ti_k3_dsp_remoteproc.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * TI K3 DSP Remote Processor(s) driver
  4. *
  5. * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
  6. * Suman Anna <[email protected]>
  7. */
  8. #include <linux/io.h>
  9. #include <linux/mailbox_client.h>
  10. #include <linux/module.h>
  11. #include <linux/of_device.h>
  12. #include <linux/of_reserved_mem.h>
  13. #include <linux/omap-mailbox.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/remoteproc.h>
  16. #include <linux/reset.h>
  17. #include <linux/slab.h>
  18. #include "omap_remoteproc.h"
  19. #include "remoteproc_internal.h"
  20. #include "ti_sci_proc.h"
  21. #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1)
  22. /**
  23. * struct k3_dsp_mem - internal memory structure
  24. * @cpu_addr: MPU virtual address of the memory region
  25. * @bus_addr: Bus address used to access the memory region
  26. * @dev_addr: Device address of the memory region from DSP view
  27. * @size: Size of the memory region
  28. */
  29. struct k3_dsp_mem {
  30. void __iomem *cpu_addr;
  31. phys_addr_t bus_addr;
  32. u32 dev_addr;
  33. size_t size;
  34. };
  35. /**
  36. * struct k3_dsp_mem_data - memory definitions for a DSP
  37. * @name: name for this memory entry
  38. * @dev_addr: device address for the memory entry
  39. */
  40. struct k3_dsp_mem_data {
  41. const char *name;
  42. const u32 dev_addr;
  43. };
  44. /**
  45. * struct k3_dsp_dev_data - device data structure for a DSP
  46. * @mems: pointer to memory definitions for a DSP
  47. * @num_mems: number of memory regions in @mems
  48. * @boot_align_addr: boot vector address alignment granularity
  49. * @uses_lreset: flag to denote the need for local reset management
  50. */
  51. struct k3_dsp_dev_data {
  52. const struct k3_dsp_mem_data *mems;
  53. u32 num_mems;
  54. u32 boot_align_addr;
  55. bool uses_lreset;
  56. };
  57. /**
  58. * struct k3_dsp_rproc - k3 DSP remote processor driver structure
  59. * @dev: cached device pointer
  60. * @rproc: remoteproc device handle
  61. * @mem: internal memory regions data
  62. * @num_mems: number of internal memory regions
  63. * @rmem: reserved memory regions data
  64. * @num_rmems: number of reserved memory regions
  65. * @reset: reset control handle
  66. * @data: pointer to DSP-specific device data
  67. * @tsp: TI-SCI processor control handle
  68. * @ti_sci: TI-SCI handle
  69. * @ti_sci_id: TI-SCI device identifier
  70. * @mbox: mailbox channel handle
  71. * @client: mailbox client to request the mailbox channel
  72. */
  73. struct k3_dsp_rproc {
  74. struct device *dev;
  75. struct rproc *rproc;
  76. struct k3_dsp_mem *mem;
  77. int num_mems;
  78. struct k3_dsp_mem *rmem;
  79. int num_rmems;
  80. struct reset_control *reset;
  81. const struct k3_dsp_dev_data *data;
  82. struct ti_sci_proc *tsp;
  83. const struct ti_sci_handle *ti_sci;
  84. u32 ti_sci_id;
  85. struct mbox_chan *mbox;
  86. struct mbox_client client;
  87. };
  88. /**
  89. * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler
  90. * @client: mailbox client pointer used for requesting the mailbox channel
  91. * @data: mailbox payload
  92. *
  93. * This handler is invoked by the OMAP mailbox driver whenever a mailbox
  94. * message is received. Usually, the mailbox payload simply contains
  95. * the index of the virtqueue that is kicked by the remote processor,
  96. * and we let remoteproc core handle it.
  97. *
  98. * In addition to virtqueue indices, we also have some out-of-band values
  99. * that indicate different events. Those values are deliberately very
  100. * large so they don't coincide with virtqueue indices.
