ixp4xx-qmgr.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Intel IXP4xx Queue Manager driver for Linux
  4. *
  5. * Copyright (C) 2007 Krzysztof Halasa <[email protected]>
  6. */
  7. #include <linux/ioport.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/of.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/soc/ixp4xx/qmgr.h>
  14. #include <linux/soc/ixp4xx/cpu.h>
  15. static struct qmgr_regs __iomem *qmgr_regs;
  16. static int qmgr_irq_1;
  17. static int qmgr_irq_2;
  18. static spinlock_t qmgr_lock;
  19. static u32 used_sram_bitmap[4]; /* 128 16-dword pages */
  20. static void (*irq_handlers[QUEUES])(void *pdev);
  21. static void *irq_pdevs[QUEUES];
  22. #if DEBUG_QMGR
  23. char qmgr_queue_descs[QUEUES][32];
  24. #endif
  25. void qmgr_put_entry(unsigned int queue, u32 val)
  26. {
  27. #if DEBUG_QMGR
  28. BUG_ON(!qmgr_queue_descs[queue]); /* not yet requested */
  29. printk(KERN_DEBUG "Queue %s(%i) put %X\n",
  30. qmgr_queue_descs[queue], queue, val);
  31. #endif
  32. __raw_writel(val, &qmgr_regs->acc[queue][0]);
  33. }
  34. u32 qmgr_get_entry(unsigned int queue)
  35. {
  36. u32 val;
  37. val = __raw_readl(&qmgr_regs->acc[queue][0]);
  38. #if DEBUG_QMGR
  39. BUG_ON(!qmgr_queue_descs[queue]); /* not yet requested */
  40. printk(KERN_DEBUG "Queue %s(%i) get %X\n",
  41. qmgr_queue_descs[queue], queue, val);
  42. #endif
  43. return val;
  44. }
  45. static int __qmgr_get_stat1(unsigned int queue)
  46. {
  47. return (__raw_readl(&qmgr_regs->stat1[queue >> 3])
  48. >> ((queue & 7) << 2)) & 0xF;
  49. }
  50. static int __qmgr_get_stat2(unsigned int queue)
  51. {
  52. BUG_ON(queue >= HALF_QUEUES);
  53. return (__raw_readl(&qmgr_regs->stat2[queue >> 4])
  54. >> ((queue & 0xF) << 1)) & 0x3;
  55. }
  56. /**
  57. * qmgr_stat_empty() - checks if a hardware queue is empty
  58. * @queue: queue number
  59. *
  60. * Returns non-zero value if the queue is empty.
  61. */
  62. int qmgr_stat_empty(unsigned int queue)
  63. {
  64. BUG_ON(queue >= HALF_QUEUES);
  65. return __qmgr_get_stat1(queue) & QUEUE_STAT1_EMPTY;
  66. }
  67. /**
  68. * qmgr_stat_below_low_watermark() - checks if a queue is below low watermark
  69. * @queue: queue number
  70. *
  71. * Returns non-zero value if the queue is below low watermark.
  72. */
  73. int qmgr_stat_below_low_watermark(unsigned int queue)
  74. {
  75. if (queue >= HALF_QUEUES)
  76. return (__raw_readl(&qmgr_regs->statne_h) >>
  77. (queue - HALF_QUEUES)) & 0x01;
  78. return __qmgr_get_stat1(queue) & QUEUE_STAT1_NEARLY_EMPTY;
  79. }
  80. /**
  81. * qmgr_stat_full() - checks if a hardware queue is full
  82. * @queue: queue number
  83. *
  84. * Returns non-zero value if the queue is full.
  85. */
  86. int qmgr_stat_full(unsigned int queue)
  87. {
  88. if (queue >= HALF_QUEUES)
  89. return (__raw_readl(&qmgr_regs->statf_h) >>
  90. (queue - HALF_QUEUES)) & 0x01;
  91. return __qmgr_get_stat1(queue) & QUEUE_STAT1_FULL;
  92. }
  93. /**
  94. * qmgr_stat_overflow() - checks if a hardware queue experienced overflow
  95. * @queue: queue number
  96. *
  97. * Returns non-zero value if the queue experienced overflow.
