da9150-fg.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * DA9150 Fuel-Gauge Driver
  4. *
  5. * Copyright (c) 2015 Dialog Semiconductor
  6. *
  7. * Author: Adam Thomson <[email protected]>
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/platform_device.h>
  12. #include <linux/of.h>
  13. #include <linux/of_platform.h>
  14. #include <linux/slab.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/delay.h>
  17. #include <linux/power_supply.h>
  18. #include <linux/list.h>
  19. #include <asm/div64.h>
  20. #include <linux/mfd/da9150/core.h>
  21. #include <linux/mfd/da9150/registers.h>
  22. #include <linux/devm-helpers.h>
  23. /* Core2Wire */
  24. #define DA9150_QIF_READ (0x0 << 7)
  25. #define DA9150_QIF_WRITE (0x1 << 7)
  26. #define DA9150_QIF_CODE_MASK 0x7F
  27. #define DA9150_QIF_BYTE_SIZE 8
  28. #define DA9150_QIF_BYTE_MASK 0xFF
  29. #define DA9150_QIF_SHORT_SIZE 2
  30. #define DA9150_QIF_LONG_SIZE 4
  31. /* QIF Codes */
  32. #define DA9150_QIF_UAVG 6
  33. #define DA9150_QIF_UAVG_SIZE DA9150_QIF_LONG_SIZE
  34. #define DA9150_QIF_IAVG 8
  35. #define DA9150_QIF_IAVG_SIZE DA9150_QIF_LONG_SIZE
  36. #define DA9150_QIF_NTCAVG 12
  37. #define DA9150_QIF_NTCAVG_SIZE DA9150_QIF_LONG_SIZE
  38. #define DA9150_QIF_SHUNT_VAL 36
  39. #define DA9150_QIF_SHUNT_VAL_SIZE DA9150_QIF_SHORT_SIZE
  40. #define DA9150_QIF_SD_GAIN 38
  41. #define DA9150_QIF_SD_GAIN_SIZE DA9150_QIF_LONG_SIZE
  42. #define DA9150_QIF_FCC_MAH 40
  43. #define DA9150_QIF_FCC_MAH_SIZE DA9150_QIF_SHORT_SIZE
  44. #define DA9150_QIF_SOC_PCT 43
  45. #define DA9150_QIF_SOC_PCT_SIZE DA9150_QIF_SHORT_SIZE
  46. #define DA9150_QIF_CHARGE_LIMIT 44
  47. #define DA9150_QIF_CHARGE_LIMIT_SIZE DA9150_QIF_SHORT_SIZE
  48. #define DA9150_QIF_DISCHARGE_LIMIT 45
  49. #define DA9150_QIF_DISCHARGE_LIMIT_SIZE DA9150_QIF_SHORT_SIZE
  50. #define DA9150_QIF_FW_MAIN_VER 118
  51. #define DA9150_QIF_FW_MAIN_VER_SIZE DA9150_QIF_SHORT_SIZE
  52. #define DA9150_QIF_E_FG_STATUS 126
  53. #define DA9150_QIF_E_FG_STATUS_SIZE DA9150_QIF_SHORT_SIZE
  54. #define DA9150_QIF_SYNC 127
  55. #define DA9150_QIF_SYNC_SIZE DA9150_QIF_SHORT_SIZE
  56. #define DA9150_QIF_MAX_CODES 128
  57. /* QIF Sync Timeout */
  58. #define DA9150_QIF_SYNC_TIMEOUT 1000
  59. #define DA9150_QIF_SYNC_RETRIES 10
  60. /* QIF E_FG_STATUS */
  61. #define DA9150_FG_IRQ_LOW_SOC_MASK (1 << 0)
  62. #define DA9150_FG_IRQ_HIGH_SOC_MASK (1 << 1)
  63. #define DA9150_FG_IRQ_SOC_MASK \
  64. (DA9150_FG_IRQ_LOW_SOC_MASK | DA9150_FG_IRQ_HIGH_SOC_MASK)
  65. /* Private data */
  66. struct da9150_fg {
  67. struct da9150 *da9150;
  68. struct device *dev;
  69. struct mutex io_lock;
  70. struct power_supply *battery;
  71. struct delayed_work work;
  72. u32 interval;
  73. int warn_soc;
  74. int crit_soc;
  75. int soc;
  76. };
  77. /* Battery Properties */
  78. static u32 da9150_fg_read_attr(struct da9150_fg *fg, u8 code, u8 size)
  79. {
  80. u8 buf[DA9150_QIF_LONG_SIZE];
  81. u8 read_addr;
  82. u32 res = 0;
  83. int i;
  84. /* Set QIF code (READ mode) */
  85. read_addr = (code & DA9150_QIF_CODE_MASK) | DA9150_QIF_READ;
  86. da9150_read_qif(fg->da9150, read_addr, size, buf);
  87. for (i = 0; i < size; ++i)
  88. res |= (buf[i] << (i * DA9150_QIF_BYTE_SIZE));
  89. return res;
  90. }
