phy-rockchip-inno-dsidphy.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
  4. *
  5. * Author: Wyon Bi <[email protected]>
  6. */
  7. #include <linux/bits.h>
  8. #include <linux/kernel.h>
  9. #include <linux/clk.h>
  10. #include <linux/iopoll.h>
  11. #include <linux/clk-provider.h>
  12. #include <linux/delay.h>
  13. #include <linux/init.h>
  14. #include <linux/mfd/syscon.h>
  15. #include <linux/module.h>
  16. #include <linux/of_device.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/pm_runtime.h>
  19. #include <linux/reset.h>
  20. #include <linux/time64.h>
  21. #include <linux/phy/phy.h>
  22. #include <linux/phy/phy-mipi-dphy.h>
  23. #define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
  24. /*
  25. * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
  26. * is the first address, the other from the bit4 to bit0 is the second address.
  27. * when you configure the registers, you must set both of them. The Clock Lane
  28. * and Data Lane use the same registers with the same second address, but the
  29. * first address is different.
  30. */
  31. #define FIRST_ADDRESS(x) (((x) & 0x7) << 5)
  32. #define SECOND_ADDRESS(x) (((x) & 0x1f) << 0)
  33. #define PHY_REG(first, second) (FIRST_ADDRESS(first) | \
  34. SECOND_ADDRESS(second))
  35. /* Analog Register Part: reg00 */
  36. #define BANDGAP_POWER_MASK BIT(7)
  37. #define BANDGAP_POWER_DOWN BIT(7)
  38. #define BANDGAP_POWER_ON 0
  39. #define LANE_EN_MASK GENMASK(6, 2)
  40. #define LANE_EN_CK BIT(6)
  41. #define LANE_EN_3 BIT(5)
  42. #define LANE_EN_2 BIT(4)
  43. #define LANE_EN_1 BIT(3)
  44. #define LANE_EN_0 BIT(2)
  45. #define POWER_WORK_MASK GENMASK(1, 0)
  46. #define POWER_WORK_ENABLE UPDATE(1, 1, 0)
  47. #define POWER_WORK_DISABLE UPDATE(2, 1, 0)
  48. /* Analog Register Part: reg01 */
  49. #define REG_SYNCRST_MASK BIT(2)
  50. #define REG_SYNCRST_RESET BIT(2)
  51. #define REG_SYNCRST_NORMAL 0
  52. #define REG_LDOPD_MASK BIT(1)
  53. #define REG_LDOPD_POWER_DOWN BIT(1)
  54. #define REG_LDOPD_POWER_ON 0
  55. #define REG_PLLPD_MASK BIT(0)
  56. #define REG_PLLPD_POWER_DOWN BIT(0)
  57. #define REG_PLLPD_POWER_ON 0
  58. /* Analog Register Part: reg03 */
  59. #define REG_FBDIV_HI_MASK BIT(5)
  60. #define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5)
  61. #define REG_PREDIV_MASK GENMASK(4, 0)
  62. #define REG_PREDIV(x) UPDATE(x, 4, 0)
  63. /* Analog Register Part: reg04 */
  64. #define REG_FBDIV_LO_MASK GENMASK(7, 0)
  65. #define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
  66. /* Analog Register Part: reg05 */
  67. #define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4)
  68. #define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4)
  69. #define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0)
  70. #define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0)
  71. /* Analog Register Part: reg06 */
  72. #define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4)
  73. #define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4)
  74. #define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0)
  75. #define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0)
  76. /* Analog Register Part: reg07 */
  77. #define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4)
  78. #define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4)
  79. #define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0)
  80. #define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0)
  81. /* Analog Register Part: reg08 */
  82. #define PLL_POST_DIV_ENABLE_MASK BIT(5)
  83. #define PLL_POST_DIV_ENABLE BIT(5)
  84. #define SAMPLE_CLOCK_DIRECTION_MASK BIT(4)
  85. #define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4)
  86. #define SAMPLE_CLOCK_DIRECTION_FORWARD 0
  87. #define LOWFRE_EN_MASK BIT(5)
  88. #define PLL_OUTPUT_FREQUENCY_DIV_BY_1 0
  89. #define PLL_OUTPUT_FREQUENCY_DIV_BY_2 1
  90. /* Analog Register Part: reg0b */
  91. #define CLOCK_LANE_VOD_RANGE_SET_MASK GENMASK(3, 0)
  92. #define CLOCK_LANE_VOD_RANGE_SET(x) UPDATE(x, 3, 0)
  93. #define VOD_MIN_RANGE 0x1
  94. #define VOD_MID_RANGE 0x3
  95. #define VOD_BIG_RANGE 0x7