  101. */
  102. static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data)
  103. {
  104. struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc,
  105. client);
  106. struct device *dev = kproc->rproc->dev.parent;
  107. const char *name = kproc->rproc->name;
  108. u32 msg = omap_mbox_message(data);
  109. dev_dbg(dev, "mbox msg: 0x%x\n", msg);
  110. switch (msg) {
  111. case RP_MBOX_CRASH:
  112. /*
  113. * remoteproc detected an exception, but error recovery is not
  114. * supported. So, just log this for now
  115. */
  116. dev_err(dev, "K3 DSP rproc %s crashed\n", name);
  117. break;
  118. case RP_MBOX_ECHO_REPLY:
  119. dev_info(dev, "received echo reply from %s\n", name);
  120. break;
  121. default:
  122. /* silently handle all other valid messages */
  123. if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
  124. return;
  125. if (msg > kproc->rproc->max_notifyid) {
  126. dev_dbg(dev, "dropping unknown message 0x%x", msg);
  127. return;
  128. }
  129. /* msg contains the index of the triggered vring */
  130. if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
  131. dev_dbg(dev, "no message was found in vqid %d\n", msg);
  132. }
  133. }
  134. /*
  135. * Kick the remote processor to notify about pending unprocessed messages.
  136. * The vqid usage is not used and is inconsequential, as the kick is performed
  137. * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
  138. * the remote processor is expected to process both its Tx and Rx virtqueues.
  139. */
  140. static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid)
  141. {
  142. struct k3_dsp_rproc *kproc = rproc->priv;
  143. struct device *dev = rproc->dev.parent;
  144. mbox_msg_t msg = (mbox_msg_t)vqid;
  145. int ret;
  146. /* send the index of the triggered virtqueue in the mailbox payload */
  147. ret = mbox_send_message(kproc->mbox, (void *)msg);
  148. if (ret < 0)
  149. dev_err(dev, "failed to send mailbox message, status = %d\n",
  150. ret);
  151. }
  152. /* Put the DSP processor into reset */
  153. static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc)
  154. {
  155. struct device *dev = kproc->dev;
  156. int ret;
  157. ret = reset_control_assert(kproc->reset);
  158. if (ret) {
  159. dev_err(dev, "local-reset assert failed, ret = %d\n", ret);
  160. return ret;
  161. }
  162. if (kproc->data->uses_lreset)
  163. return ret;
  164. ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
  165. kproc->ti_sci_id);
  166. if (ret) {
  167. dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
  168. if (reset_control_deassert(kproc->reset))
  169. dev_warn(dev, "local-reset deassert back failed\n");
  170. }
  171. return ret;
  172. }
  173. /* Release the DSP processor from reset */
  174. static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc)
  175. {
  176. struct device *dev = kproc->dev;
  177. int ret;
  178. if (kproc->data->uses_lreset)
  179. goto lreset;
  180. ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
  181. kproc->ti_sci_id);
  182. if (ret) {
  183. dev_err(dev, "module-reset deassert failed, ret = %d\n", ret);
  184. return ret;
  185. }
  186. lreset:
  187. ret = reset_control_deassert(kproc->reset);
  188. if (ret) {
  189. dev_err(dev, "local-reset deassert failed, ret = %d\n", ret);
  190. if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
  191. kproc->ti_sci_id))
  192. dev_warn(dev, "module-reset assert back failed\n");
  193. }
  194. return ret;
  195. }
  196. static int k3_dsp_rproc_request_mbox(struct rproc *rproc)
  197. {
  198. struct k3_dsp_rproc *kproc = rproc->priv;
  199. struct mbox_client *client = &kproc->client;
  200. struct device *dev = kproc->dev;
  201. int ret;
  202. client->dev = dev;
  203. client->tx_done = NULL;
  204. client->rx_callback = k3_dsp_rproc_mbox_callback;
  205. client->tx_block = false;
  206. client->knows_txdone = false;
  207. kproc->mbox = mbox_request_channel(client, 0);
  208. if (IS_ERR(kproc->mbox)) {
  209. ret = -EBUSY;
  210. dev_err(dev, "mbox_request_channel failed: %ld\n",
  211. PTR_ERR(kproc->mbox));
  212. return ret;
  213. }
  214. /*
  215. * Ping the remote processor, this is only for sanity-sake for now;
  216. * there is no functional effect whatsoever.
