eeprom.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. // SPDX-License-Identifier: ISC
  2. /*
  3. * Copyright (C) 2016 Felix Fietkau <[email protected]>
  4. */
  5. #include <linux/of.h>
  6. #include <linux/of_net.h>
  7. #include <linux/mtd/mtd.h>
  8. #include <linux/mtd/partitions.h>
  9. #include <linux/etherdevice.h>
  10. #include "mt76.h"
  11. int mt76_get_of_eeprom(struct mt76_dev *dev, void *eep, int offset, int len)
  12. {
  13. #if defined(CONFIG_OF) && defined(CONFIG_MTD)
  14. struct device_node *np = dev->dev->of_node;
  15. struct mtd_info *mtd;
  16. const __be32 *list;
  17. const void *data;
  18. const char *part;
  19. phandle phandle;
  20. int size;
  21. size_t retlen;
  22. int ret;
  23. if (!np)
  24. return -ENOENT;
  25. data = of_get_property(np, "mediatek,eeprom-data", &size);
  26. if (data) {
  27. if (size > len)
  28. return -EINVAL;
  29. memcpy(eep, data, size);
  30. return 0;
  31. }
  32. list = of_get_property(np, "mediatek,mtd-eeprom", &size);
  33. if (!list)
  34. return -ENOENT;
  35. phandle = be32_to_cpup(list++);
  36. if (!phandle)
  37. return -ENOENT;
  38. np = of_find_node_by_phandle(phandle);
  39. if (!np)
  40. return -EINVAL;
  41. part = of_get_property(np, "label", NULL);
  42. if (!part)
  43. part = np->name;
  44. mtd = get_mtd_device_nm(part);
  45. if (IS_ERR(mtd)) {
  46. ret = PTR_ERR(mtd);
  47. goto out_put_node;
  48. }
  49. if (size <= sizeof(*list)) {
  50. ret = -EINVAL;
  51. goto out_put_node;
  52. }
  53. offset = be32_to_cpup(list);
  54. ret = mtd_read(mtd, offset, len, &retlen, eep);
  55. put_mtd_device(mtd);
  56. if (mtd_is_bitflip(ret))
  57. ret = 0;
  58. if (ret) {
  59. dev_err(dev->dev, "reading EEPROM from mtd %s failed: %i\n",
  60. part, ret);
  61. goto out_put_node;
  62. }
  63. if (retlen < len) {
  64. ret = -EINVAL;
  65. goto out_put_node;
  66. }
  67. if (of_property_read_bool(dev->dev->of_node, "big-endian")) {
  68. u8 *data = (u8 *)eep;
  69. int i;
  70. /* convert eeprom data in Little Endian */
  71. for (i = 0; i < round_down(len, 2); i += 2)
  72. put_unaligned_le16(get_unaligned_be16(&data[i]),
  73. &data[i]);
  74. }
  75. #ifdef CONFIG_NL80211_TESTMODE
  76. dev->test_mtd.name = devm_kstrdup(dev->dev, part, GFP_KERNEL);
  77. dev->test_mtd.offset = offset;
  78. #endif
  79. out_put_node:
  80. of_node_put(np);
  81. return ret;
  82. #else
  83. return -ENOENT;
  84. #endif
  85. }
  86. EXPORT_SYMBOL_GPL(mt76_get_of_eeprom);
  87. void
  88. mt76_eeprom_override(struct mt76_phy *phy)
  89. {
  90. struct mt76_dev *dev = phy->dev;
  91. struct device_node *np = dev->dev->of_node;
  92. of_get_mac_address(np, phy->macaddr);
  93. if (!is_valid_ether_addr(phy->macaddr)) {
  94. eth_random_addr(phy->macaddr);
  95. dev_info(dev->dev,
  96. "Invalid MAC address, using random address %pM\n",
  97. phy->macaddr);
  98. }
  99. }
  100. EXPORT_SYMBOL_GPL(mt76_eeprom_override);
  101. static bool mt76_string_prop_find(struct property *prop, const char *str)
  102. {
  103. const char *cp = NULL;