  91. static void da9150_fg_write_attr(struct da9150_fg *fg, u8 code, u8 size,
  92. u32 val)
  93. {
  94. u8 buf[DA9150_QIF_LONG_SIZE];
  95. u8 write_addr;
  96. int i;
  97. /* Set QIF code (WRITE mode) */
  98. write_addr = (code & DA9150_QIF_CODE_MASK) | DA9150_QIF_WRITE;
  99. for (i = 0; i < size; ++i) {
  100. buf[i] = (val >> (i * DA9150_QIF_BYTE_SIZE)) &
  101. DA9150_QIF_BYTE_MASK;
  102. }
  103. da9150_write_qif(fg->da9150, write_addr, size, buf);
  104. }
  105. /* Trigger QIF Sync to update QIF readable data */
  106. static void da9150_fg_read_sync_start(struct da9150_fg *fg)
  107. {
  108. int i = 0;
  109. u32 res = 0;
  110. mutex_lock(&fg->io_lock);
  111. /* Check if QIF sync already requested, and write to sync if not */
  112. res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
  113. DA9150_QIF_SYNC_SIZE);
  114. if (res > 0)
  115. da9150_fg_write_attr(fg, DA9150_QIF_SYNC,
  116. DA9150_QIF_SYNC_SIZE, 0);
  117. /* Wait for sync to complete */
  118. res = 0;
  119. while ((res == 0) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
  120. usleep_range(DA9150_QIF_SYNC_TIMEOUT,
  121. DA9150_QIF_SYNC_TIMEOUT * 2);
  122. res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
  123. DA9150_QIF_SYNC_SIZE);
  124. }
  125. /* Check if sync completed */
  126. if (res == 0)
  127. dev_err(fg->dev, "Failed to perform QIF read sync!\n");
  128. }
  129. /*
  130. * Should always be called after QIF sync read has been performed, and all
  131. * attributes required have been accessed.
  132. */
  133. static inline void da9150_fg_read_sync_end(struct da9150_fg *fg)
  134. {
  135. mutex_unlock(&fg->io_lock);
  136. }
  137. /* Sync read of single QIF attribute */
  138. static u32 da9150_fg_read_attr_sync(struct da9150_fg *fg, u8 code, u8 size)
  139. {
  140. u32 val;
  141. da9150_fg_read_sync_start(fg);
  142. val = da9150_fg_read_attr(fg, code, size);
  143. da9150_fg_read_sync_end(fg);
  144. return val;
  145. }
  146. /* Wait for QIF Sync, write QIF data and wait for ack */
  147. static void da9150_fg_write_attr_sync(struct da9150_fg *fg, u8 code, u8 size,
  148. u32 val)
  149. {
  150. int i = 0;
  151. u32 res = 0, sync_val;
  152. mutex_lock(&fg->io_lock);
  153. /* Check if QIF sync already requested */
  154. res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
  155. DA9150_QIF_SYNC_SIZE);
  156. /* Wait for an existing sync to complete */
  157. while ((res == 0) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
  158. usleep_range(DA9150_QIF_SYNC_TIMEOUT,
  159. DA9150_QIF_SYNC_TIMEOUT * 2);
  160. res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
  161. DA9150_QIF_SYNC_SIZE);
  162. }
  163. if (res == 0) {
  164. dev_err(fg->dev, "Timeout waiting for existing QIF sync!\n");
  165. mutex_unlock(&fg->io_lock);
  166. return;
  167. }
  168. /* Write value for QIF code */
  169. da9150_fg_write_attr(fg, code, size, val);
  170. /* Wait for write acknowledgment */
  171. i = 0;
  172. sync_val = res;
  173. while ((res == sync_val) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
  174. usleep_range(DA9150_QIF_SYNC_TIMEOUT,
  175. DA9150_QIF_SYNC_TIMEOUT * 2);
  176. res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
  177. DA9150_QIF_SYNC_SIZE);
  178. }
  179. mutex_unlock(&fg->io_lock);