  217. *
  218. * Note that the reply will _not_ arrive immediately: this message
  219. * will wait in the mailbox fifo until the remote processor is booted.
  220. */
  221. ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
  222. if (ret < 0) {
  223. dev_err(dev, "mbox_send_message failed: %d\n", ret);
  224. mbox_free_channel(kproc->mbox);
  225. return ret;
  226. }
  227. return 0;
  228. }
  229. /*
  230. * The C66x DSP cores have a local reset that affects only the CPU, and a
  231. * generic module reset that powers on the device and allows the DSP internal
  232. * memories to be accessed while the local reset is asserted. This function is
  233. * used to release the global reset on C66x DSPs to allow loading into the DSP
  234. * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
  235. * firmware loading, and is followed by the .start() ops after loading to
  236. * actually let the C66x DSP cores run. This callback is invoked only in
  237. * remoteproc mode.
  238. */
  239. static int k3_dsp_rproc_prepare(struct rproc *rproc)
  240. {
  241. struct k3_dsp_rproc *kproc = rproc->priv;
  242. struct device *dev = kproc->dev;
  243. int ret;
  244. ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
  245. kproc->ti_sci_id);
  246. if (ret)
  247. dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n",
  248. ret);
  249. return ret;
  250. }
  251. /*
  252. * This function implements the .unprepare() ops and performs the complimentary
  253. * operations to that of the .prepare() ops. The function is used to assert the
  254. * global reset on applicable C66x cores. This completes the second portion of
  255. * powering down the C66x DSP cores. The cores themselves are only halted in the
  256. * .stop() callback through the local reset, and the .unprepare() ops is invoked
  257. * by the remoteproc core after the remoteproc is stopped to balance the global
  258. * reset. This callback is invoked only in remoteproc mode.
  259. */
  260. static int k3_dsp_rproc_unprepare(struct rproc *rproc)
  261. {
  262. struct k3_dsp_rproc *kproc = rproc->priv;
  263. struct device *dev = kproc->dev;
  264. int ret;
  265. ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
  266. kproc->ti_sci_id);
  267. if (ret)
  268. dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
  269. return ret;
  270. }
  271. /*
  272. * Power up the DSP remote processor.
  273. *
  274. * This function will be invoked only after the firmware for this rproc
  275. * was loaded, parsed successfully, and all of its resource requirements
  276. * were met. This callback is invoked only in remoteproc mode.
  277. */
  278. static int k3_dsp_rproc_start(struct rproc *rproc)
  279. {
  280. struct k3_dsp_rproc *kproc = rproc->priv;
  281. struct device *dev = kproc->dev;
  282. u32 boot_addr;
  283. int ret;
  284. ret = k3_dsp_rproc_request_mbox(rproc);
  285. if (ret)
  286. return ret;
  287. boot_addr = rproc->bootaddr;
  288. if (boot_addr & (kproc->data->boot_align_addr - 1)) {
  289. dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n",
  290. boot_addr, kproc->data->boot_align_addr);
  291. ret = -EINVAL;
  292. goto put_mbox;
  293. }
  294. dev_err(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr);
  295. ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0);
  296. if (ret)
  297. goto put_mbox;
  298. ret = k3_dsp_rproc_release(kproc);
  299. if (ret)
  300. goto put_mbox;
  301. return 0;
  302. put_mbox:
  303. mbox_free_channel(kproc->mbox);
  304. return ret;
  305. }
  306. /*
  307. * Stop the DSP remote processor.
  308. *
  309. * This function puts the DSP processor into reset, and finishes processing
  310. * of any pending messages. This callback is invoked only in remoteproc mode.