  104. if (!prop || !str || !str[0])
  105. return false;
  106. while ((cp = of_prop_next_string(prop, cp)) != NULL)
  107. if (!strcasecmp(cp, str))
  108. return true;
  109. return false;
  110. }
  111. static struct device_node *
  112. mt76_find_power_limits_node(struct mt76_dev *dev)
  113. {
  114. struct device_node *np = dev->dev->of_node;
  115. const char *const region_names[] = {
  116. [NL80211_DFS_ETSI] = "etsi",
  117. [NL80211_DFS_FCC] = "fcc",
  118. [NL80211_DFS_JP] = "jp",
  119. };
  120. struct device_node *cur, *fallback = NULL;
  121. const char *region_name = NULL;
  122. if (dev->region < ARRAY_SIZE(region_names))
  123. region_name = region_names[dev->region];
  124. np = of_get_child_by_name(np, "power-limits");
  125. if (!np)
  126. return NULL;
  127. for_each_child_of_node(np, cur) {
  128. struct property *country = of_find_property(cur, "country", NULL);
  129. struct property *regd = of_find_property(cur, "regdomain", NULL);
  130. if (!country && !regd) {
  131. fallback = cur;
  132. continue;
  133. }
  134. if (mt76_string_prop_find(country, dev->alpha2) ||
  135. mt76_string_prop_find(regd, region_name)) {
  136. of_node_put(np);
  137. return cur;
  138. }
  139. }
  140. of_node_put(np);
  141. return fallback;
  142. }
  143. static const __be32 *
  144. mt76_get_of_array(struct device_node *np, char *name, size_t *len, int min)
  145. {
  146. struct property *prop = of_find_property(np, name, NULL);
  147. if (!prop || !prop->value || prop->length < min * 4)
  148. return NULL;
  149. *len = prop->length;
  150. return prop->value;
  151. }
  152. static struct device_node *
  153. mt76_find_channel_node(struct device_node *np, struct ieee80211_channel *chan)
  154. {
  155. struct device_node *cur;
  156. const __be32 *val;
  157. size_t len;
  158. for_each_child_of_node(np, cur) {
  159. val = mt76_get_of_array(cur, "channels", &len, 2);
  160. if (!val)
  161. continue;
  162. while (len >= 2 * sizeof(*val)) {
  163. if (chan->hw_value >= be32_to_cpu(val[0]) &&
  164. chan->hw_value <= be32_to_cpu(val[1]))
  165. return cur;
  166. val += 2;
  167. len -= 2 * sizeof(*val);
  168. }
  169. }
  170. return NULL;
  171. }
  172. static s8
  173. mt76_get_txs_delta(struct device_node *np, u8 nss)
  174. {
  175. const __be32 *val;
  176. size_t len;
  177. val = mt76_get_of_array(np, "txs-delta", &len, nss);
  178. if (!val)
  179. return 0;
  180. return be32_to_cpu(val[nss - 1]);
  181. }
  182. static void
  183. mt76_apply_array_limit(s8 *pwr, size_t pwr_len, const __be32 *data,
  184. s8 target_power, s8 nss_delta, s8 *max_power)
  185. {
  186. int i;
  187. if (!data)
  188. return;
  189. for (i = 0; i < pwr_len; i++) {
  190. pwr[i] = min_t(s8, target_power,
  191. be32_to_cpu(data[i]) + nss_delta);
  192. *max_power = max(*max_power, pwr[i]);
  193. }
  194. }
  195. static void
  196. mt76_apply_multi_array_limit(s8 *pwr, size_t pwr_len, s8 pwr_num,
  197. const __be32 *data, size_t len, s8 target_power,
  198. s8 nss_delta, s8 *max_power)
  199. {
  200. int i, cur;
  201. if (!data)
  202. return;
  203. len /= 4;
  204. cur = be32_to_cpu(data[0]);
  205. for (i = 0; i < pwr_num; i++) {
  206. if (len < pwr_len + 1)
  207. break;
  208. mt76_apply_array_limit(pwr + pwr_len * i, pwr_len, data + 1,
  209. target_power, nss_delta, max_power);
  210. if (--cur > 0)
  211. continue;
  212. data += pwr_len + 1;
  213. len -= pwr_len + 1;
  214. if (!len)
  215. break;
  216. cur = be32_to_cpu(data[0]);
  217. }
  218. }
  219. s8 mt76_get_rate_power_limits(struct mt76_phy *phy,
  220. struct ieee80211_channel *chan,
  221. struct mt76_power_limits *dest,
  222. s8 target_power)
  223. {
  224. struct mt76_dev *dev = phy->dev;
  225. struct device_node *np;
  226. const __be32 *val;
  227. char name[16];
  228. u32 mcs_rates = dev->drv->mcs_rates;
  229. u32 ru_rates = ARRAY_SIZE(dest->ru[0]);
  230. char band;
  231. size_t len;
  232. s8 max_power = 0;
  233. s8 txs_delta;
  234. if (!mcs_rates)
  235. mcs_rates = 10;
  236. memset(dest, target_power, sizeof(*dest));
  237. if (!IS_ENABLED(CONFIG_OF))
  238. return target_power;
  239. np = mt76_find_power_limits_node(dev);
  240. if (!np)
  241. return target_power;
  242. switch (chan->band) {
  243. case NL80211_BAND_2GHZ:
  244. band = '2';
  245. break;
  246. case NL80211_BAND_5GHZ:
  247. band = '5';
  248. break;
  249. case NL80211_BAND_6GHZ:
  250. band = '6';
  251. break;
  252. default:
  253. return target_power;
  254. }
  255. snprintf(name, sizeof(name), "txpower-%cg", band);
  256. np = of_get_child_by_name(np, name);
  257. if (!np)
  258. return target_power;
  259. np = mt76_find_channel_node(np, chan);
  260. if (!np)
  261. return target_power;
  262. txs_delta = mt76_get_txs_delta(np, hweight8(phy->antenna_mask));
  263. val = mt76_get_of_array(np, "rates-cck", &len, ARRAY_SIZE(dest->cck));
  264. mt76_apply_array_limit(dest->cck, ARRAY_SIZE(dest->cck), val,
  265. target_power, txs_delta, &max_power);
  266. val = mt76_get_of_array(np, "rates-ofdm",
  267. &len, ARRAY_SIZE(dest->ofdm));
  268. mt76_apply_array_limit(dest->ofdm, ARRAY_SIZE(dest->ofdm), val,
  269. target_power, txs_delta, &max_power);
  270. val = mt76_get_of_array(np, "rates-mcs", &len, mcs_rates + 1);
  271. mt76_apply_multi_array_limit(dest->mcs[0], ARRAY_SIZE(dest->mcs[0]),
  272. ARRAY_SIZE(dest->mcs), val, len,
  273. target_power, txs_delta, &max_power);
  274. val = mt76_get_of_array(np, "rates-ru", &len, ru_rates + 1);
  275. mt76_apply_multi_array_limit(dest->ru[0], ARRAY_SIZE(dest->ru[0]),
  276. ARRAY_SIZE(dest->ru), val, len,
  277. target_power, txs_delta, &max_power);
  278. return max_power;
  279. }
  280. EXPORT_SYMBOL_GPL(mt76_get_rate_power_limits);
  281. int
  282. mt76_eeprom_init(struct mt76_dev *dev, int len)
  283. {
  284. dev->eeprom.size = len;
  285. dev->eeprom.data = devm_kzalloc(dev->dev, len, GFP_KERNEL);
  286. if (!dev->eeprom.data)
  287. return -ENOMEM;
  288. return !mt76_get_of_eeprom(dev, dev->eeprom.data, 0, len);
  289. }
  290. EXPORT_SYMBOL_GPL(mt76_eeprom_init);