  180. /* Check write was actually successful */
  181. if (res != (sync_val + 1))
  182. dev_err(fg->dev, "Error performing QIF sync write for code %d\n",
  183. code);
  184. }
  185. /* Power Supply attributes */
  186. static int da9150_fg_capacity(struct da9150_fg *fg,
  187. union power_supply_propval *val)
  188. {
  189. val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_SOC_PCT,
  190. DA9150_QIF_SOC_PCT_SIZE);
  191. if (val->intval > 100)
  192. val->intval = 100;
  193. return 0;
  194. }
  195. static int da9150_fg_current_avg(struct da9150_fg *fg,
  196. union power_supply_propval *val)
  197. {
  198. u32 iavg, sd_gain, shunt_val;
  199. u64 div, res;
  200. da9150_fg_read_sync_start(fg);
  201. iavg = da9150_fg_read_attr(fg, DA9150_QIF_IAVG,
  202. DA9150_QIF_IAVG_SIZE);
  203. shunt_val = da9150_fg_read_attr(fg, DA9150_QIF_SHUNT_VAL,
  204. DA9150_QIF_SHUNT_VAL_SIZE);
  205. sd_gain = da9150_fg_read_attr(fg, DA9150_QIF_SD_GAIN,
  206. DA9150_QIF_SD_GAIN_SIZE);
  207. da9150_fg_read_sync_end(fg);
  208. div = (u64) (sd_gain * shunt_val * 65536ULL);
  209. do_div(div, 1000000);
  210. res = (u64) (iavg * 1000000ULL);
  211. do_div(res, div);
  212. val->intval = (int) res;
  213. return 0;
  214. }
  215. static int da9150_fg_voltage_avg(struct da9150_fg *fg,
  216. union power_supply_propval *val)
  217. {
  218. u64 res;
  219. val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_UAVG,
  220. DA9150_QIF_UAVG_SIZE);
  221. res = (u64) (val->intval * 186ULL);
  222. do_div(res, 10000);
  223. val->intval = (int) res;
  224. return 0;
  225. }
  226. static int da9150_fg_charge_full(struct da9150_fg *fg,
  227. union power_supply_propval *val)
  228. {
  229. val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_FCC_MAH,
  230. DA9150_QIF_FCC_MAH_SIZE);
  231. val->intval = val->intval * 1000;
  232. return 0;
  233. }
  234. /*
  235. * Temperature reading from device is only valid if battery/system provides
  236. * valid NTC to associated pin of DA9150 chip.
  237. */
  238. static int da9150_fg_temp(struct da9150_fg *fg,
  239. union power_supply_propval *val)
  240. {
  241. val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_NTCAVG,
  242. DA9150_QIF_NTCAVG_SIZE);
  243. val->intval = (val->intval * 10) / 1048576;
  244. return 0;
  245. }
  246. static enum power_supply_property da9150_fg_props[] = {
  247. POWER_SUPPLY_PROP_CAPACITY,
  248. POWER_SUPPLY_PROP_CURRENT_AVG,
  249. POWER_SUPPLY_PROP_VOLTAGE_AVG,
  250. POWER_SUPPLY_PROP_CHARGE_FULL,
  251. POWER_SUPPLY_PROP_TEMP,
  252. };
  253. static int da9150_fg_get_prop(struct power_supply *psy,
  254. enum power_supply_property psp,
  255. union power_supply_propval *val)
  256. {
  257. struct da9150_fg *fg = dev_get_drvdata(psy->dev.parent);
  258. int ret;
  259. switch (psp) {
  260. case POWER_SUPPLY_PROP_CAPACITY:
  261. ret = da9150_fg_capacity(fg, val);
  262. break;
  263. case POWER_SUPPLY_PROP_CURRENT_AVG:
  264. ret = da9150_fg_current_avg(fg, val);
  265. break;
  266. case POWER_SUPPLY_PROP_VOLTAGE_AVG:
  267. ret = da9150_fg_voltage_avg(fg, val);
  268. break;
  269. case POWER_SUPPLY_PROP_CHARGE_FULL:
  270. ret = da9150_fg_charge_full(fg, val);
  271. break;
  272. case POWER_SUPPLY_PROP_TEMP:
  273. ret = da9150_fg_temp(fg, val);
  274. break;