  311. */
  312. static int k3_dsp_rproc_stop(struct rproc *rproc)
  313. {
  314. struct k3_dsp_rproc *kproc = rproc->priv;
  315. mbox_free_channel(kproc->mbox);
  316. k3_dsp_rproc_reset(kproc);
  317. return 0;
  318. }
  319. /*
  320. * Attach to a running DSP remote processor (IPC-only mode)
  321. *
  322. * This rproc attach callback only needs to request the mailbox, the remote
  323. * processor is already booted, so there is no need to issue any TI-SCI
  324. * commands to boot the DSP core. This callback is invoked only in IPC-only
  325. * mode.
  326. */
  327. static int k3_dsp_rproc_attach(struct rproc *rproc)
  328. {
  329. struct k3_dsp_rproc *kproc = rproc->priv;
  330. struct device *dev = kproc->dev;
  331. int ret;
  332. ret = k3_dsp_rproc_request_mbox(rproc);
  333. if (ret)
  334. return ret;
  335. dev_info(dev, "DSP initialized in IPC-only mode\n");
  336. return 0;
  337. }
  338. /*
  339. * Detach from a running DSP remote processor (IPC-only mode)
  340. *
  341. * This rproc detach callback performs the opposite operation to attach callback
  342. * and only needs to release the mailbox, the DSP core is not stopped and will
  343. * be left to continue to run its booted firmware. This callback is invoked only
  344. * in IPC-only mode.
  345. */
  346. static int k3_dsp_rproc_detach(struct rproc *rproc)
  347. {
  348. struct k3_dsp_rproc *kproc = rproc->priv;
  349. struct device *dev = kproc->dev;
  350. mbox_free_channel(kproc->mbox);
  351. dev_info(dev, "DSP deinitialized in IPC-only mode\n");
  352. return 0;
  353. }
  354. /*
  355. * This function implements the .get_loaded_rsc_table() callback and is used
  356. * to provide the resource table for a booted DSP in IPC-only mode. The K3 DSP
  357. * firmwares follow a design-by-contract approach and are expected to have the
  358. * resource table at the base of the DDR region reserved for firmware usage.
  359. * This provides flexibility for the remote processor to be booted by different
  360. * bootloaders that may or may not have the ability to publish the resource table
  361. * address and size through a DT property. This callback is invoked only in
  362. * IPC-only mode.
  363. */
  364. static struct resource_table *k3_dsp_get_loaded_rsc_table(struct rproc *rproc,
  365. size_t *rsc_table_sz)
  366. {
  367. struct k3_dsp_rproc *kproc = rproc->priv;
  368. struct device *dev = kproc->dev;
  369. if (!kproc->rmem[0].cpu_addr) {
  370. dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
  371. return ERR_PTR(-ENOMEM);
  372. }
  373. /*
  374. * NOTE: The resource table size is currently hard-coded to a maximum
  375. * of 256 bytes. The most common resource table usage for K3 firmwares
  376. * is to only have the vdev resource entry and an optional trace entry.
  377. * The exact size could be computed based on resource table address, but
  378. * the hard-coded value suffices to support the IPC-only mode.
  379. */
  380. *rsc_table_sz = 256;
  381. return (struct resource_table *)kproc->rmem[0].cpu_addr;
  382. }
  383. /*
  384. * Custom function to translate a DSP device address (internal RAMs only) to a
  385. * kernel virtual address. The DSPs can access their RAMs at either an internal
  386. * address visible only from a DSP, or at the SoC-level bus address. Both these
  387. * addresses need to be looked through for translation. The translated addresses
  388. * can be used either by the remoteproc core for loading (when using kernel
  389. * remoteproc loader), or by any rpmsg bus drivers.