  98. */
  99. int qmgr_stat_overflow(unsigned int queue)
  100. {
  101. return __qmgr_get_stat2(queue) & QUEUE_STAT2_OVERFLOW;
  102. }
  103. void qmgr_set_irq(unsigned int queue, int src,
  104. void (*handler)(void *pdev), void *pdev)
  105. {
  106. unsigned long flags;
  107. spin_lock_irqsave(&qmgr_lock, flags);
  108. if (queue < HALF_QUEUES) {
  109. u32 __iomem *reg;
  110. int bit;
  111. BUG_ON(src > QUEUE_IRQ_SRC_NOT_FULL);
  112. reg = &qmgr_regs->irqsrc[queue >> 3]; /* 8 queues per u32 */
  113. bit = (queue % 8) * 4; /* 3 bits + 1 reserved bit per queue */
  114. __raw_writel((__raw_readl(reg) & ~(7 << bit)) | (src << bit),
  115. reg);
  116. } else
  117. /* IRQ source for queues 32-63 is fixed */
  118. BUG_ON(src != QUEUE_IRQ_SRC_NOT_NEARLY_EMPTY);
  119. irq_handlers[queue] = handler;
  120. irq_pdevs[queue] = pdev;
  121. spin_unlock_irqrestore(&qmgr_lock, flags);
  122. }
  123. static irqreturn_t qmgr_irq1_a0(int irq, void *pdev)
  124. {
  125. int i, ret = 0;
  126. u32 en_bitmap, src, stat;
  127. /* ACK - it may clear any bits so don't rely on it */
  128. __raw_writel(0xFFFFFFFF, &qmgr_regs->irqstat[0]);
  129. en_bitmap = __raw_readl(&qmgr_regs->irqen[0]);
  130. while (en_bitmap) {
  131. i = __fls(en_bitmap); /* number of the last "low" queue */
  132. en_bitmap &= ~BIT(i);
  133. src = __raw_readl(&qmgr_regs->irqsrc[i >> 3]);
  134. stat = __raw_readl(&qmgr_regs->stat1[i >> 3]);
  135. if (src & 4) /* the IRQ condition is inverted */
  136. stat = ~stat;
  137. if (stat & BIT(src & 3)) {
  138. irq_handlers[i](irq_pdevs[i]);
  139. ret = IRQ_HANDLED;
  140. }
  141. }
  142. return ret;
  143. }
  144. static irqreturn_t qmgr_irq2_a0(int irq, void *pdev)
  145. {
  146. int i, ret = 0;
  147. u32 req_bitmap;
  148. /* ACK - it may clear any bits so don't rely on it */
  149. __raw_writel(0xFFFFFFFF, &qmgr_regs->irqstat[1]);
  150. req_bitmap = __raw_readl(&qmgr_regs->irqen[1]) &
  151. __raw_readl(&qmgr_regs->statne_h);
  152. while (req_bitmap) {
  153. i = __fls(req_bitmap); /* number of the last "high" queue */
  154. req_bitmap &= ~BIT(i);
  155. irq_handlers[HALF_QUEUES + i](irq_pdevs[HALF_QUEUES + i]);
  156. ret = IRQ_HANDLED;
  157. }
  158. return ret;
  159. }
  160. static irqreturn_t qmgr_irq(int irq, void *pdev)
  161. {
  162. int i, half = (irq == qmgr_irq_1 ? 0 : 1);
  163. u32 req_bitmap = __raw_readl(&qmgr_regs->irqstat[half]);
  164. if (!req_bitmap)
  165. return 0;
  166. __raw_writel(req_bitmap, &qmgr_regs->irqstat[half]); /* ACK */
  167. while (req_bitmap) {
  168. i = __fls(req_bitmap); /* number of the last queue */
  169. req_bitmap &= ~BIT(i);
  170. i += half * HALF_QUEUES;
  171. irq_handlers[i](irq_pdevs[i]);