  275. default:
  276. ret = -EINVAL;
  277. break;
  278. }
  279. return ret;
  280. }
  281. /* Repeated SOC check */
  282. static bool da9150_fg_soc_changed(struct da9150_fg *fg)
  283. {
  284. union power_supply_propval val;
  285. da9150_fg_capacity(fg, &val);
  286. if (val.intval != fg->soc) {
  287. fg->soc = val.intval;
  288. return true;
  289. }
  290. return false;
  291. }
  292. static void da9150_fg_work(struct work_struct *work)
  293. {
  294. struct da9150_fg *fg = container_of(work, struct da9150_fg, work.work);
  295. /* Report if SOC has changed */
  296. if (da9150_fg_soc_changed(fg))
  297. power_supply_changed(fg->battery);
  298. schedule_delayed_work(&fg->work, msecs_to_jiffies(fg->interval));
  299. }
  300. /* SOC level event configuration */
  301. static void da9150_fg_soc_event_config(struct da9150_fg *fg)
  302. {
  303. int soc;
  304. soc = da9150_fg_read_attr_sync(fg, DA9150_QIF_SOC_PCT,
  305. DA9150_QIF_SOC_PCT_SIZE);
  306. if (soc > fg->warn_soc) {
  307. /* If SOC > warn level, set discharge warn level event */
  308. da9150_fg_write_attr_sync(fg, DA9150_QIF_DISCHARGE_LIMIT,
  309. DA9150_QIF_DISCHARGE_LIMIT_SIZE,
  310. fg->warn_soc + 1);
  311. } else if ((soc <= fg->warn_soc) && (soc > fg->crit_soc)) {
  312. /*
  313. * If SOC <= warn level, set discharge crit level event,
  314. * and set charge warn level event.
  315. */
  316. da9150_fg_write_attr_sync(fg, DA9150_QIF_DISCHARGE_LIMIT,
  317. DA9150_QIF_DISCHARGE_LIMIT_SIZE,
  318. fg->crit_soc + 1);
  319. da9150_fg_write_attr_sync(fg, DA9150_QIF_CHARGE_LIMIT,
  320. DA9150_QIF_CHARGE_LIMIT_SIZE,
  321. fg->warn_soc);
  322. } else if (soc <= fg->crit_soc) {
  323. /* If SOC <= crit level, set charge crit level event */
  324. da9150_fg_write_attr_sync(fg, DA9150_QIF_CHARGE_LIMIT,
  325. DA9150_QIF_CHARGE_LIMIT_SIZE,
  326. fg->crit_soc);
  327. }
  328. }
  329. static irqreturn_t da9150_fg_irq(int irq, void *data)
  330. {
  331. struct da9150_fg *fg = data;
  332. u32 e_fg_status;
  333. /* Read FG IRQ status info */
  334. e_fg_status = da9150_fg_read_attr(fg, DA9150_QIF_E_FG_STATUS,
  335. DA9150_QIF_E_FG_STATUS_SIZE);
  336. /* Handle warning/critical threhold events */
  337. if (e_fg_status & DA9150_FG_IRQ_SOC_MASK)
  338. da9150_fg_soc_event_config(fg);
  339. /* Clear any FG IRQs */
  340. da9150_fg_write_attr(fg, DA9150_QIF_E_FG_STATUS,
  341. DA9150_QIF_E_FG_STATUS_SIZE, e_fg_status);
  342. return IRQ_HANDLED;
  343. }
  344. static struct da9150_fg_pdata *da9150_fg_dt_pdata(struct device *dev)
  345. {
  346. struct device_node *fg_node = dev->of_node;
  347. struct da9150_fg_pdata *pdata;
  348. pdata = devm_kzalloc(dev, sizeof(struct da9150_fg_pdata), GFP_KERNEL);
  349. if (!pdata)
  350. return NULL;
  351. of_property_read_u32(fg_node, "dlg,update-interval",
  352. &pdata->update_interval);
  353. of_property_read_u8(fg_node, "dlg,warn-soc-level",
  354. &pdata->warn_soc_lvl);
  355. of_property_read_u8(fg_node, "dlg,crit-soc-level",
  356. &pdata->crit_soc_lvl);
  357. return pdata;
  358. }
  359. static const struct power_supply_desc fg_desc = {
  360. .name = "da9150-fg",
  361. .type = POWER_SUPPLY_TYPE_BATTERY,
  362. .properties = da9150_fg_props,
  363. .num_properties = ARRAY_SIZE(da9150_fg_props),