  390. */
  391. static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
  392. {
  393. struct k3_dsp_rproc *kproc = rproc->priv;
  394. void __iomem *va = NULL;
  395. phys_addr_t bus_addr;
  396. u32 dev_addr, offset;
  397. size_t size;
  398. int i;
  399. if (len == 0)
  400. return NULL;
  401. for (i = 0; i < kproc->num_mems; i++) {
  402. bus_addr = kproc->mem[i].bus_addr;
  403. dev_addr = kproc->mem[i].dev_addr;
  404. size = kproc->mem[i].size;
  405. if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) {
  406. /* handle DSP-view addresses */
  407. if (da >= dev_addr &&
  408. ((da + len) <= (dev_addr + size))) {
  409. offset = da - dev_addr;
  410. va = kproc->mem[i].cpu_addr + offset;
  411. return (__force void *)va;
  412. }
  413. } else {
  414. /* handle SoC-view addresses */
  415. if (da >= bus_addr &&
  416. (da + len) <= (bus_addr + size)) {
  417. offset = da - bus_addr;
  418. va = kproc->mem[i].cpu_addr + offset;
  419. return (__force void *)va;
  420. }
  421. }
  422. }
  423. /* handle static DDR reserved memory regions */
  424. for (i = 0; i < kproc->num_rmems; i++) {
  425. dev_addr = kproc->rmem[i].dev_addr;
  426. size = kproc->rmem[i].size;
  427. if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
  428. offset = da - dev_addr;
  429. va = kproc->rmem[i].cpu_addr + offset;
  430. return (__force void *)va;
  431. }
  432. }
  433. return NULL;
  434. }
  435. static const struct rproc_ops k3_dsp_rproc_ops = {
  436. .start = k3_dsp_rproc_start,
  437. .stop = k3_dsp_rproc_stop,
  438. .kick = k3_dsp_rproc_kick,
  439. .da_to_va = k3_dsp_rproc_da_to_va,
  440. };
  441. static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev,
  442. struct k3_dsp_rproc *kproc)
  443. {
  444. const struct k3_dsp_dev_data *data = kproc->data;
  445. struct device *dev = &pdev->dev;
  446. struct resource *res;
  447. int num_mems = 0;
  448. int i;
  449. num_mems = kproc->data->num_mems;
  450. kproc->mem = devm_kcalloc(kproc->dev, num_mems,
  451. sizeof(*kproc->mem), GFP_KERNEL);
  452. if (!kproc->mem)
  453. return -ENOMEM;
  454. for (i = 0; i < num_mems; i++) {
  455. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  456. data->mems[i].name);
  457. if (!res) {
  458. dev_err(dev, "found no memory resource for %s\n",
  459. data->mems[i].name);
  460. return -EINVAL;
  461. }
  462. if (!devm_request_mem_region(dev, res->start,
  463. resource_size(res),
  464. dev_name(dev))) {
  465. dev_err(dev, "could not request %s region for resource\n",
  466. data->mems[i].name);
  467. return -EBUSY;
  468. }
  469. kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
  470. resource_size(res));
  471. if (!kproc->mem[i].cpu_addr) {
  472. dev_err(dev, "failed to map %s memory\n",
  473. data->mems[i].name);
  474. return -ENOMEM;
  475. }
  476. kproc->mem[i].bus_addr = res->start;
  477. kproc->mem[i].dev_addr = data->mems[i].dev_addr;
  478. kproc->mem[i].size = resource_size(res);
  479. dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
  480. data->mems[i].name, &kproc->mem[i].bus_addr,
  481. kproc->mem[i].size, kproc->mem[i].cpu_addr,
  482. kproc->mem[i].dev_addr);
  483. }
  484. kproc->num_mems = num_mems;
  485. return 0;
  486. }
  487. static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc)
  488. {
  489. struct device *dev = kproc->dev;