  172. }
  173. return IRQ_HANDLED;
  174. }
  175. void qmgr_enable_irq(unsigned int queue)
  176. {
  177. unsigned long flags;
  178. int half = queue / 32;
  179. u32 mask = 1 << (queue & (HALF_QUEUES - 1));
  180. spin_lock_irqsave(&qmgr_lock, flags);
  181. __raw_writel(__raw_readl(&qmgr_regs->irqen[half]) | mask,
  182. &qmgr_regs->irqen[half]);
  183. spin_unlock_irqrestore(&qmgr_lock, flags);
  184. }
  185. void qmgr_disable_irq(unsigned int queue)
  186. {
  187. unsigned long flags;
  188. int half = queue / 32;
  189. u32 mask = 1 << (queue & (HALF_QUEUES - 1));
  190. spin_lock_irqsave(&qmgr_lock, flags);
  191. __raw_writel(__raw_readl(&qmgr_regs->irqen[half]) & ~mask,
  192. &qmgr_regs->irqen[half]);
  193. __raw_writel(mask, &qmgr_regs->irqstat[half]); /* clear */
  194. spin_unlock_irqrestore(&qmgr_lock, flags);
  195. }
  196. static inline void shift_mask(u32 *mask)
  197. {
  198. mask[3] = mask[3] << 1 | mask[2] >> 31;
  199. mask[2] = mask[2] << 1 | mask[1] >> 31;
  200. mask[1] = mask[1] << 1 | mask[0] >> 31;
  201. mask[0] <<= 1;
  202. }
  203. #if DEBUG_QMGR
  204. int qmgr_request_queue(unsigned int queue, unsigned int len /* dwords */,
  205. unsigned int nearly_empty_watermark,
  206. unsigned int nearly_full_watermark,
  207. const char *desc_format, const char* name)
  208. #else
  209. int __qmgr_request_queue(unsigned int queue, unsigned int len /* dwords */,
  210. unsigned int nearly_empty_watermark,
  211. unsigned int nearly_full_watermark)
  212. #endif
  213. {
  214. u32 cfg, addr = 0, mask[4]; /* in 16-dwords */
  215. int err;
  216. BUG_ON(queue >= QUEUES);
  217. if ((nearly_empty_watermark | nearly_full_watermark) & ~7)
  218. return -EINVAL;
  219. switch (len) {
  220. case 16:
  221. cfg = 0 << 24;
  222. mask[0] = 0x1;
  223. break;
  224. case 32:
  225. cfg = 1 << 24;
  226. mask[0] = 0x3;
  227. break;
  228. case 64:
  229. cfg = 2 << 24;
  230. mask[0] = 0xF;
  231. break;
  232. case 128:
  233. cfg = 3 << 24;
  234. mask[0] = 0xFF;
  235. break;
  236. default:
  237. return -EINVAL;
  238. }
  239. cfg |= nearly_empty_watermark << 26;
  240. cfg |= nearly_full_watermark << 29;
  241. len /= 16; /* in 16-dwords: 1, 2, 4 or 8 */
  242. mask[1] = mask[2] = mask[3] = 0;
  243. if (!try_module_get(THIS_MODULE))
  244. return -ENODEV;
  245. spin_lock_irq(&qmgr_lock);
  246. if (__raw_readl(&qmgr_regs->sram[queue])) {
  247. err = -EBUSY;
  248. goto err;
  249. }
  250. while (1) {
  251. if (!(used_sram_bitmap[0] & mask[0]) &&
  252. !(used_sram_bitmap[1] & mask[1]) &&
  253. !(used_sram_bitmap[2] & mask[2]) &&
  254. !(used_sram_bitmap[3] & mask[3]))
  255. break; /* found free space */
  256. addr++;
  257. shift_mask(mask);
  258. if (addr + len > ARRAY_SIZE(qmgr_regs->sram)) {
  259. printk(KERN_ERR "qmgr: no free SRAM space for"
  260. " queue %i\n", queue);
  261. err = -ENOMEM;
  262. goto err;
  263. }
  264. }
  265. used_sram_bitmap[0] |= mask[0];
  266. used_sram_bitmap[1] |= mask[1];
  267. used_sram_bitmap[2] |= mask[2];
  268. used_sram_bitmap[3] |= mask[3];
  269. __raw_writel(cfg | (addr << 14), &qmgr_regs->sram[queue]);
  270. #if DEBUG_QMGR
  271. snprintf(qmgr_queue_descs[queue], sizeof(qmgr_queue_descs[0]),
  272. desc_format, name);
  273. printk(KERN_DEBUG "qmgr: requested queue %s(%i) addr = 0x%02X\n",
  274. qmgr_queue_descs[queue], queue, addr);
  275. #endif
  276. spin_unlock_irq(&qmgr_lock);
  277. return 0;
  278. err:
  279. spin_unlock_irq(&qmgr_lock);
  280. module_put(THIS_MODULE);
  281. return err;
  282. }
  283. void qmgr_release_queue(unsigned int queue)
  284. {
  285. u32 cfg, addr, mask[4];
  286. BUG_ON(queue >= QUEUES); /* not in valid range */
  287. spin_lock_irq(&qmgr_lock);
  288. cfg = __raw_readl(&qmgr_regs->sram[queue]);
  289. addr = (cfg >> 14) & 0xFF;
  290. BUG_ON(!addr); /* not requested */
  291. switch ((cfg >> 24) & 3) {
  292. case 0: mask[0] = 0x1; break;
  293. case 1: mask[0] = 0x3; break;
  294. case 2: mask[0] = 0xF; break;
  295. case 3: mask[0] = 0xFF; break;
  296. }
  297. mask[1] = mask[2] = mask[3] = 0;
  298. while (addr--)
  299. shift_mask(mask);
  300. #if DEBUG_QMGR
  301. printk(KERN_DEBUG "qmgr: releasing queue %s(%i)\n",
  302. qmgr_queue_descs[queue], queue);
  303. qmgr_queue_descs[queue][0] = '\x0';
  304. #endif
  305. while ((addr = qmgr_get_entry(queue)))
  306. printk(KERN_ERR "qmgr: released queue %i not empty: 0x%08X\n",
  307. queue, addr);
  308. __raw_writel(0, &qmgr_regs->sram[queue]);
  309. used_sram_bitmap[0] &= ~mask[0];
  310. used_sram_bitmap[1] &= ~mask[1];
  311. used_sram_bitmap[2] &= ~mask[2];
  312. used_sram_bitmap[3] &= ~mask[3];
  313. irq_handlers[queue] = NULL; /* catch IRQ bugs */
  314. spin_unlock_irq(&qmgr_lock);
  315. module_put(THIS_MODULE);
  316. }
  317. static int ixp4xx_qmgr_probe(struct platform_device *pdev)
  318. {
  319. int i, err;
  320. irq_handler_t handler1, handler2;
  321. struct device *dev = &pdev->dev;
  322. struct resource *res;
  323. int irq1, irq2;
  324. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  325. if (!res)
  326. return -ENODEV;
  327. qmgr_regs = devm_ioremap_resource(dev, res);
  328. if (IS_ERR(qmgr_regs))
  329. return PTR_ERR(qmgr_regs);
  330. irq1 = platform_get_irq(pdev, 0);
  331. if (irq1 <= 0)
  332. return irq1 ? irq1 : -EINVAL;
  333. qmgr_irq_1 = irq1;
  334. irq2 = platform_get_irq(pdev, 1);