  364. .get_property = da9150_fg_get_prop,
  365. };
  366. static int da9150_fg_probe(struct platform_device *pdev)
  367. {
  368. struct device *dev = &pdev->dev;
  369. struct da9150 *da9150 = dev_get_drvdata(dev->parent);
  370. struct da9150_fg_pdata *fg_pdata = dev_get_platdata(dev);
  371. struct da9150_fg *fg;
  372. int ver, irq, ret = 0;
  373. fg = devm_kzalloc(dev, sizeof(*fg), GFP_KERNEL);
  374. if (fg == NULL)
  375. return -ENOMEM;
  376. platform_set_drvdata(pdev, fg);
  377. fg->da9150 = da9150;
  378. fg->dev = dev;
  379. mutex_init(&fg->io_lock);
  380. /* Enable QIF */
  381. da9150_set_bits(da9150, DA9150_CORE2WIRE_CTRL_A, DA9150_FG_QIF_EN_MASK,
  382. DA9150_FG_QIF_EN_MASK);
  383. fg->battery = devm_power_supply_register(dev, &fg_desc, NULL);
  384. if (IS_ERR(fg->battery)) {
  385. ret = PTR_ERR(fg->battery);
  386. return ret;
  387. }
  388. ver = da9150_fg_read_attr(fg, DA9150_QIF_FW_MAIN_VER,
  389. DA9150_QIF_FW_MAIN_VER_SIZE);
  390. dev_info(dev, "Version: 0x%x\n", ver);
  391. /* Handle DT data if provided */
  392. if (dev->of_node) {
  393. fg_pdata = da9150_fg_dt_pdata(dev);
  394. dev->platform_data = fg_pdata;
  395. }
  396. /* Handle any pdata provided */
  397. if (fg_pdata) {
  398. fg->interval = fg_pdata->update_interval;
  399. if (fg_pdata->warn_soc_lvl > 100)
  400. dev_warn(dev, "Invalid SOC warning level provided, Ignoring");
  401. else
  402. fg->warn_soc = fg_pdata->warn_soc_lvl;
  403. if ((fg_pdata->crit_soc_lvl > 100) ||
  404. (fg_pdata->crit_soc_lvl >= fg_pdata->warn_soc_lvl))
  405. dev_warn(dev, "Invalid SOC critical level provided, Ignoring");
  406. else
  407. fg->crit_soc = fg_pdata->crit_soc_lvl;
  408. }
  409. /* Configure initial SOC level events */
  410. da9150_fg_soc_event_config(fg);
  411. /*
  412. * If an interval period has been provided then setup repeating
  413. * work for reporting data updates.
  414. */
  415. if (fg->interval) {
  416. ret = devm_delayed_work_autocancel(dev, &fg->work,
  417. da9150_fg_work);
  418. if (ret) {
  419. dev_err(dev, "Failed to init work\n");
  420. return ret;
  421. }
  422. schedule_delayed_work(&fg->work,
  423. msecs_to_jiffies(fg->interval));
  424. }
  425. /* Register IRQ */
  426. irq = platform_get_irq_byname(pdev, "FG");
  427. if (irq < 0)
  428. return irq;
  429. ret = devm_request_threaded_irq(dev, irq, NULL, da9150_fg_irq,
  430. IRQF_ONESHOT, "FG", fg);
  431. if (ret) {
  432. dev_err(dev, "Failed to request IRQ %d: %d\n", irq, ret);
  433. return ret;
  434. }
  435. return 0;
  436. }
  437. static int da9150_fg_resume(struct platform_device *pdev)
  438. {
  439. struct da9150_fg *fg = platform_get_drvdata(pdev);
  440. /*
  441. * Trigger SOC check to happen now so as to indicate any value change
  442. * since last check before suspend.
  443. */
  444. if (fg->interval)
  445. flush_delayed_work(&fg->work);
  446. return 0;
  447. }
  448. static struct platform_driver da9150_fg_driver = {
  449. .driver = {
  450. .name = "da9150-fuel-gauge",
  451. },
  452. .probe = da9150_fg_probe,
  453. .resume = da9150_fg_resume,
  454. };
  455. module_platform_driver(da9150_fg_driver);
  456. MODULE_DESCRIPTION("Fuel-Gauge Driver for DA9150");
  457. MODULE_AUTHOR("Adam Thomson <[email protected]>");
  458. MODULE_LICENSE("GPL");