->sw_trig = devm_kzalloc(dev, drvdata->nr_link_list *
  1765. sizeof(bool), GFP_KERNEL);
  1766. if (!drvdata->sw_trig)
  1767. return -ENOMEM;
  1768. drvdata->configured = devm_kzalloc(dev, drvdata->nr_link_list *
  1769. sizeof(bool), GFP_KERNEL);
  1770. if (!drvdata->configured)
  1771. return -ENOMEM;
  1772. drvdata->nr_config = devm_kzalloc(dev, drvdata->nr_link_list *
  1773. sizeof(uint32_t), GFP_KERNEL);
  1774. if (!drvdata->nr_config)
  1775. return -ENOMEM;
  1776. drvdata->cti_trig = devm_kzalloc(dev, drvdata->nr_link_list *
  1777. sizeof(uint8_t), GFP_KERNEL);
  1778. if (!drvdata->cti_trig)
  1779. return -ENOMEM;
  1780. drvdata->qad_output = devm_kzalloc(dev, drvdata->nr_link_list *
  1781. sizeof(uint8_t), GFP_KERNEL);
  1782. if (!drvdata->qad_output)
  1783. return -ENOMEM;
  1784. drvdata->cfg_head = devm_kzalloc(dev, drvdata->nr_link_list *
  1785. sizeof(struct list_head), GFP_KERNEL);
  1786. if (!drvdata->cfg_head)
  1787. return -ENOMEM;
  1788. for (i = 0; i < drvdata->nr_link_list; i++) {
  1789. INIT_LIST_HEAD(&drvdata->cfg_head[i]);
  1790. drvdata->nr_config[i] = 0;
  1791. drvdata->hw_trig[i] = true;
  1792. drvdata->sw_trig[i] = false;
  1793. }
  1794. memset_io(drvdata->ram_base, 0, drvdata->ram_size);
  1795. drvdata->curr_list = DCC_INVALID_LINK_LIST;
  1796. ret = dcc_sram_dev_init(drvdata);
  1797. if (ret)
  1798. goto err;
  1799. ret = dcc_create_files(dev, dcc_attrs);
  1800. if (ret)
  1801. goto err;
  1802. dcc_configure_list(drvdata, pdev->dev.of_node);
  1803. /* Add dcc info to minidump table */
  1804. strscpy(md_entry.name, "KDCCDATA", sizeof(md_entry.name));
  1805. md_entry.virt_addr = (uintptr_t)drvdata->ram_base;
  1806. md_entry.phys_addr = res->start;
  1807. md_entry.size = drvdata->ram_size;
  1808. if (msm_minidump_add_region(&md_entry) < 0)
  1809. dev_err(drvdata->dev, "Failed to add DCC data in Minidump\n");
  1810. return 0;
  1811. err:
  1812. return ret;
  1813. }
  1814. static int dcc_remove(struct platform_device *pdev)
  1815. {
  1816. struct dcc_drvdata *drvdata = platform_get_drvdata(pdev);
  1817. dcc_sram_dev_exit(drvdata);
  1818. dcc_config_reset(drvdata);
  1819. return 0;
  1820. }
  1821. #if defined(CONFIG_DEEPSLEEP) || defined(CONFIG_HIBERNATION)
  1822. static int dcc_state_store(struct device *dev)
  1823. {
  1824. int ret = 0, n, i;
  1825. u32 *ll_reg_offsets;
  1826. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1827. if (!drvdata) {
  1828. dev_dbg(dev, "Invalid drvdata\n");
  1829. return -EINVAL;
  1830. }
  1831. if (!is_dcc_enabled(drvdata)) {
  1832. dev_dbg(dev, "DCC is not enabled.\n");
  1833. return 0;
  1834. }
  1835. if (!drvdata->ll_state_cnt) {
  1836. dev_dbg(dev, "reg-offsets property doesn't exist\n");
  1837. return 0;
  1838. }
  1839. n = drvdata->ll_state_cnt;
  1840. ll_reg_offsets = kcalloc(n, sizeof(u32), GFP_KERNEL);