  96. #define VOD_MAX_RANGE 0xf
  97. /* Analog Register Part: reg1E */
  98. #define PLL_MODE_SEL_MASK GENMASK(6, 5)
  99. #define PLL_MODE_SEL_LVDS_MODE 0
  100. #define PLL_MODE_SEL_MIPI_MODE BIT(5)
  101. /* Digital Register Part: reg00 */
  102. #define REG_DIG_RSTN_MASK BIT(0)
  103. #define REG_DIG_RSTN_NORMAL BIT(0)
  104. #define REG_DIG_RSTN_RESET 0
  105. /* Digital Register Part: reg01 */
  106. #define INVERT_TXCLKESC_MASK BIT(1)
  107. #define INVERT_TXCLKESC_ENABLE BIT(1)
  108. #define INVERT_TXCLKESC_DISABLE 0
  109. #define INVERT_TXBYTECLKHS_MASK BIT(0)
  110. #define INVERT_TXBYTECLKHS_ENABLE BIT(0)
  111. #define INVERT_TXBYTECLKHS_DISABLE 0
  112. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
  113. #define T_LPX_CNT_MASK GENMASK(5, 0)
  114. #define T_LPX_CNT(x) UPDATE(x, 5, 0)
  115. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
  116. #define T_HS_ZERO_CNT_HI_MASK BIT(7)
  117. #define T_HS_ZERO_CNT_HI(x) UPDATE(x, 7, 7)
  118. #define T_HS_PREPARE_CNT_MASK GENMASK(6, 0)
  119. #define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0)
  120. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
  121. #define T_HS_ZERO_CNT_LO_MASK GENMASK(5, 0)
  122. #define T_HS_ZERO_CNT_LO(x) UPDATE(x, 5, 0)
  123. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
  124. #define T_HS_TRAIL_CNT_MASK GENMASK(6, 0)
  125. #define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0)
  126. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
  127. #define T_HS_EXIT_CNT_LO_MASK GENMASK(4, 0)
  128. #define T_HS_EXIT_CNT_LO(x) UPDATE(x, 4, 0)
  129. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
  130. #define T_CLK_POST_CNT_LO_MASK GENMASK(3, 0)
  131. #define T_CLK_POST_CNT_LO(x) UPDATE(x, 3, 0)
  132. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
  133. #define LPDT_TX_PPI_SYNC_MASK BIT(2)
  134. #define LPDT_TX_PPI_SYNC_ENABLE BIT(2)
  135. #define LPDT_TX_PPI_SYNC_DISABLE 0
  136. #define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0)
  137. #define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0)
  138. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
  139. #define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0)
  140. #define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0)
  141. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
  142. #define T_CLK_PRE_CNT_MASK GENMASK(3, 0)
  143. #define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0)
  144. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
  145. #define T_CLK_POST_CNT_HI_MASK GENMASK(7, 6)
  146. #define T_CLK_POST_CNT_HI(x) UPDATE(x, 7, 6)
  147. #define T_TA_GO_CNT_MASK GENMASK(5, 0)
  148. #define T_TA_GO_CNT(x) UPDATE(x, 5, 0)
  149. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
  150. #define T_HS_EXIT_CNT_HI_MASK BIT(6)
  151. #define T_HS_EXIT_CNT_HI(x) UPDATE(x, 6, 6)
  152. #define T_TA_SURE_CNT_MASK GENMASK(5, 0)
  153. #define T_TA_SURE_CNT(x) UPDATE(x, 5, 0)
  154. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
  155. #define T_TA_WAIT_CNT_MASK GENMASK(5, 0)
  156. #define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0)
  157. /* LVDS Register Part: reg00 */
  158. #define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2)
  159. #define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2)
  160. #define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0
  161. /* LVDS Register Part: reg01 */
  162. #define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7)
  163. #define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7)
  164. #define LVDS_DIGITAL_INTERNAL_DISABLE 0
  165. /* LVDS Register Part: reg03 */
  166. #define MODE_ENABLE_MASK GENMASK(2, 0)
  167. #define TTL_MODE_ENABLE BIT(2)
  168. #define LVDS_MODE_ENABLE BIT(1)
  169. #define MIPI_MODE_ENABLE BIT(0)
  170. /* LVDS Register Part: reg0b */
  171. #define LVDS_LANE_EN_MASK GENMASK(7, 3)
  172. #define LVDS_DATA_LANE0_EN BIT(7)
  173. #define LVDS_DATA_LANE1_EN BIT(6)
  174. #define LVDS_DATA_LANE2_EN BIT(5)
  175. #define LVDS_DATA_LANE3_EN BIT(4)
  176. #define LVDS_CLK_LANE_EN BIT(3)
  177. #define LVDS_PLL_POWER_MASK BIT(2)
  178. #define LVDS_PLL_POWER_OFF BIT(2)
  179. #define LVDS_PLL_POWER_ON 0
  180. #define LVDS_BANDGAP_POWER_MASK BIT(0)
  181. #define LVDS_BANDGAP_POWER_DOWN BIT(0)
  182. #define LVDS_BANDGAP_POWER_ON 0
  183. #define DSI_PHY_RSTZ 0xa0
  184. #define PHY_ENABLECLK BIT(2)
  185. #define DSI_PHY_STATUS 0xb0
  186. #define PHY_LOCK BIT(0)
  187. enum phy_max_rate {
  188. MAX_1GHZ,
  189. MAX_2_5GHZ,
  190. };
  191. struct inno_video_phy_plat_data {
  192. const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table;
  193. const unsigned int num_timings;
  194. enum phy_max_rate max_rate;
  195. };
  196. struct inno_dsidphy {
  197. struct device *dev;
  198. struct clk *ref_clk;
  199. struct clk *pclk_phy;
  200. struct clk *pclk_host;
  201. const struct inno_video_phy_plat_data *pdata;
  202. void __iomem *phy_base;
  203. void __iomem *host_base;
  204. struct reset_control *rst;
  205. enum phy_mode mode;
  206. struct phy_configure_opts_mipi_dphy dphy_cfg;
  207. struct clk *pll_clk;
  208. struct {
  209. struct clk_hw hw;
  210. u8 prediv;
  211. u16 fbdiv;
  212. unsigned long rate;
  213. } pll;
  214. };
  215. enum {
  216. REGISTER_PART_ANALOG,
  217. REGISTER_PART_DIGITAL,
  218. REGISTER_PART_CLOCK_LANE,
  219. REGISTER_PART_DATA0_LANE,
  220. REGISTER_PART_DATA1_LANE,
  221. REGISTER_PART_DATA2_LANE,
  222. REGISTER_PART_DATA3_LANE,
  223. REGISTER_PART_LVDS,
  224. };
  225. struct inno_mipi_dphy_timing {
  226. unsigned long rate;
  227. u8 lpx;
  228. u8 hs_prepare;
  229. u8 clk_lane_hs_zero;
  230. u8 data_lane_hs_zero;
  231. u8 hs_trail;
  232. };
  233. static const
  234. struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = {
  235. { 110000000, 0x0, 0x20, 0x16, 0x02, 0x22},
  236. { 150000000, 0x0, 0x06, 0x16, 0x03, 0x45},
  237. { 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b},
  238. { 250000000, 0x0, 0x05, 0x17, 0x05, 0x16},
  239. { 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c},
  240. { 400000000, 0x0, 0x64, 0x19, 0x07, 0x33},
  241. { 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e},
  242. { 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a},
  243. { 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a},
  244. { 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29},
  245. {1000000000, 0x0, 0x09, 0x20, 0x09, 0x27},
  246. };
  247. static const
  248. struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = {
  249. { 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02},
  250. { 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02},
  251. { 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02},
  252. { 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04},
  253. { 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04},
  254. { 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04},
  255. { 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08},
  256. { 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10},
  257. { 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30},
  258. { 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30},
  259. {1000000000, 0x05, 0x08, 0x20, 0x09, 0x30},
  260. {1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f},
  261. {1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f},
  262. {1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
  263. {1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
  264. {2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
  265. {2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b},
  266. {2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a},
  267. {2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a},
  268. };
  269. static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw)
  270. {
  271. return container_of(hw, struct inno_dsidphy, pll.hw);
  272. }
  273. static void phy_update_bits(struct inno_dsidphy *inno,
  274. u8 first, u8 second, u8 mask, u8 val)
  275. {
  276. u32 reg = PHY_REG(first, second) << 2;
  277. unsigned int tmp, orig;
  278. orig = readl(inno->phy_base + reg);
  279. tmp = orig & ~mask;
  280. tmp |= val & mask;
  281. writel(tmp, inno->phy_base + reg);
  282. }
  283. static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
  284. unsigned long rate)
  285. {
  286. unsigned long prate = clk_get_rate(inno->ref_clk);
  287. unsigned long best_freq = 0;
  288. unsigned long fref, fout;
  289. u8 min_prediv, max_prediv;
  290. u8 _prediv, best_prediv = 1;
  291. u16 _fbdiv, best_fbdiv = 1;
  292. u32 min_delta = UINT_MAX;
  293. /*
  294. * The PLL output frequency can be calculated using a simple formula:
  295. * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
  296. * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
  297. */
  298. fref = prate / 2;
  299. if (rate > 1000000000UL)
  300. fout = 1000000000UL;
  301. else
  302. fout = rate;
  303. /* 5Mhz < Fref / prediv < 40MHz */
  304. min_prediv = DIV_ROUND_UP(fref, 40000000);
  305. max_prediv = fref / 5000000;
  306. for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
  307. u64 tmp;
  308. u32 delta;
  309. tmp = (u64)fout * _prediv;
  310. do_div(tmp, fref);
  311. _fbdiv = tmp;
  312. /*
  313. * The possible settings of feedback divider are
  314. * 12, 13, 14, 16, ~ 511
  315. */
  316. if (_fbdiv == 15)
  317. continue;
  318. if (_fbdiv < 12 || _fbdiv > 511)
  319. continue;
  320. tmp = (u64)_fbdiv * fref;
  321. do_div(tmp, _prediv);
  322. delta = abs(fout - tmp);
  323. if (!delta) {
  324. best_prediv = _prediv;
  325. best_fbdiv = _fbdiv;
  326. best_freq = tmp;
  327. break;
  328. } else if (delta < min_delta) {
  329. best_prediv = _prediv;
  330. best_fbdiv = _fbdiv;
  331. best_freq = tmp;
  332. min_delta = delta;
  333. }
  334. }
  335. if (best_freq) {
  336. inno->pll.prediv = best_prediv;
  337. inno->pll.fbdiv = best_fbdiv;
  338. inno->pll.rate = best_freq;
  339. }
  340. return best_freq;
  341. }
  342. static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
  343. {
  344. struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
  345. const struct inno_mipi_dphy_timing *timings;
  346. u32 t_txbyteclkhs, t_txclkesc;
  347. u32 txbyteclkhs, txclkesc, esc_clk_div;
  348. u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
  349. u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
  350. unsigned int i;
  351. timings = inno->pdata->inno_mipi_dphy_timing_table;
  352. inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
  353. /* Select MIPI mode */
  354. phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
  355. MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
  356. /* Configure PLL */
  357. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
  358. REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
  359. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
  360. REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
  361. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
  362. REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
  363. if (inno->pdata->max_rate == MAX_2_5GHZ) {
  364. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
  365. PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
  366. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
  367. CLOCK_LANE_VOD_RANGE_SET_MASK,
  368. CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
  369. }
  370. /* Enable PLL and LDO */
  371. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
  372. REG_LDOPD_MASK | REG_PLLPD_MASK,
  373. REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
  374. /* Reset analog */
  375. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
  376. REG_SYNCRST_MASK, REG_SYNCRST_RESET);
  377. udelay(1);
  378. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
  379. REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
  380. /* Reset digital */
  381. phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
  382. REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
  383. udelay(1);
  384. phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
  385. REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
  386. txbyteclkhs = inno->pll.rate / 8;
  387. t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
  388. esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
  389. txclkesc = txbyteclkhs / esc_clk_div;
  390. t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
  391. /*
  392. * The value of counter for HS Ths-exit
  393. * Ths-exit = Tpin_txbyteclkhs * value
  394. */
  395. hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
  396. /*
  397. * The value of counter for HS Tclk-post
  398. * Tclk-post = Tpin_txbyteclkhs * value
  399. */
  400. clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
  401. /*
  402. * The value of counter for HS Tclk-pre
  403. * Tclk-pre = Tpin_txbyteclkhs * value
  404. */
  405. clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
  406. /*
  407. * The value of counter for HS Tta-go
  408. * Tta-go for turnaround
  409. * Tta-go = Ttxclkesc * value
  410. */
  411. ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
  412. /*
  413. * The value of counter for HS Tta-sure
  414. * Tta-sure for turnaround
  415. * Tta-sure = Ttxclkesc * value
  416. */
  417. ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
  418. /*
  419. * The value of counter for HS Tta-wait
  420. * Tta-wait for turnaround
  421. * Tta-wait = Ttxclkesc * value
  422. */
  423. ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
  424. for (i = 0; i < inno->pdata->num_timings; i++)
  425. if (inno->pll.rate <= timings[i].rate)
  426. break;
  427. if (i == inno->pdata->num_timings)
  428. --i;
  429. /*
  430. * The value of counter for HS Tlpx Time
  431. * Tlpx = Tpin_txbyteclkhs * (2 + value)
  432. */
  433. if (inno->pdata->max_rate == MAX_1GHZ) {
  434. lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
  435. if (lpx >= 2)
  436. lpx -= 2;
  437. } else
  438. lpx = timings[i].lpx;
  439. hs_prepare = timings[i].hs_prepare;
  440. hs_trail = timings[i].hs_trail;
  441. clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
  442. data_lane_hs_zero = timings[i].data_lane_hs_zero;
  443. wakeup = 0x3ff;
  444. for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
  445. if (i == REGISTER_PART_CLOCK_LANE)
  446. hs_zero = clk_lane_hs_zero;
  447. else
  448. hs_zero = data_lane_hs_zero;
  449. phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
  450. T_LPX_CNT(lpx));
  451. phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
  452. T_HS_PREPARE_CNT(hs_prepare));
  453. if (inno->pdata->max_rate == MAX_2_5GHZ)
  454. phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
  455. T_HS_ZERO_CNT_HI(hs_zero >> 6));
  456. phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
  457. T_HS_ZERO_CNT_LO(hs_zero));
  458. phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
  459. T_HS_TRAIL_CNT(hs_trail));
  460. if (inno->pdata->max_rate == MAX_2_5GHZ)
  461. phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
  462. T_HS_EXIT_CNT_HI(hs_exit >> 5));
  463. phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
  464. T_HS_EXIT_CNT_LO(hs_exit));
  465. if (inno->pdata->max_rate == MAX_2_5GHZ)
  466. phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK,
  467. T_CLK_POST_CNT_HI(clk_post >> 4));
  468. phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
  469. T_CLK_POST_CNT_LO(clk_post));
  470. phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
  471. T_CLK_PRE_CNT(clk_pre));
  472. phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
  473. T_WAKEUP_CNT_HI(wakeup >> 8));
  474. phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
  475. T_WAKEUP_CNT_LO(wakeup));
  476. phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
  477. T_TA_GO_CNT(ta_go));
  478. phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
  479. T_TA_SURE_CNT(ta_sure));
  480. phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
  481. T_TA_WAIT_CNT(ta_wait));
  482. }
  483. /* Enable all lanes on analog part */
  484. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
  485. LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
  486. LANE_EN_1 | LANE_EN_0);
  487. }
  488. static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
  489. {
  490. u8 prediv = 2;
  491. u16 fbdiv = 28;
  492. /* Sample clock reverse direction */
  493. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
  494. SAMPLE_CLOCK_DIRECTION_MASK | LOWFRE_EN_MASK,
  495. SAMPLE_CLOCK_DIRECTION_REVERSE |
  496. PLL_OUTPUT_FREQUENCY_DIV_BY_1);
  497. /* Select LVDS mode */
  498. phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
  499. MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
  500. /* Configure PLL */
  501. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
  502. REG_PREDIV_MASK, REG_PREDIV(prediv));
  503. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
  504. REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
  505. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
  506. REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
  507. phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
  508. /* Enable PLL and Bandgap */
  509. phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
  510. LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
  511. LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
  512. msleep(20);
  513. /* Select PLL mode */
  514. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x1e,
  515. PLL_MODE_SEL_MASK, PLL_MODE_SEL_LVDS_MODE);
  516. /* Reset LVDS digital logic */
  517. phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
  518. LVDS_DIGITAL_INTERNAL_RESET_MASK,
  519. LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
  520. udelay(1);
  521. phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
  522. LVDS_DIGITAL_INTERNAL_RESET_MASK,
  523. LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
  524. /* Enable LVDS digital logic */
  525. phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
  526. LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
  527. LVDS_DIGITAL_INTERNAL_ENABLE);
  528. /* Enable LVDS analog driver */
  529. phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
  530. LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
  531. LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
  532. LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
  533. }
  534. static int inno_dsidphy_power_on(struct phy *phy)
  535. {
  536. struct inno_dsidphy *inno = phy_get_drvdata(phy);
  537. clk_prepare_enable(inno->pclk_phy);
  538. clk_prepare_enable(inno->ref_clk);
  539. pm_runtime_get_sync(inno->dev);
  540. /* Bandgap power on */
  541. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
  542. BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
  543. /* Enable power work */
  544. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
  545. POWER_WORK_MASK, POWER_WORK_ENABLE);
  546. switch (inno->mode) {
  547. case PHY_MODE_MIPI_DPHY:
  548. inno_dsidphy_mipi_mode_enable(inno);
  549. break;
  550. case PHY_MODE_LVDS:
  551. inno_dsidphy_lvds_mode_enable(inno);
  552. break;
  553. default:
  554. return -EINVAL;
  555. }
  556. return 0;
  557. }
  558. static int inno_dsidphy_power_off(struct phy *phy)
  559. {
  560. struct inno_dsidphy *inno = phy_get_drvdata(phy);
  561. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
  562. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
  563. REG_LDOPD_MASK | REG_PLLPD_MASK,
  564. REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
  565. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
  566. POWER_WORK_MASK, POWER_WORK_DISABLE);
  567. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
  568. BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
  569. phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
  570. phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
  571. LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
  572. LVDS_DIGITAL_INTERNAL_DISABLE);
  573. phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
  574. LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
  575. LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
  576. pm_runtime_put(inno->dev);
  577. clk_disable_unprepare(inno->ref_clk);
  578. clk_disable_unprepare(inno->pclk_phy);
  579. return 0;
  580. }
  581. static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
  582. int submode)
  583. {
  584. struct inno_dsidphy *inno = phy_get_drvdata(phy);
  585. switch (mode) {
  586. case PHY_MODE_MIPI_DPHY:
  587. case PHY_MODE_LVDS:
  588. inno->mode = mode;
  589. break;
  590. default:
  591. return -EINVAL;
  592. }
  593. return 0;
  594. }
  595. static int inno_dsidphy_configure(struct phy *phy,
  596. union phy_configure_opts *opts)
  597. {
  598. struct inno_dsidphy *inno = phy_get_drvdata(phy);
  599. int ret;
  600. if (inno->mode != PHY_MODE_MIPI_DPHY)
  601. return -EINVAL;
  602. ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
  603. if (ret)
  604. return ret;
  605. memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
  606. return 0;
  607. }
  608. static const struct phy_ops inno_dsidphy_ops = {
  609. .configure = inno_dsidphy_configure,
  610. .set_mode = inno_dsidphy_set_mode,
  611. .power_on = inno_dsidphy_power_on,
  612. .power_off = inno_dsidphy_power_off,
  613. .owner = THIS_MODULE,
  614. };
  615. static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = {
  616. .inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz,
  617. .num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz),
  618. .max_rate = MAX_1GHZ,
  619. };
  620. static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = {
  621. .inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz,
  622. .num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz),
  623. .max_rate = MAX_2_5GHZ,
  624. };
  625. static int inno_dsidphy_probe(struct platform_device *pdev)
  626. {
  627. struct device *dev = &pdev->dev;
  628. struct inno_dsidphy *inno;
  629. struct phy_provider *phy_provider;
  630. struct phy *phy;
  631. int ret;
  632. inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
  633. if (!inno)
  634. return -ENOMEM;
  635. inno->dev = dev;
  636. inno->pdata = of_device_get_match_data(inno->dev);
  637. platform_set_drvdata(pdev, inno);
  638. inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
  639. if (IS_ERR(inno->phy_base))
  640. return PTR_ERR(inno->phy_base);
  641. inno->ref_clk = devm_clk_get(dev, "ref");
  642. if (IS_ERR(inno->ref_clk)) {
  643. ret = PTR_ERR(inno->ref_clk);
  644. dev_err(dev, "failed to get ref clock: %d\n", ret);
  645. return ret;
  646. }
  647. inno->pclk_phy = devm_clk_get(dev, "pclk");
  648. if (IS_ERR(inno->pclk_phy)) {
  649. ret = PTR_ERR(inno->pclk_phy);
  650. dev_err(dev, "failed to get phy pclk: %d\n", ret);
  651. return ret;
  652. }
  653. inno->rst = devm_reset_control_get(dev, "apb");
  654. if (IS_ERR(inno->rst)) {
  655. ret = PTR_ERR(inno->rst);
  656. dev_err(dev, "failed to get system reset control: %d\n", ret);
  657. return ret;
  658. }
  659. phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
  660. if (IS_ERR(phy)) {
  661. ret = PTR_ERR(phy);
  662. dev_err(dev, "failed to create phy: %d\n", ret);
  663. return ret;
  664. }
  665. phy_set_drvdata(phy, inno);
  666. phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
  667. if (IS_ERR(phy_provider)) {
  668. ret = PTR_ERR(phy_provider);
  669. dev_err(dev, "failed to register phy provider: %d\n", ret);
  670. return ret;
  671. }
  672. pm_runtime_enable(dev);
  673. return 0;
  674. }
  675. static int inno_dsidphy_remove(struct platform_device *pdev)
  676. {
  677. struct inno_dsidphy *inno = platform_get_drvdata(pdev);
  678. pm_runtime_disable(inno->dev);
  679. return 0;
  680. }
  681. static const struct of_device_id inno_dsidphy_of_match[] = {
  682. {
  683. .compatible = "rockchip,px30-dsi-dphy",
  684. .data = &max_1ghz_video_phy_plat_data,
  685. }, {
  686. .compatible = "rockchip,rk3128-dsi-dphy",
  687. .data = &max_1ghz_video_phy_plat_data,
  688. }, {
  689. .compatible = "rockchip,rk3368-dsi-dphy",
  690. .data = &max_1ghz_video_phy_plat_data,
  691. }, {
  692. .compatible = "rockchip,rk3568-dsi-dphy",
  693. .data = &max_2_5ghz_video_phy_plat_data,
  694. },
  695. {}
  696. };
  697. MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
  698. static struct platform_driver inno_dsidphy_driver = {
  699. .driver = {
  700. .name = "inno-dsidphy",
  701. .of_match_table = of_match_ptr(inno_dsidphy_of_match),
  702. },
  703. .probe = inno_dsidphy_probe,
  704. .remove = inno_dsidphy_remove,
  705. };
  706. module_platform_driver(inno_dsidphy_driver);
  707. MODULE_AUTHOR("Wyon Bi <[email protected]>");
  708. MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
  709. MODULE_LICENSE("GPL v2");