  490. struct device_node *np = dev->of_node;
  491. struct device_node *rmem_np;
  492. struct reserved_mem *rmem;
  493. int num_rmems;
  494. int ret, i;
  495. num_rmems = of_property_count_elems_of_size(np, "memory-region",
  496. sizeof(phandle));
  497. if (num_rmems <= 0) {
  498. dev_err(dev, "device does not reserved memory regions, ret = %d\n",
  499. num_rmems);
  500. return -EINVAL;
  501. }
  502. if (num_rmems < 2) {
  503. dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
  504. num_rmems);
  505. return -EINVAL;
  506. }
  507. /* use reserved memory region 0 for vring DMA allocations */
  508. ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
  509. if (ret) {
  510. dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
  511. ret);
  512. return ret;
  513. }
  514. num_rmems--;
  515. kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
  516. if (!kproc->rmem) {
  517. ret = -ENOMEM;
  518. goto release_rmem;
  519. }
  520. /* use remaining reserved memory regions for static carveouts */
  521. for (i = 0; i < num_rmems; i++) {
  522. rmem_np = of_parse_phandle(np, "memory-region", i + 1);
  523. if (!rmem_np) {
  524. ret = -EINVAL;
  525. goto unmap_rmem;
  526. }
  527. rmem = of_reserved_mem_lookup(rmem_np);
  528. if (!rmem) {
  529. of_node_put(rmem_np);
  530. ret = -EINVAL;
  531. goto unmap_rmem;
  532. }
  533. of_node_put(rmem_np);
  534. kproc->rmem[i].bus_addr = rmem->base;
  535. /* 64-bit address regions currently not supported */
  536. kproc->rmem[i].dev_addr = (u32)rmem->base;
  537. kproc->rmem[i].size = rmem->size;
  538. kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
  539. if (!kproc->rmem[i].cpu_addr) {
  540. dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
  541. i + 1, &rmem->base, &rmem->size);
  542. ret = -ENOMEM;
  543. goto unmap_rmem;
  544. }
  545. dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
  546. i + 1, &kproc->rmem[i].bus_addr,
  547. kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
  548. kproc->rmem[i].dev_addr);
  549. }
  550. kproc->num_rmems = num_rmems;
  551. return 0;
  552. unmap_rmem:
  553. for (i--; i >= 0; i--)
  554. iounmap(kproc->rmem[i].cpu_addr);
  555. kfree(kproc->rmem);
  556. release_rmem:
  557. of_reserved_mem_device_release(kproc->dev);
  558. return ret;
  559. }
  560. static void k3_dsp_reserved_mem_exit(struct k3_dsp_rproc *kproc)
  561. {
  562. int i;
  563. for (i = 0; i < kproc->num_rmems; i++)
  564. iounmap(kproc->rmem[i].cpu_addr);
  565. kfree(kproc->rmem);
  566. of_reserved_mem_device_release(kproc->dev);
  567. }
  568. static
  569. struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev,
  570. const struct ti_sci_handle *sci)
  571. {
  572. struct ti_sci_proc *tsp;
  573. u32 temp[2];
  574. int ret;
  575. ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids",
  576. temp, 2);
  577. if (ret < 0)
  578. return ERR_PTR(ret);
  579. tsp = kzalloc(sizeof(*tsp), GFP_KERNEL);
  580. if (!tsp)
  581. return ERR_PTR(-ENOMEM);
  582. tsp->dev = dev;
  583. tsp->sci = sci;
  584. tsp->ops = &sci->ops.proc_ops;
  585. tsp->proc_id = temp[0];
  586. tsp->host_id = temp[1];
  587. return tsp;
  588. }
  589. static int k3_dsp_rproc_probe(struct platform_device *pdev)
  590. {
  591. struct device *dev = &pdev->dev;
  592. struct device_node *np = dev->of_node;