  335. if (irq2 <= 0)
  336. return irq2 ? irq2 : -EINVAL;
  337. qmgr_irq_2 = irq2;
  338. /* reset qmgr registers */
  339. for (i = 0; i < 4; i++) {
  340. __raw_writel(0x33333333, &qmgr_regs->stat1[i]);
  341. __raw_writel(0, &qmgr_regs->irqsrc[i]);
  342. }
  343. for (i = 0; i < 2; i++) {
  344. __raw_writel(0, &qmgr_regs->stat2[i]);
  345. __raw_writel(0xFFFFFFFF, &qmgr_regs->irqstat[i]); /* clear */
  346. __raw_writel(0, &qmgr_regs->irqen[i]);
  347. }
  348. __raw_writel(0xFFFFFFFF, &qmgr_regs->statne_h);
  349. __raw_writel(0, &qmgr_regs->statf_h);
  350. for (i = 0; i < QUEUES; i++)
  351. __raw_writel(0, &qmgr_regs->sram[i]);
  352. if (cpu_is_ixp42x_rev_a0()) {
  353. handler1 = qmgr_irq1_a0;
  354. handler2 = qmgr_irq2_a0;
  355. } else
  356. handler1 = handler2 = qmgr_irq;
  357. err = devm_request_irq(dev, irq1, handler1, 0, "IXP4xx Queue Manager",
  358. NULL);
  359. if (err) {
  360. dev_err(dev, "failed to request IRQ%i (%i)\n",
  361. irq1, err);
  362. return err;
  363. }
  364. err = devm_request_irq(dev, irq2, handler2, 0, "IXP4xx Queue Manager",
  365. NULL);
  366. if (err) {
  367. dev_err(dev, "failed to request IRQ%i (%i)\n",
  368. irq2, err);
  369. return err;
  370. }
  371. used_sram_bitmap[0] = 0xF; /* 4 first pages reserved for config */
  372. spin_lock_init(&qmgr_lock);
  373. dev_info(dev, "IXP4xx Queue Manager initialized.\n");
  374. return 0;
  375. }
  376. static int ixp4xx_qmgr_remove(struct platform_device *pdev)
  377. {
  378. synchronize_irq(qmgr_irq_1);
  379. synchronize_irq(qmgr_irq_2);
  380. return 0;
  381. }
  382. static const struct of_device_id ixp4xx_qmgr_of_match[] = {
  383. {
  384. .compatible = "intel,ixp4xx-ahb-queue-manager",
  385. },
  386. {},
  387. };
  388. static struct platform_driver ixp4xx_qmgr_driver = {
  389. .driver = {
  390. .name = "ixp4xx-qmgr",
  391. .of_match_table = ixp4xx_qmgr_of_match,
  392. },
  393. .probe = ixp4xx_qmgr_probe,
  394. .remove = ixp4xx_qmgr_remove,
  395. };
  396. module_platform_driver(ixp4xx_qmgr_driver);
  397. MODULE_LICENSE("GPL v2");
  398. MODULE_AUTHOR("Krzysztof Halasa");
  399. EXPORT_SYMBOL(qmgr_put_entry);
  400. EXPORT_SYMBOL(qmgr_get_entry);
  401. EXPORT_SYMBOL(qmgr_stat_empty);
  402. EXPORT_SYMBOL(qmgr_stat_below_low_watermark);
  403. EXPORT_SYMBOL(qmgr_stat_full);
  404. EXPORT_SYMBOL(qmgr_stat_overflow);
  405. EXPORT_SYMBOL(qmgr_set_irq);
  406. EXPORT_SYMBOL(qmgr_enable_irq);
  407. EXPORT_SYMBOL(qmgr_disable_irq);
  408. #if DEBUG_QMGR
  409. EXPORT_SYMBOL(qmgr_queue_descs);
  410. EXPORT_SYMBOL(qmgr_request_queue);
  411. #else
  412. EXPORT_SYMBOL(__qmgr_request_queue);
  413. #endif
  414. EXPORT_SYMBOL(qmgr_release_queue);