  1841. if (!ll_reg_offsets) {
  1842. dev_err(dev, "Failed to alloc memory for reg_offsets\n");
  1843. return -ENOMEM;
  1844. }
  1845. ret = of_property_read_variable_u32_array(dev->of_node,
  1846. "ll-reg-offsets", ll_reg_offsets, n, n);
  1847. if (ret < 0) {
  1848. dev_dbg(dev, "Not found reg-offsets property\n");
  1849. goto out;
  1850. }
  1851. drvdata->ll_state = kzalloc(n * sizeof(struct reg_state), GFP_KERNEL);
  1852. if (!drvdata->ll_state) {
  1853. ret = -ENOMEM;
  1854. goto out;
  1855. }
  1856. drvdata->sram_state = kzalloc(drvdata->ram_size, GFP_KERNEL);
  1857. if (!drvdata->sram_state) {
  1858. ret = -ENOMEM;
  1859. goto sram_alloc_err;
  1860. }
  1861. if (dcc_sram_memcpy(drvdata->sram_state, drvdata->ram_base,
  1862. drvdata->ram_cpy_len)) {
  1863. dev_err(dev, "Failed to copy DCC SRAM contents\n");
  1864. ret = -EINVAL;
  1865. goto sram_cpy_err;
  1866. }
  1867. mutex_lock(&drvdata->mutex);
  1868. for (i = 0; i < n; i++) {
  1869. drvdata->ll_state[i].offset = ll_reg_offsets[i];
  1870. drvdata->ll_state[i].val = __raw_readl(drvdata->base + ll_reg_offsets[i]);
  1871. }
  1872. mutex_unlock(&drvdata->mutex);
  1873. kfree(ll_reg_offsets);
  1874. return 0;
  1875. sram_cpy_err:
  1876. kfree(drvdata->sram_state);
  1877. drvdata->sram_state = NULL;
  1878. sram_alloc_err:
  1879. kfree(drvdata->ll_state);
  1880. drvdata->ll_state = NULL;
  1881. out:
  1882. kfree(ll_reg_offsets);
  1883. return ret;
  1884. }
  1885. static int dcc_state_restore(struct device *dev)
  1886. {
  1887. int n, i, j, dcc_ll_index;
  1888. int ret = 0;
  1889. int *sram_state;
  1890. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1891. uint32_t ram_cpy_wlen;
  1892. if (!drvdata) {
  1893. dev_err(dev, "Err: %s Invalid argument\n", __func__);
  1894. return -EINVAL;
  1895. }
  1896. if (!is_dcc_enabled(drvdata)) {
  1897. dev_dbg(dev, "DCC is not enabled.\n");
  1898. ret = 0;
  1899. goto out;
  1900. }
  1901. if (!drvdata->ll_state_cnt) {
  1902. dev_dbg(dev, "reg-offsets property doesn't exist\n");
  1903. ret = 0;
  1904. goto out;
  1905. }
  1906. if (!drvdata->sram_state || !drvdata->ll_state) {
  1907. dev_err(dev, "Err: Restore state is NULL\n");
  1908. ret = -EINVAL;
  1909. goto out;
  1910. }
  1911. ram_cpy_wlen = drvdata->ram_cpy_len / 4;
  1912. sram_state = drvdata->sram_state;
  1913. n = drvdata->ll_state_cnt;
  1914. for (i = 0; i < ram_cpy_wlen; i++)
  1915. dcc_sram_writel(drvdata, sram_state[i], i * 4);
  1916. mutex_lock(&drvdata->mutex);
  1917. for (i = 0, dcc_ll_index = 0;
  1918. (dcc_ll_index < drvdata->nr_link_list) && (i < n);
  1919. dcc_ll_index++) {
  1920. if (list_empty(&drvdata->cfg_head[dcc_ll_index])) {
  1921. i += drvdata->per_ll_reg_cnt;
  1922. continue;
  1923. }
  1924. for (j = 0; j < drvdata->per_ll_reg_cnt; i++, j++)
  1925. __raw_writel(drvdata->ll_state[i].val,
  1926. drvdata->base + drvdata->ll_state[i].offset);
  1927. }
  1928. mutex_unlock(&drvdata->mutex);
  1929. out:
  1930. kfree(drvdata->sram_state);
  1931. drvdata->sram_state = NULL;
  1932. kfree(drvdata->ll_state);
  1933. drvdata->ll_state = NULL;
  1934. return ret;
  1935. }
  1936. #endif
  1937. #ifdef CONFIG_DEEPSLEEP
  1938. static int dcc_v2_suspend(struct device *dev)
  1939. {
  1940. if (pm_suspend_via_firmware())
  1941. return dcc_state_store(dev);
  1942. return 0;
  1943. }
  1944. static int dcc_v2_resume(struct device *dev)
  1945. {
  1946. if (pm_suspend_via_firmware())
  1947. return dcc_state_restore(dev);
  1948. return 0;
  1949. }
  1950. #endif
  1951. #ifdef CONFIG_HIBERNATION
  1952. static int dcc_v2_freeze(struct device *dev)
  1953. {
  1954. return dcc_state_store(dev);
  1955. }
  1956. static int dcc_v2_restore(struct device *dev)
  1957. {
  1958. return dcc_state_restore(dev);
  1959. }
  1960. static int dcc_v2_thaw(struct device *dev)
  1961. {
  1962. struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
  1963. if (!drvdata || !drvdata->ll_state || !drvdata->sram_state) {
  1964. dev_err(dev, "Err: %s Invalid argument\n", __func__);
  1965. return -EINVAL;
  1966. }
  1967. kfree(drvdata->sram_state);
  1968. kfree(drvdata->ll_state);
  1969. drvdata->sram_state = NULL;
  1970. drvdata->ll_state = NULL;
  1971. return 0;
  1972. }
  1973. #endif
  1974. static const struct dev_pm_ops dcc_v2_pm_ops = {
  1975. #ifdef CONFIG_DEEPSLEEP
  1976. .suspend = dcc_v2_suspend,
  1977. .resume = dcc_v2_resume,
  1978. #endif
  1979. #ifdef CONFIG_HIBERNATION
  1980. .freeze = dcc_v2_freeze,
  1981. .restore = dcc_v2_restore,
  1982. .thaw = dcc_v2_thaw,
  1983. #endif
  1984. };
  1985. static const struct of_device_id msm_dcc_match[] = {
  1986. { .compatible = "qcom,dcc-v2"},
  1987. {}
  1988. };
  1989. static struct platform_driver dcc_driver = {
  1990. .probe = dcc_probe,
  1991. .remove = dcc_remove,
  1992. .driver = {
  1993. .name = "msm-dcc",
  1994. .of_match_table = msm_dcc_match,
  1995. .pm = &dcc_v2_pm_ops,
  1996. },
  1997. };
  1998. module_platform_driver(dcc_driver);
  1999. MODULE_LICENSE("GPL");
  2000. MODULE_DESCRIPTION("MSM data capture and compare engine");
  2001. #if IS_ENABLED(CONFIG_SEC_QC_DEBUG)
  2002. #include <linux/samsung/debug/sec_debug.h>
  2003. #include <linux/samsung/sec_of.h>
  2004. static bool is_valid_for_sec_debug_level(const struct device_node *node)
  2005. {
  2006. unsigned int sec_dbg_level = sec_debug_level();
  2007. int err;
  2008. err = sec_of_test_debug_level(node, "sec,debug_level", sec_dbg_level);
  2009. if (err == -EINVAL)
  2010. return false;
  2011. return true;
  2012. }
  2013. #else
  2014. static bool is_valid_for_sec_debug_level(const struct device_node *node) { return true; }
  2015. #endif