  593. const struct k3_dsp_dev_data *data;
  594. struct k3_dsp_rproc *kproc;
  595. struct rproc *rproc;
  596. const char *fw_name;
  597. bool p_state = false;
  598. int ret = 0;
  599. int ret1;
  600. data = of_device_get_match_data(dev);
  601. if (!data)
  602. return -ENODEV;
  603. ret = rproc_of_parse_firmware(dev, 0, &fw_name);
  604. if (ret) {
  605. dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
  606. ret);
  607. return ret;
  608. }
  609. rproc = rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops, fw_name,
  610. sizeof(*kproc));
  611. if (!rproc)
  612. return -ENOMEM;
  613. rproc->has_iommu = false;
  614. rproc->recovery_disabled = true;
  615. if (data->uses_lreset) {
  616. rproc->ops->prepare = k3_dsp_rproc_prepare;
  617. rproc->ops->unprepare = k3_dsp_rproc_unprepare;
  618. }
  619. kproc = rproc->priv;
  620. kproc->rproc = rproc;
  621. kproc->dev = dev;
  622. kproc->data = data;
  623. kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci");
  624. if (IS_ERR(kproc->ti_sci)) {
  625. ret = PTR_ERR(kproc->ti_sci);
  626. if (ret != -EPROBE_DEFER) {
  627. dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
  628. ret);
  629. }
  630. kproc->ti_sci = NULL;
  631. goto free_rproc;
  632. }
  633. ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id);
  634. if (ret) {
  635. dev_err(dev, "missing 'ti,sci-dev-id' property\n");
  636. goto put_sci;
  637. }
  638. kproc->reset = devm_reset_control_get_exclusive(dev, NULL);
  639. if (IS_ERR(kproc->reset)) {
  640. ret = PTR_ERR(kproc->reset);
  641. dev_err(dev, "failed to get reset, status = %d\n", ret);
  642. goto put_sci;
  643. }
  644. kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci);
  645. if (IS_ERR(kproc->tsp)) {
  646. dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
  647. ret);
  648. ret = PTR_ERR(kproc->tsp);
  649. goto put_sci;
  650. }
  651. ret = ti_sci_proc_request(kproc->tsp);
  652. if (ret < 0) {
  653. dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
  654. goto free_tsp;
  655. }
  656. ret = k3_dsp_rproc_of_get_memories(pdev, kproc);
  657. if (ret)
  658. goto release_tsp;
  659. ret = k3_dsp_reserved_mem_init(kproc);
  660. if (ret) {
  661. dev_err(dev, "reserved memory init failed, ret = %d\n", ret);
  662. goto release_tsp;
  663. }
  664. ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id,
  665. NULL, &p_state);
  666. if (ret) {
  667. dev_err(dev, "failed to get initial state, mode cannot be determined, ret = %d\n",
  668. ret);
  669. goto release_mem;
  670. }
  671. /* configure J721E devices for either remoteproc or IPC-only mode */
  672. if (p_state) {
  673. dev_info(dev, "configured DSP for IPC-only mode\n");
  674. rproc->state = RPROC_DETACHED;
  675. /* override rproc ops with only required IPC-only mode ops */
  676. rproc->ops->prepare = NULL;
  677. rproc->ops->unprepare = NULL;
  678. rproc->ops->start = NULL;
  679. rproc->ops->stop = NULL;
  680. rproc->ops->attach = k3_dsp_rproc_attach;
  681. rproc->ops->detach = k3_dsp_rproc_detach;
  682. rproc->ops->get_loaded_rsc_table = k3_dsp_get_loaded_rsc_table;
  683. } else {
  684. dev_info(dev, "configured DSP for remoteproc mode\n");
  685. /*
  686. * ensure the DSP local reset is asserted to ensure the DSP
  687. * doesn't execute bogus code in .prepare() when the module
  688. * reset is released.
  689. */
  690. if (data->uses_lreset) {
  691. ret = reset_control_status(kproc->reset);
  692. if (ret < 0) {
  693. dev_err(dev, "failed to get reset status, status = %d\n",
  694. ret);
  695. goto release_mem;
  696. } else if (ret == 0) {
  697. dev_warn(dev, "local reset is deasserted for device\n");
  698. k3_dsp_rproc_reset(kproc);
  699. }
  700. }
  701. }
  702. ret = rproc_add(rproc);
  703. if (ret) {
  704. dev_err(dev, "failed to add register device with remoteproc core, status = %d\n",
  705. ret);
  706. goto release_mem;
  707. }
  708. platform_set_drvdata(pdev, kproc);
  709. return 0;
  710. release_mem:
  711. k3_dsp_reserved_mem_exit(kproc);
  712. release_tsp:
  713. ret1 = ti_sci_proc_release(kproc->tsp);
  714. if (ret1)
  715. dev_err(dev, "failed to release proc, ret = %d\n", ret1);
  716. free_tsp:
  717. kfree(kproc->tsp);
  718. put_sci:
  719. ret1 = ti_sci_put_handle(kproc->ti_sci);
  720. if (ret1)
  721. dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1);
  722. free_rproc:
  723. rproc_free(rproc);
  724. return ret;
  725. }
  726. static int k3_dsp_rproc_remove(struct platform_device *pdev)
  727. {
  728. struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev);
  729. struct rproc *rproc = kproc->rproc;
  730. struct device *dev = &pdev->dev;
  731. int ret;
  732. if (rproc->state == RPROC_ATTACHED) {
  733. ret = rproc_detach(rproc);
  734. if (ret) {
  735. dev_err(dev, "failed to detach proc, ret = %d\n", ret);
  736. return ret;
  737. }
  738. }
  739. rproc_del(kproc->rproc);
  740. ret = ti_sci_proc_release(kproc->tsp);
  741. if (ret)
  742. dev_err(dev, "failed to release proc, ret = %d\n", ret);
  743. kfree(kproc->tsp);
  744. ret = ti_sci_put_handle(kproc->ti_sci);
  745. if (ret)
  746. dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret);
  747. k3_dsp_reserved_mem_exit(kproc);
  748. rproc_free(kproc->rproc);
  749. return 0;
  750. }
  751. static const struct k3_dsp_mem_data c66_mems[] = {
  752. { .name = "l2sram", .dev_addr = 0x800000 },
  753. { .name = "l1pram", .dev_addr = 0xe00000 },
  754. { .name = "l1dram", .dev_addr = 0xf00000 },
  755. };
  756. /* C71x cores only have a L1P Cache, there are no L1P SRAMs */
  757. static const struct k3_dsp_mem_data c71_mems[] = {
  758. { .name = "l2sram", .dev_addr = 0x800000 },
  759. { .name = "l1dram", .dev_addr = 0xe00000 },
  760. };
  761. static const struct k3_dsp_dev_data c66_data = {
  762. .mems = c66_mems,
  763. .num_mems = ARRAY_SIZE(c66_mems),
  764. .boot_align_addr = SZ_1K,
  765. .uses_lreset = true,
  766. };
  767. static const struct k3_dsp_dev_data c71_data = {
  768. .mems = c71_mems,
  769. .num_mems = ARRAY_SIZE(c71_mems),
  770. .boot_align_addr = SZ_2M,
  771. .uses_lreset = false,
  772. };
  773. static const struct of_device_id k3_dsp_of_match[] = {
  774. { .compatible = "ti,j721e-c66-dsp", .data = &c66_data, },
  775. { .compatible = "ti,j721e-c71-dsp", .data = &c71_data, },
  776. { .compatible = "ti,j721s2-c71-dsp", .data = &c71_data, },
  777. { /* sentinel */ },
  778. };
  779. MODULE_DEVICE_TABLE(of, k3_dsp_of_match);
  780. static struct platform_driver k3_dsp_rproc_driver = {
  781. .probe = k3_dsp_rproc_probe,
  782. .remove = k3_dsp_rproc_remove,
  783. .driver = {
  784. .name = "k3-dsp-rproc",
  785. .of_match_table = k3_dsp_of_match,
  786. },
  787. };
  788. module_platform_driver(k3_dsp_rproc_driver);
  789. MODULE_AUTHOR("Suman Anna <[email protected]>");
  790. MODULE_LICENSE("GPL v2");
  791. MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver");