sfp.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/acpi.h>
  3. #include <linux/ctype.h>
  4. #include <linux/debugfs.h>
  5. #include <linux/delay.h>
  6. #include <linux/gpio/consumer.h>
  7. #include <linux/hwmon.h>
  8. #include <linux/i2c.h>
  9. #include <linux/interrupt.h>
  10. #include <linux/jiffies.h>
  11. #include <linux/mdio/mdio-i2c.h>
  12. #include <linux/module.h>
  13. #include <linux/mutex.h>
  14. #include <linux/of.h>
  15. #include <linux/phy.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/rtnetlink.h>
  18. #include <linux/slab.h>
  19. #include <linux/workqueue.h>
  20. #include "sfp.h"
  21. #include "swphy.h"
  22. enum {
  23. GPIO_MODDEF0,
  24. GPIO_LOS,
  25. GPIO_TX_FAULT,
  26. GPIO_TX_DISABLE,
  27. GPIO_RATE_SELECT,
  28. GPIO_MAX,
  29. SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  30. SFP_F_LOS = BIT(GPIO_LOS),
  31. SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  32. SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  33. SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
  34. SFP_E_INSERT = 0,
  35. SFP_E_REMOVE,
  36. SFP_E_DEV_ATTACH,
  37. SFP_E_DEV_DETACH,
  38. SFP_E_DEV_DOWN,
  39. SFP_E_DEV_UP,
  40. SFP_E_TX_FAULT,
  41. SFP_E_TX_CLEAR,
  42. SFP_E_LOS_HIGH,
  43. SFP_E_LOS_LOW,
  44. SFP_E_TIMEOUT,
  45. SFP_MOD_EMPTY = 0,
  46. SFP_MOD_ERROR,
  47. SFP_MOD_PROBE,
  48. SFP_MOD_WAITDEV,
  49. SFP_MOD_HPOWER,
  50. SFP_MOD_WAITPWR,
  51. SFP_MOD_PRESENT,
  52. SFP_DEV_DETACHED = 0,
  53. SFP_DEV_DOWN,
  54. SFP_DEV_UP,
  55. SFP_S_DOWN = 0,
  56. SFP_S_FAIL,
  57. SFP_S_WAIT,
  58. SFP_S_INIT,
  59. SFP_S_INIT_PHY,
  60. SFP_S_INIT_TX_FAULT,
  61. SFP_S_WAIT_LOS,
  62. SFP_S_LINK_UP,
  63. SFP_S_TX_FAULT,
  64. SFP_S_REINIT,
  65. SFP_S_TX_DISABLE,
  66. };
  67. static const char * const mod_state_strings[] = {
  68. [SFP_MOD_EMPTY] = "empty",
  69. [SFP_MOD_ERROR] = "error",
  70. [SFP_MOD_PROBE] = "probe",
  71. [SFP_MOD_WAITDEV] = "waitdev",
  72. [SFP_MOD_HPOWER] = "hpower",
  73. [SFP_MOD_WAITPWR] = "waitpwr",
  74. [SFP_MOD_PRESENT] = "present",
  75. };
  76. static const char *mod_state_to_str(unsigned short mod_state)
  77. {
  78. if (mod_state >= ARRAY_SIZE(mod_state_strings))
  79. return "Unknown module state";
  80. return mod_state_strings[mod_state];
  81. }
  82. static const char * const dev_state_strings[] = {
  83. [SFP_DEV_DETACHED] = "detached",
  84. [SFP_DEV_DOWN] = "down",
  85. [SFP_DEV_UP] = "up",
  86. };
  87. static const char *dev_state_to_str(unsigned short dev_state)
  88. {
  89. if (dev_state >= ARRAY_SIZE(dev_state_strings))
  90. return "Unknown device state";
  91. return dev_state_strings[dev_state];
  92. }
  93. static const char * const event_strings[] = {
  94. [SFP_E_INSERT] = "insert",
  95. [SFP_E_REMOVE] = "remove",
  96. [SFP_E_DEV_ATTACH] = "dev_attach",
  97. [SFP_E_DEV_DETACH] = "dev_detach",
  98. [SFP_E_DEV_DOWN] = "dev_down",
  99. [SFP_E_DEV_UP] = "dev_up",
  100. [SFP_E_TX_FAULT] = "tx_fault",
  101. [SFP_E_TX_CLEAR] = "tx_clear",
  102. [SFP_E_LOS_HIGH] = "los_high",
  103. [SFP_E_LOS_LOW] = "los_low",
  104. [SFP_E_TIMEOUT] = "timeout",
  105. };
  106. static const char *event_to_str(unsigned short event)
  107. {
  108. if (event >= ARRAY_SIZE(event_strings))
  109. return "Unknown event";
  110. return event_strings[event];
  111. }
  112. static const char * const sm_state_strings[] = {
  113. [SFP_S_DOWN] = "down",
  114. [SFP_S_FAIL] = "fail",
  115. [SFP_S_WAIT] = "wait",
  116. [SFP_S_INIT] = "init",
  117. [SFP_S_INIT_PHY] = "init_phy",
  118. [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
  119. [SFP_S_WAIT_LOS] = "wait_los",
  120. [SFP_S_LINK_UP] = "link_up",
  121. [SFP_S_TX_FAULT] = "tx_fault",
  122. [SFP_S_REINIT] = "reinit",
  123. [SFP_S_TX_DISABLE] = "tx_disable",
  124. };
  125. static const char *sm_state_to_str(unsigned short sm_state)
  126. {
  127. if (sm_state >= ARRAY_SIZE(sm_state_strings))
  128. return "Unknown state";
  129. return sm_state_strings[sm_state];
  130. }
  131. static const char *gpio_of_names[] = {
  132. "mod-def0",
  133. "los",
  134. "tx-fault",
  135. "tx-disable",
  136. "rate-select0",
  137. };
  138. static const enum gpiod_flags gpio_flags[] = {
  139. GPIOD_IN,
  140. GPIOD_IN,
  141. GPIOD_IN,
  142. GPIOD_ASIS,
  143. GPIOD_ASIS,
  144. };
  145. /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
  146. * non-cooled module to initialise its laser safety circuitry. We wait
  147. * an initial T_WAIT period before we check the tx fault to give any PHY
  148. * on board (for a copper SFP) time to initialise.
  149. */
  150. #define T_WAIT msecs_to_jiffies(50)
  151. #define T_WAIT_ROLLBALL msecs_to_jiffies(25000)
  152. #define T_START_UP msecs_to_jiffies(300)
  153. #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
  154. /* t_reset is the time required to assert the TX_DISABLE signal to reset
  155. * an indicated TX_FAULT.
  156. */
  157. #define T_RESET_US 10
  158. #define T_FAULT_RECOVER msecs_to_jiffies(1000)
  159. /* N_FAULT_INIT is the number of recovery attempts at module initialisation
  160. * time. If the TX_FAULT signal is not deasserted after this number of
  161. * attempts at clearing it, we decide that the module is faulty.
  162. * N_FAULT is the same but after the module has initialised.
  163. */
  164. #define N_FAULT_INIT 5
  165. #define N_FAULT 5
  166. /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
  167. * R_PHY_RETRY is the number of attempts.
  168. */
  169. #define T_PHY_RETRY msecs_to_jiffies(50)
  170. #define R_PHY_RETRY 12
  171. /* SFP module presence detection is poor: the three MOD DEF signals are
  172. * the same length on the PCB, which means it's possible for MOD DEF 0 to
  173. * connect before the I2C bus on MOD DEF 1/2.
  174. *
  175. * The SFF-8472 specifies t_serial ("Time from power on until module is
  176. * ready for data transmission over the two wire serial bus.") as 300ms.
  177. */
  178. #define T_SERIAL msecs_to_jiffies(300)
  179. #define T_HPOWER_LEVEL msecs_to_jiffies(300)
  180. #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
  181. #define R_PROBE_RETRY_INIT 10
  182. #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
  183. #define R_PROBE_RETRY_SLOW 12
  184. /* SFP modules appear to always have their PHY configured for bus address
  185. * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
  186. * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
  187. * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
  188. */
  189. #define SFP_PHY_ADDR 22
  190. #define SFP_PHY_ADDR_ROLLBALL 17
  191. /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
  192. * at a time. Some SFP modules and also some Linux I2C drivers do not like
  193. * reads longer than 16 bytes.
  194. */
  195. #define SFP_EEPROM_BLOCK_SIZE 16
  196. struct sff_data {
  197. unsigned int gpios;
  198. bool (*module_supported)(const struct sfp_eeprom_id *id);
  199. };
  200. struct sfp {
  201. struct device *dev;
  202. struct i2c_adapter *i2c;
  203. struct mii_bus *i2c_mii;
  204. struct sfp_bus *sfp_bus;
  205. enum mdio_i2c_proto mdio_protocol;
  206. struct phy_device *mod_phy;
  207. const struct sff_data *type;
  208. size_t i2c_block_size;
  209. u32 max_power_mW;
  210. unsigned int (*get_state)(struct sfp *);
  211. void (*set_state)(struct sfp *, unsigned int);
  212. int (*read)(struct sfp *, bool, u8, void *, size_t);
  213. int (*write)(struct sfp *, bool, u8, void *, size_t);
  214. struct gpio_desc *gpio[GPIO_MAX];
  215. int gpio_irq[GPIO_MAX];
  216. bool need_poll;
  217. struct mutex st_mutex; /* Protects state */
  218. unsigned int state_hw_mask;
  219. unsigned int state_soft_mask;
  220. unsigned int state;
  221. struct delayed_work poll;
  222. struct delayed_work timeout;
  223. struct mutex sm_mutex; /* Protects state machine */
  224. unsigned char sm_mod_state;
  225. unsigned char sm_mod_tries_init;
  226. unsigned char sm_mod_tries;
  227. unsigned char sm_dev_state;
  228. unsigned short sm_state;
  229. unsigned char sm_fault_retries;
  230. unsigned char sm_phy_retries;
  231. struct sfp_eeprom_id id;
  232. unsigned int module_power_mW;
  233. unsigned int module_t_start_up;
  234. unsigned int module_t_wait;
  235. bool tx_fault_ignore;
  236. const struct sfp_quirk *quirk;
  237. #if IS_ENABLED(CONFIG_HWMON)
  238. struct sfp_diag diag;
  239. struct delayed_work hwmon_probe;
  240. unsigned int hwmon_tries;
  241. struct device *hwmon_dev;
  242. char *hwmon_name;
  243. #endif
  244. #if IS_ENABLED(CONFIG_DEBUG_FS)
  245. struct dentry *debugfs_dir;
  246. #endif
  247. };
  248. static bool sff_module_supported(const struct sfp_eeprom_id *id)
  249. {
  250. return id->base.phys_id == SFF8024_ID_SFF_8472 &&
  251. id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
  252. }
  253. static const struct sff_data sff_data = {
  254. .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
  255. .module_supported = sff_module_supported,
  256. };
  257. static bool sfp_module_supported(const struct sfp_eeprom_id *id)
  258. {
  259. if (id->base.phys_id == SFF8024_ID_SFP &&
  260. id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
  261. return true;
  262. /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
  263. * phys id SFF instead of SFP. Therefore mark this module explicitly
  264. * as supported based on vendor name and pn match.
  265. */
  266. if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
  267. id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
  268. !memcmp(id->base.vendor_name, "UBNT ", 16) &&
  269. !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
  270. return true;
  271. return false;
  272. }
  273. static const struct sff_data sfp_data = {
  274. .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
  275. SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
  276. .module_supported = sfp_module_supported,
  277. };
  278. static const struct of_device_id sfp_of_match[] = {
  279. { .compatible = "sff,sff", .data = &sff_data, },
  280. { .compatible = "sff,sfp", .data = &sfp_data, },
  281. { },
  282. };
  283. MODULE_DEVICE_TABLE(of, sfp_of_match);
  284. static void sfp_fixup_long_startup(struct sfp *sfp)
  285. {
  286. sfp->module_t_start_up = T_START_UP_BAD_GPON;
  287. }
  288. static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
  289. {
  290. sfp->tx_fault_ignore = true;
  291. }
  292. static void sfp_fixup_halny_gsfp(struct sfp *sfp)
  293. {
  294. /* Ignore the TX_FAULT and LOS signals on this module.
  295. * these are possibly used for other purposes on this
  296. * module, e.g. a serial port.
  297. */
  298. sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
  299. }
  300. static void sfp_fixup_rollball(struct sfp *sfp)
  301. {
  302. sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
  303. sfp->module_t_wait = T_WAIT_ROLLBALL;
  304. }
  305. static void sfp_fixup_rollball_cc(struct sfp *sfp)
  306. {
  307. sfp_fixup_rollball(sfp);
  308. /* Some RollBall SFPs may have wrong (zero) extended compliance code
  309. * burned in EEPROM. For PHY probing we need the correct one.
  310. */
  311. sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
  312. }
  313. static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
  314. unsigned long *modes,
  315. unsigned long *interfaces)
  316. {
  317. linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
  318. __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
  319. }
  320. static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
  321. unsigned long *modes,
  322. unsigned long *interfaces)
  323. {
  324. /* Ubiquiti U-Fiber Instant module claims that support all transceiver
  325. * types including 10G Ethernet which is not truth. So clear all claimed
  326. * modes and set only one mode which module supports: 1000baseX_Full.
  327. */
  328. linkmode_zero(modes);
  329. linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
  330. }
  331. #define SFP_QUIRK(_v, _p, _m, _f) \
  332. { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
  333. #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
  334. #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
  335. static const struct sfp_quirk sfp_quirks[] = {
  336. // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
  337. // report 2500MBd NRZ in their EEPROM
  338. SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
  339. // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
  340. // NRZ in their EEPROM
  341. SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
  342. sfp_fixup_long_startup),
  343. SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
  344. // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
  345. // 2600MBd in their EERPOM
  346. SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
  347. // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
  348. // their EEPROM
  349. SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
  350. sfp_fixup_ignore_tx_fault),
  351. // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
  352. // 2500MBd NRZ in their EEPROM
  353. SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
  354. SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
  355. SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
  356. SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
  357. SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
  358. SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
  359. SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
  360. };
  361. static size_t sfp_strlen(const char *str, size_t maxlen)
  362. {
  363. size_t size, i;
  364. /* Trailing characters should be filled with space chars, but
  365. * some manufacturers can't read SFF-8472 and use NUL.
  366. */
  367. for (i = 0, size = 0; i < maxlen; i++)
  368. if (str[i] != ' ' && str[i] != '\0')
  369. size = i + 1;
  370. return size;
  371. }
  372. static bool sfp_match(const char *qs, const char *str, size_t len)
  373. {
  374. if (!qs)
  375. return true;
  376. if (strlen(qs) != len)
  377. return false;
  378. return !strncmp(qs, str, len);
  379. }
  380. static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
  381. {
  382. const struct sfp_quirk *q;
  383. unsigned int i;
  384. size_t vs, ps;
  385. vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
  386. ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
  387. for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
  388. if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
  389. sfp_match(q->part, id->base.vendor_pn, ps))
  390. return q;
  391. return NULL;
  392. }
  393. static unsigned long poll_jiffies;
  394. static unsigned int sfp_gpio_get_state(struct sfp *sfp)
  395. {
  396. unsigned int i, state, v;
  397. for (i = state = 0; i < GPIO_MAX; i++) {
  398. if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
  399. continue;
  400. v = gpiod_get_value_cansleep(sfp->gpio[i]);
  401. if (v)
  402. state |= BIT(i);
  403. }
  404. return state;
  405. }
  406. static unsigned int sff_gpio_get_state(struct sfp *sfp)
  407. {
  408. return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
  409. }
  410. static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
  411. {
  412. if (state & SFP_F_PRESENT) {
  413. /* If the module is present, drive the signals */
  414. if (sfp->gpio[GPIO_TX_DISABLE])
  415. gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
  416. state & SFP_F_TX_DISABLE);
  417. if (state & SFP_F_RATE_SELECT)
  418. gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
  419. state & SFP_F_RATE_SELECT);
  420. } else {
  421. /* Otherwise, let them float to the pull-ups */
  422. if (sfp->gpio[GPIO_TX_DISABLE])
  423. gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
  424. if (state & SFP_F_RATE_SELECT)
  425. gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
  426. }
  427. }
  428. static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
  429. size_t len)
  430. {
  431. struct i2c_msg msgs[2];
  432. u8 bus_addr = a2 ? 0x51 : 0x50;
  433. size_t block_size = sfp->i2c_block_size;
  434. size_t this_len;
  435. int ret;
  436. msgs[0].addr = bus_addr;
  437. msgs[0].flags = 0;
  438. msgs[0].len = 1;
  439. msgs[0].buf = &dev_addr;
  440. msgs[1].addr = bus_addr;
  441. msgs[1].flags = I2C_M_RD;
  442. msgs[1].len = len;
  443. msgs[1].buf = buf;
  444. while (len) {
  445. this_len = len;
  446. if (this_len > block_size)
  447. this_len = block_size;
  448. msgs[1].len = this_len;
  449. ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
  450. if (ret < 0)
  451. return ret;
  452. if (ret != ARRAY_SIZE(msgs))
  453. break;
  454. msgs[1].buf += this_len;
  455. dev_addr += this_len;
  456. len -= this_len;
  457. }
  458. return msgs[1].buf - (u8 *)buf;
  459. }
  460. static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
  461. size_t len)
  462. {
  463. struct i2c_msg msgs[1];
  464. u8 bus_addr = a2 ? 0x51 : 0x50;
  465. int ret;
  466. msgs[0].addr = bus_addr;
  467. msgs[0].flags = 0;
  468. msgs[0].len = 1 + len;
  469. msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
  470. if (!msgs[0].buf)
  471. return -ENOMEM;
  472. msgs[0].buf[0] = dev_addr;
  473. memcpy(&msgs[0].buf[1], buf, len);
  474. ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
  475. kfree(msgs[0].buf);
  476. if (ret < 0)
  477. return ret;
  478. return ret == ARRAY_SIZE(msgs) ? len : 0;
  479. }
  480. static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
  481. {
  482. if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
  483. return -EINVAL;
  484. sfp->i2c = i2c;
  485. sfp->read = sfp_i2c_read;
  486. sfp->write = sfp_i2c_write;
  487. return 0;
  488. }
  489. static int sfp_i2c_mdiobus_create(struct sfp *sfp)
  490. {
  491. struct mii_bus *i2c_mii;
  492. int ret;
  493. i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
  494. if (IS_ERR(i2c_mii))
  495. return PTR_ERR(i2c_mii);
  496. i2c_mii->name = "SFP I2C Bus";
  497. i2c_mii->phy_mask = ~0;
  498. ret = mdiobus_register(i2c_mii);
  499. if (ret < 0) {
  500. mdiobus_free(i2c_mii);
  501. return ret;
  502. }
  503. sfp->i2c_mii = i2c_mii;
  504. return 0;
  505. }
  506. static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
  507. {
  508. mdiobus_unregister(sfp->i2c_mii);
  509. sfp->i2c_mii = NULL;
  510. }
  511. /* Interface */
  512. static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
  513. {
  514. return sfp->read(sfp, a2, addr, buf, len);
  515. }
  516. static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
  517. {
  518. return sfp->write(sfp, a2, addr, buf, len);
  519. }
  520. static unsigned int sfp_soft_get_state(struct sfp *sfp)
  521. {
  522. unsigned int state = 0;
  523. u8 status;
  524. int ret;
  525. ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
  526. if (ret == sizeof(status)) {
  527. if (status & SFP_STATUS_RX_LOS)
  528. state |= SFP_F_LOS;
  529. if (status & SFP_STATUS_TX_FAULT)
  530. state |= SFP_F_TX_FAULT;
  531. } else {
  532. dev_err_ratelimited(sfp->dev,
  533. "failed to read SFP soft status: %pe\n",
  534. ERR_PTR(ret));
  535. /* Preserve the current state */
  536. state = sfp->state;
  537. }
  538. return state & sfp->state_soft_mask;
  539. }
  540. static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
  541. {
  542. u8 status;
  543. if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
  544. sizeof(status)) {
  545. if (state & SFP_F_TX_DISABLE)
  546. status |= SFP_STATUS_TX_DISABLE_FORCE;
  547. else
  548. status &= ~SFP_STATUS_TX_DISABLE_FORCE;
  549. sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
  550. }
  551. }
  552. static void sfp_soft_start_poll(struct sfp *sfp)
  553. {
  554. const struct sfp_eeprom_id *id = &sfp->id;
  555. unsigned int mask = 0;
  556. sfp->state_soft_mask = 0;
  557. if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
  558. mask |= SFP_F_TX_DISABLE;
  559. if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
  560. mask |= SFP_F_TX_FAULT;
  561. if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
  562. mask |= SFP_F_LOS;
  563. // Poll the soft state for hardware pins we want to ignore
  564. sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
  565. if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
  566. !sfp->need_poll)
  567. mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
  568. }
  569. static void sfp_soft_stop_poll(struct sfp *sfp)
  570. {
  571. sfp->state_soft_mask = 0;
  572. }
  573. static unsigned int sfp_get_state(struct sfp *sfp)
  574. {
  575. unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
  576. unsigned int state;
  577. state = sfp->get_state(sfp) & sfp->state_hw_mask;
  578. if (state & SFP_F_PRESENT && soft)
  579. state |= sfp_soft_get_state(sfp);
  580. return state;
  581. }
  582. static void sfp_set_state(struct sfp *sfp, unsigned int state)
  583. {
  584. sfp->set_state(sfp, state);
  585. if (state & SFP_F_PRESENT &&
  586. sfp->state_soft_mask & SFP_F_TX_DISABLE)
  587. sfp_soft_set_state(sfp, state);
  588. }
  589. static unsigned int sfp_check(void *buf, size_t len)
  590. {
  591. u8 *p, check;
  592. for (p = buf, check = 0; len; p++, len--)
  593. check += *p;
  594. return check;
  595. }
  596. /* hwmon */
  597. #if IS_ENABLED(CONFIG_HWMON)
  598. static umode_t sfp_hwmon_is_visible(const void *data,
  599. enum hwmon_sensor_types type,
  600. u32 attr, int channel)
  601. {
  602. const struct sfp *sfp = data;
  603. switch (type) {
  604. case hwmon_temp:
  605. switch (attr) {
  606. case hwmon_temp_min_alarm:
  607. case hwmon_temp_max_alarm:
  608. case hwmon_temp_lcrit_alarm:
  609. case hwmon_temp_crit_alarm:
  610. case hwmon_temp_min:
  611. case hwmon_temp_max:
  612. case hwmon_temp_lcrit:
  613. case hwmon_temp_crit:
  614. if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
  615. return 0;
  616. fallthrough;
  617. case hwmon_temp_input:
  618. case hwmon_temp_label:
  619. return 0444;
  620. default:
  621. return 0;
  622. }
  623. case hwmon_in:
  624. switch (attr) {
  625. case hwmon_in_min_alarm:
  626. case hwmon_in_max_alarm:
  627. case hwmon_in_lcrit_alarm:
  628. case hwmon_in_crit_alarm:
  629. case hwmon_in_min:
  630. case hwmon_in_max:
  631. case hwmon_in_lcrit:
  632. case hwmon_in_crit:
  633. if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
  634. return 0;
  635. fallthrough;
  636. case hwmon_in_input:
  637. case hwmon_in_label:
  638. return 0444;
  639. default:
  640. return 0;
  641. }
  642. case hwmon_curr:
  643. switch (attr) {
  644. case hwmon_curr_min_alarm:
  645. case hwmon_curr_max_alarm:
  646. case hwmon_curr_lcrit_alarm:
  647. case hwmon_curr_crit_alarm:
  648. case hwmon_curr_min:
  649. case hwmon_curr_max:
  650. case hwmon_curr_lcrit:
  651. case hwmon_curr_crit:
  652. if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
  653. return 0;
  654. fallthrough;
  655. case hwmon_curr_input:
  656. case hwmon_curr_label:
  657. return 0444;
  658. default:
  659. return 0;
  660. }
  661. case hwmon_power:
  662. /* External calibration of receive power requires
  663. * floating point arithmetic. Doing that in the kernel
  664. * is not easy, so just skip it. If the module does
  665. * not require external calibration, we can however
  666. * show receiver power, since FP is then not needed.
  667. */
  668. if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
  669. channel == 1)
  670. return 0;
  671. switch (attr) {
  672. case hwmon_power_min_alarm:
  673. case hwmon_power_max_alarm:
  674. case hwmon_power_lcrit_alarm:
  675. case hwmon_power_crit_alarm:
  676. case hwmon_power_min:
  677. case hwmon_power_max:
  678. case hwmon_power_lcrit:
  679. case hwmon_power_crit:
  680. if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
  681. return 0;
  682. fallthrough;
  683. case hwmon_power_input:
  684. case hwmon_power_label:
  685. return 0444;
  686. default:
  687. return 0;
  688. }
  689. default:
  690. return 0;
  691. }
  692. }
  693. static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
  694. {
  695. __be16 val;
  696. int err;
  697. err = sfp_read(sfp, true, reg, &val, sizeof(val));
  698. if (err < 0)
  699. return err;
  700. *value = be16_to_cpu(val);
  701. return 0;
  702. }
  703. static void sfp_hwmon_to_rx_power(long *value)
  704. {
  705. *value = DIV_ROUND_CLOSEST(*value, 10);
  706. }
  707. static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
  708. long *value)
  709. {
  710. if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
  711. *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
  712. }
  713. static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
  714. {
  715. sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
  716. be16_to_cpu(sfp->diag.cal_t_offset), value);
  717. if (*value >= 0x8000)
  718. *value -= 0x10000;
  719. *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
  720. }
  721. static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
  722. {
  723. sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
  724. be16_to_cpu(sfp->diag.cal_v_offset), value);
  725. *value = DIV_ROUND_CLOSEST(*value, 10);
  726. }
  727. static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
  728. {
  729. sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
  730. be16_to_cpu(sfp->diag.cal_txi_offset), value);
  731. *value = DIV_ROUND_CLOSEST(*value, 500);
  732. }
  733. static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
  734. {
  735. sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
  736. be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
  737. *value = DIV_ROUND_CLOSEST(*value, 10);
  738. }
  739. static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
  740. {
  741. int err;
  742. err = sfp_hwmon_read_sensor(sfp, reg, value);
  743. if (err < 0)
  744. return err;
  745. sfp_hwmon_calibrate_temp(sfp, value);
  746. return 0;
  747. }
  748. static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
  749. {
  750. int err;
  751. err = sfp_hwmon_read_sensor(sfp, reg, value);
  752. if (err < 0)
  753. return err;
  754. sfp_hwmon_calibrate_vcc(sfp, value);
  755. return 0;
  756. }
  757. static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
  758. {
  759. int err;
  760. err = sfp_hwmon_read_sensor(sfp, reg, value);
  761. if (err < 0)
  762. return err;
  763. sfp_hwmon_calibrate_bias(sfp, value);
  764. return 0;
  765. }
  766. static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
  767. {
  768. int err;
  769. err = sfp_hwmon_read_sensor(sfp, reg, value);
  770. if (err < 0)
  771. return err;
  772. sfp_hwmon_calibrate_tx_power(sfp, value);
  773. return 0;
  774. }
  775. static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
  776. {
  777. int err;
  778. err = sfp_hwmon_read_sensor(sfp, reg, value);
  779. if (err < 0)
  780. return err;
  781. sfp_hwmon_to_rx_power(value);
  782. return 0;
  783. }
  784. static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
  785. {
  786. u8 status;
  787. int err;
  788. switch (attr) {
  789. case hwmon_temp_input:
  790. return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
  791. case hwmon_temp_lcrit:
  792. *value = be16_to_cpu(sfp->diag.temp_low_alarm);
  793. sfp_hwmon_calibrate_temp(sfp, value);
  794. return 0;
  795. case hwmon_temp_min:
  796. *value = be16_to_cpu(sfp->diag.temp_low_warn);
  797. sfp_hwmon_calibrate_temp(sfp, value);
  798. return 0;
  799. case hwmon_temp_max:
  800. *value = be16_to_cpu(sfp->diag.temp_high_warn);
  801. sfp_hwmon_calibrate_temp(sfp, value);
  802. return 0;
  803. case hwmon_temp_crit:
  804. *value = be16_to_cpu(sfp->diag.temp_high_alarm);
  805. sfp_hwmon_calibrate_temp(sfp, value);
  806. return 0;
  807. case hwmon_temp_lcrit_alarm:
  808. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  809. if (err < 0)
  810. return err;
  811. *value = !!(status & SFP_ALARM0_TEMP_LOW);
  812. return 0;
  813. case hwmon_temp_min_alarm:
  814. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  815. if (err < 0)
  816. return err;
  817. *value = !!(status & SFP_WARN0_TEMP_LOW);
  818. return 0;
  819. case hwmon_temp_max_alarm:
  820. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  821. if (err < 0)
  822. return err;
  823. *value = !!(status & SFP_WARN0_TEMP_HIGH);
  824. return 0;
  825. case hwmon_temp_crit_alarm:
  826. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  827. if (err < 0)
  828. return err;
  829. *value = !!(status & SFP_ALARM0_TEMP_HIGH);
  830. return 0;
  831. default:
  832. return -EOPNOTSUPP;
  833. }
  834. return -EOPNOTSUPP;
  835. }
  836. static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
  837. {
  838. u8 status;
  839. int err;
  840. switch (attr) {
  841. case hwmon_in_input:
  842. return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
  843. case hwmon_in_lcrit:
  844. *value = be16_to_cpu(sfp->diag.volt_low_alarm);
  845. sfp_hwmon_calibrate_vcc(sfp, value);
  846. return 0;
  847. case hwmon_in_min:
  848. *value = be16_to_cpu(sfp->diag.volt_low_warn);
  849. sfp_hwmon_calibrate_vcc(sfp, value);
  850. return 0;
  851. case hwmon_in_max:
  852. *value = be16_to_cpu(sfp->diag.volt_high_warn);
  853. sfp_hwmon_calibrate_vcc(sfp, value);
  854. return 0;
  855. case hwmon_in_crit:
  856. *value = be16_to_cpu(sfp->diag.volt_high_alarm);
  857. sfp_hwmon_calibrate_vcc(sfp, value);
  858. return 0;
  859. case hwmon_in_lcrit_alarm:
  860. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  861. if (err < 0)
  862. return err;
  863. *value = !!(status & SFP_ALARM0_VCC_LOW);
  864. return 0;
  865. case hwmon_in_min_alarm:
  866. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  867. if (err < 0)
  868. return err;
  869. *value = !!(status & SFP_WARN0_VCC_LOW);
  870. return 0;
  871. case hwmon_in_max_alarm:
  872. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  873. if (err < 0)
  874. return err;
  875. *value = !!(status & SFP_WARN0_VCC_HIGH);
  876. return 0;
  877. case hwmon_in_crit_alarm:
  878. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  879. if (err < 0)
  880. return err;
  881. *value = !!(status & SFP_ALARM0_VCC_HIGH);
  882. return 0;
  883. default:
  884. return -EOPNOTSUPP;
  885. }
  886. return -EOPNOTSUPP;
  887. }
  888. static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
  889. {
  890. u8 status;
  891. int err;
  892. switch (attr) {
  893. case hwmon_curr_input:
  894. return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
  895. case hwmon_curr_lcrit:
  896. *value = be16_to_cpu(sfp->diag.bias_low_alarm);
  897. sfp_hwmon_calibrate_bias(sfp, value);
  898. return 0;
  899. case hwmon_curr_min:
  900. *value = be16_to_cpu(sfp->diag.bias_low_warn);
  901. sfp_hwmon_calibrate_bias(sfp, value);
  902. return 0;
  903. case hwmon_curr_max:
  904. *value = be16_to_cpu(sfp->diag.bias_high_warn);
  905. sfp_hwmon_calibrate_bias(sfp, value);
  906. return 0;
  907. case hwmon_curr_crit:
  908. *value = be16_to_cpu(sfp->diag.bias_high_alarm);
  909. sfp_hwmon_calibrate_bias(sfp, value);
  910. return 0;
  911. case hwmon_curr_lcrit_alarm:
  912. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  913. if (err < 0)
  914. return err;
  915. *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
  916. return 0;
  917. case hwmon_curr_min_alarm:
  918. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  919. if (err < 0)
  920. return err;
  921. *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
  922. return 0;
  923. case hwmon_curr_max_alarm:
  924. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  925. if (err < 0)
  926. return err;
  927. *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
  928. return 0;
  929. case hwmon_curr_crit_alarm:
  930. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  931. if (err < 0)
  932. return err;
  933. *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
  934. return 0;
  935. default:
  936. return -EOPNOTSUPP;
  937. }
  938. return -EOPNOTSUPP;
  939. }
  940. static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
  941. {
  942. u8 status;
  943. int err;
  944. switch (attr) {
  945. case hwmon_power_input:
  946. return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
  947. case hwmon_power_lcrit:
  948. *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
  949. sfp_hwmon_calibrate_tx_power(sfp, value);
  950. return 0;
  951. case hwmon_power_min:
  952. *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
  953. sfp_hwmon_calibrate_tx_power(sfp, value);
  954. return 0;
  955. case hwmon_power_max:
  956. *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
  957. sfp_hwmon_calibrate_tx_power(sfp, value);
  958. return 0;
  959. case hwmon_power_crit:
  960. *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
  961. sfp_hwmon_calibrate_tx_power(sfp, value);
  962. return 0;
  963. case hwmon_power_lcrit_alarm:
  964. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  965. if (err < 0)
  966. return err;
  967. *value = !!(status & SFP_ALARM0_TXPWR_LOW);
  968. return 0;
  969. case hwmon_power_min_alarm:
  970. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  971. if (err < 0)
  972. return err;
  973. *value = !!(status & SFP_WARN0_TXPWR_LOW);
  974. return 0;
  975. case hwmon_power_max_alarm:
  976. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  977. if (err < 0)
  978. return err;
  979. *value = !!(status & SFP_WARN0_TXPWR_HIGH);
  980. return 0;
  981. case hwmon_power_crit_alarm:
  982. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  983. if (err < 0)
  984. return err;
  985. *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
  986. return 0;
  987. default:
  988. return -EOPNOTSUPP;
  989. }
  990. return -EOPNOTSUPP;
  991. }
  992. static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
  993. {
  994. u8 status;
  995. int err;
  996. switch (attr) {
  997. case hwmon_power_input:
  998. return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
  999. case hwmon_power_lcrit:
  1000. *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
  1001. sfp_hwmon_to_rx_power(value);
  1002. return 0;
  1003. case hwmon_power_min:
  1004. *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
  1005. sfp_hwmon_to_rx_power(value);
  1006. return 0;
  1007. case hwmon_power_max:
  1008. *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
  1009. sfp_hwmon_to_rx_power(value);
  1010. return 0;
  1011. case hwmon_power_crit:
  1012. *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
  1013. sfp_hwmon_to_rx_power(value);
  1014. return 0;
  1015. case hwmon_power_lcrit_alarm:
  1016. err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
  1017. if (err < 0)
  1018. return err;
  1019. *value = !!(status & SFP_ALARM1_RXPWR_LOW);
  1020. return 0;
  1021. case hwmon_power_min_alarm:
  1022. err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
  1023. if (err < 0)
  1024. return err;
  1025. *value = !!(status & SFP_WARN1_RXPWR_LOW);
  1026. return 0;
  1027. case hwmon_power_max_alarm:
  1028. err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
  1029. if (err < 0)
  1030. return err;
  1031. *value = !!(status & SFP_WARN1_RXPWR_HIGH);
  1032. return 0;
  1033. case hwmon_power_crit_alarm:
  1034. err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
  1035. if (err < 0)
  1036. return err;
  1037. *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
  1038. return 0;
  1039. default:
  1040. return -EOPNOTSUPP;
  1041. }
  1042. return -EOPNOTSUPP;
  1043. }
  1044. static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
  1045. u32 attr, int channel, long *value)
  1046. {
  1047. struct sfp *sfp = dev_get_drvdata(dev);
  1048. switch (type) {
  1049. case hwmon_temp:
  1050. return sfp_hwmon_temp(sfp, attr, value);
  1051. case hwmon_in:
  1052. return sfp_hwmon_vcc(sfp, attr, value);
  1053. case hwmon_curr:
  1054. return sfp_hwmon_bias(sfp, attr, value);
  1055. case hwmon_power:
  1056. switch (channel) {
  1057. case 0:
  1058. return sfp_hwmon_tx_power(sfp, attr, value);
  1059. case 1:
  1060. return sfp_hwmon_rx_power(sfp, attr, value);
  1061. default:
  1062. return -EOPNOTSUPP;
  1063. }
  1064. default:
  1065. return -EOPNOTSUPP;
  1066. }
  1067. }
  1068. static const char *const sfp_hwmon_power_labels[] = {
  1069. "TX_power",
  1070. "RX_power",
  1071. };
  1072. static int sfp_hwmon_read_string(struct device *dev,
  1073. enum hwmon_sensor_types type,
  1074. u32 attr, int channel, const char **str)
  1075. {
  1076. switch (type) {
  1077. case hwmon_curr:
  1078. switch (attr) {
  1079. case hwmon_curr_label:
  1080. *str = "bias";
  1081. return 0;
  1082. default:
  1083. return -EOPNOTSUPP;
  1084. }
  1085. break;
  1086. case hwmon_temp:
  1087. switch (attr) {
  1088. case hwmon_temp_label:
  1089. *str = "temperature";
  1090. return 0;
  1091. default:
  1092. return -EOPNOTSUPP;
  1093. }
  1094. break;
  1095. case hwmon_in:
  1096. switch (attr) {
  1097. case hwmon_in_label:
  1098. *str = "VCC";
  1099. return 0;
  1100. default:
  1101. return -EOPNOTSUPP;
  1102. }
  1103. break;
  1104. case hwmon_power:
  1105. switch (attr) {
  1106. case hwmon_power_label:
  1107. *str = sfp_hwmon_power_labels[channel];
  1108. return 0;
  1109. default:
  1110. return -EOPNOTSUPP;
  1111. }
  1112. break;
  1113. default:
  1114. return -EOPNOTSUPP;
  1115. }
  1116. return -EOPNOTSUPP;
  1117. }
  1118. static const struct hwmon_ops sfp_hwmon_ops = {
  1119. .is_visible = sfp_hwmon_is_visible,
  1120. .read = sfp_hwmon_read,
  1121. .read_string = sfp_hwmon_read_string,
  1122. };
  1123. static const struct hwmon_channel_info *sfp_hwmon_info[] = {
  1124. HWMON_CHANNEL_INFO(chip,
  1125. HWMON_C_REGISTER_TZ),
  1126. HWMON_CHANNEL_INFO(in,
  1127. HWMON_I_INPUT |
  1128. HWMON_I_MAX | HWMON_I_MIN |
  1129. HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
  1130. HWMON_I_CRIT | HWMON_I_LCRIT |
  1131. HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
  1132. HWMON_I_LABEL),
  1133. HWMON_CHANNEL_INFO(temp,
  1134. HWMON_T_INPUT |
  1135. HWMON_T_MAX | HWMON_T_MIN |
  1136. HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
  1137. HWMON_T_CRIT | HWMON_T_LCRIT |
  1138. HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
  1139. HWMON_T_LABEL),
  1140. HWMON_CHANNEL_INFO(curr,
  1141. HWMON_C_INPUT |
  1142. HWMON_C_MAX | HWMON_C_MIN |
  1143. HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
  1144. HWMON_C_CRIT | HWMON_C_LCRIT |
  1145. HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
  1146. HWMON_C_LABEL),
  1147. HWMON_CHANNEL_INFO(power,
  1148. /* Transmit power */
  1149. HWMON_P_INPUT |
  1150. HWMON_P_MAX | HWMON_P_MIN |
  1151. HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
  1152. HWMON_P_CRIT | HWMON_P_LCRIT |
  1153. HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
  1154. HWMON_P_LABEL,
  1155. /* Receive power */
  1156. HWMON_P_INPUT |
  1157. HWMON_P_MAX | HWMON_P_MIN |
  1158. HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
  1159. HWMON_P_CRIT | HWMON_P_LCRIT |
  1160. HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
  1161. HWMON_P_LABEL),
  1162. NULL,
  1163. };
  1164. static const struct hwmon_chip_info sfp_hwmon_chip_info = {
  1165. .ops = &sfp_hwmon_ops,
  1166. .info = sfp_hwmon_info,
  1167. };
  1168. static void sfp_hwmon_probe(struct work_struct *work)
  1169. {
  1170. struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
  1171. int err;
  1172. /* hwmon interface needs to access 16bit registers in atomic way to
  1173. * guarantee coherency of the diagnostic monitoring data. If it is not
  1174. * possible to guarantee coherency because EEPROM is broken in such way
  1175. * that does not support atomic 16bit read operation then we have to
  1176. * skip registration of hwmon device.
  1177. */
  1178. if (sfp->i2c_block_size < 2) {
  1179. dev_info(sfp->dev,
  1180. "skipping hwmon device registration due to broken EEPROM\n");
  1181. dev_info(sfp->dev,
  1182. "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
  1183. return;
  1184. }
  1185. err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
  1186. if (err < 0) {
  1187. if (sfp->hwmon_tries--) {
  1188. mod_delayed_work(system_wq, &sfp->hwmon_probe,
  1189. T_PROBE_RETRY_SLOW);
  1190. } else {
  1191. dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
  1192. ERR_PTR(err));
  1193. }
  1194. return;
  1195. }
  1196. sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
  1197. if (IS_ERR(sfp->hwmon_name)) {
  1198. dev_err(sfp->dev, "out of memory for hwmon name\n");
  1199. return;
  1200. }
  1201. sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
  1202. sfp->hwmon_name, sfp,
  1203. &sfp_hwmon_chip_info,
  1204. NULL);
  1205. if (IS_ERR(sfp->hwmon_dev))
  1206. dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
  1207. PTR_ERR(sfp->hwmon_dev));
  1208. }
  1209. static int sfp_hwmon_insert(struct sfp *sfp)
  1210. {
  1211. if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
  1212. return 0;
  1213. if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
  1214. return 0;
  1215. if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
  1216. /* This driver in general does not support address
  1217. * change.
  1218. */
  1219. return 0;
  1220. mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
  1221. sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
  1222. return 0;
  1223. }
  1224. static void sfp_hwmon_remove(struct sfp *sfp)
  1225. {
  1226. cancel_delayed_work_sync(&sfp->hwmon_probe);
  1227. if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
  1228. hwmon_device_unregister(sfp->hwmon_dev);
  1229. sfp->hwmon_dev = NULL;
  1230. kfree(sfp->hwmon_name);
  1231. }
  1232. }
  1233. static int sfp_hwmon_init(struct sfp *sfp)
  1234. {
  1235. INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
  1236. return 0;
  1237. }
  1238. static void sfp_hwmon_exit(struct sfp *sfp)
  1239. {
  1240. cancel_delayed_work_sync(&sfp->hwmon_probe);
  1241. }
  1242. #else
  1243. static int sfp_hwmon_insert(struct sfp *sfp)
  1244. {
  1245. return 0;
  1246. }
  1247. static void sfp_hwmon_remove(struct sfp *sfp)
  1248. {
  1249. }
  1250. static int sfp_hwmon_init(struct sfp *sfp)
  1251. {
  1252. return 0;
  1253. }
  1254. static void sfp_hwmon_exit(struct sfp *sfp)
  1255. {
  1256. }
  1257. #endif
  1258. /* Helpers */
  1259. static void sfp_module_tx_disable(struct sfp *sfp)
  1260. {
  1261. dev_dbg(sfp->dev, "tx disable %u -> %u\n",
  1262. sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
  1263. sfp->state |= SFP_F_TX_DISABLE;
  1264. sfp_set_state(sfp, sfp->state);
  1265. }
  1266. static void sfp_module_tx_enable(struct sfp *sfp)
  1267. {
  1268. dev_dbg(sfp->dev, "tx disable %u -> %u\n",
  1269. sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
  1270. sfp->state &= ~SFP_F_TX_DISABLE;
  1271. sfp_set_state(sfp, sfp->state);
  1272. }
  1273. #if IS_ENABLED(CONFIG_DEBUG_FS)
  1274. static int sfp_debug_state_show(struct seq_file *s, void *data)
  1275. {
  1276. struct sfp *sfp = s->private;
  1277. seq_printf(s, "Module state: %s\n",
  1278. mod_state_to_str(sfp->sm_mod_state));
  1279. seq_printf(s, "Module probe attempts: %d %d\n",
  1280. R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
  1281. R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
  1282. seq_printf(s, "Device state: %s\n",
  1283. dev_state_to_str(sfp->sm_dev_state));
  1284. seq_printf(s, "Main state: %s\n",
  1285. sm_state_to_str(sfp->sm_state));
  1286. seq_printf(s, "Fault recovery remaining retries: %d\n",
  1287. sfp->sm_fault_retries);
  1288. seq_printf(s, "PHY probe remaining retries: %d\n",
  1289. sfp->sm_phy_retries);
  1290. seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
  1291. seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
  1292. seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
  1293. seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
  1294. return 0;
  1295. }
  1296. DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
  1297. static void sfp_debugfs_init(struct sfp *sfp)
  1298. {
  1299. sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
  1300. debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
  1301. &sfp_debug_state_fops);
  1302. }
  1303. static void sfp_debugfs_exit(struct sfp *sfp)
  1304. {
  1305. debugfs_remove_recursive(sfp->debugfs_dir);
  1306. }
  1307. #else
  1308. static void sfp_debugfs_init(struct sfp *sfp)
  1309. {
  1310. }
  1311. static void sfp_debugfs_exit(struct sfp *sfp)
  1312. {
  1313. }
  1314. #endif
  1315. static void sfp_module_tx_fault_reset(struct sfp *sfp)
  1316. {
  1317. unsigned int state = sfp->state;
  1318. if (state & SFP_F_TX_DISABLE)
  1319. return;
  1320. sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
  1321. udelay(T_RESET_US);
  1322. sfp_set_state(sfp, state);
  1323. }
  1324. /* SFP state machine */
  1325. static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
  1326. {
  1327. if (timeout)
  1328. mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
  1329. timeout);
  1330. else
  1331. cancel_delayed_work(&sfp->timeout);
  1332. }
  1333. static void sfp_sm_next(struct sfp *sfp, unsigned int state,
  1334. unsigned int timeout)
  1335. {
  1336. sfp->sm_state = state;
  1337. sfp_sm_set_timer(sfp, timeout);
  1338. }
  1339. static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
  1340. unsigned int timeout)
  1341. {
  1342. sfp->sm_mod_state = state;
  1343. sfp_sm_set_timer(sfp, timeout);
  1344. }
  1345. static void sfp_sm_phy_detach(struct sfp *sfp)
  1346. {
  1347. sfp_remove_phy(sfp->sfp_bus);
  1348. phy_device_remove(sfp->mod_phy);
  1349. phy_device_free(sfp->mod_phy);
  1350. sfp->mod_phy = NULL;
  1351. }
  1352. static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
  1353. {
  1354. struct phy_device *phy;
  1355. int err;
  1356. phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
  1357. if (phy == ERR_PTR(-ENODEV))
  1358. return PTR_ERR(phy);
  1359. if (IS_ERR(phy)) {
  1360. dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
  1361. return PTR_ERR(phy);
  1362. }
  1363. err = phy_device_register(phy);
  1364. if (err) {
  1365. phy_device_free(phy);
  1366. dev_err(sfp->dev, "phy_device_register failed: %pe\n",
  1367. ERR_PTR(err));
  1368. return err;
  1369. }
  1370. err = sfp_add_phy(sfp->sfp_bus, phy);
  1371. if (err) {
  1372. phy_device_remove(phy);
  1373. phy_device_free(phy);
  1374. dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
  1375. return err;
  1376. }
  1377. sfp->mod_phy = phy;
  1378. return 0;
  1379. }
  1380. static void sfp_sm_link_up(struct sfp *sfp)
  1381. {
  1382. sfp_link_up(sfp->sfp_bus);
  1383. sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
  1384. }
  1385. static void sfp_sm_link_down(struct sfp *sfp)
  1386. {
  1387. sfp_link_down(sfp->sfp_bus);
  1388. }
  1389. static void sfp_sm_link_check_los(struct sfp *sfp)
  1390. {
  1391. const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
  1392. const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
  1393. __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
  1394. bool los = false;
  1395. /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
  1396. * are set, we assume that no LOS signal is available. If both are
  1397. * set, we assume LOS is not implemented (and is meaningless.)
  1398. */
  1399. if (los_options == los_inverted)
  1400. los = !(sfp->state & SFP_F_LOS);
  1401. else if (los_options == los_normal)
  1402. los = !!(sfp->state & SFP_F_LOS);
  1403. if (los)
  1404. sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
  1405. else
  1406. sfp_sm_link_up(sfp);
  1407. }
  1408. static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
  1409. {
  1410. const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
  1411. const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
  1412. __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
  1413. return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
  1414. (los_options == los_normal && event == SFP_E_LOS_HIGH);
  1415. }
  1416. static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
  1417. {
  1418. const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
  1419. const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
  1420. __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
  1421. return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
  1422. (los_options == los_normal && event == SFP_E_LOS_LOW);
  1423. }
  1424. static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
  1425. {
  1426. if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
  1427. dev_err(sfp->dev,
  1428. "module persistently indicates fault, disabling\n");
  1429. sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
  1430. } else {
  1431. if (warn)
  1432. dev_err(sfp->dev, "module transmit fault indicated\n");
  1433. sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
  1434. }
  1435. }
  1436. static int sfp_sm_add_mdio_bus(struct sfp *sfp)
  1437. {
  1438. if (sfp->mdio_protocol != MDIO_I2C_NONE)
  1439. return sfp_i2c_mdiobus_create(sfp);
  1440. return 0;
  1441. }
  1442. /* Probe a SFP for a PHY device if the module supports copper - the PHY
  1443. * normally sits at I2C bus address 0x56, and may either be a clause 22
  1444. * or clause 45 PHY.
  1445. *
  1446. * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
  1447. * negotiation enabled, but some may be in 1000base-X - which is for the
  1448. * PHY driver to determine.
  1449. *
  1450. * Clause 45 copper SFP+ modules (10G) appear to switch their interface
  1451. * mode according to the negotiated line speed.
  1452. */
  1453. static int sfp_sm_probe_for_phy(struct sfp *sfp)
  1454. {
  1455. int err = 0;
  1456. switch (sfp->mdio_protocol) {
  1457. case MDIO_I2C_NONE:
  1458. break;
  1459. case MDIO_I2C_MARVELL_C22:
  1460. err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
  1461. break;
  1462. case MDIO_I2C_C45:
  1463. err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
  1464. break;
  1465. case MDIO_I2C_ROLLBALL:
  1466. err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
  1467. break;
  1468. }
  1469. return err;
  1470. }
  1471. static int sfp_module_parse_power(struct sfp *sfp)
  1472. {
  1473. u32 power_mW = 1000;
  1474. bool supports_a2;
  1475. if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
  1476. power_mW = 1500;
  1477. if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
  1478. power_mW = 2000;
  1479. supports_a2 = sfp->id.ext.sff8472_compliance !=
  1480. SFP_SFF8472_COMPLIANCE_NONE ||
  1481. sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
  1482. if (power_mW > sfp->max_power_mW) {
  1483. /* Module power specification exceeds the allowed maximum. */
  1484. if (!supports_a2) {
  1485. /* The module appears not to implement bus address
  1486. * 0xa2, so assume that the module powers up in the
  1487. * indicated mode.
  1488. */
  1489. dev_err(sfp->dev,
  1490. "Host does not support %u.%uW modules\n",
  1491. power_mW / 1000, (power_mW / 100) % 10);
  1492. return -EINVAL;
  1493. } else {
  1494. dev_warn(sfp->dev,
  1495. "Host does not support %u.%uW modules, module left in power mode 1\n",
  1496. power_mW / 1000, (power_mW / 100) % 10);
  1497. return 0;
  1498. }
  1499. }
  1500. if (power_mW <= 1000) {
  1501. /* Modules below 1W do not require a power change sequence */
  1502. sfp->module_power_mW = power_mW;
  1503. return 0;
  1504. }
  1505. if (!supports_a2) {
  1506. /* The module power level is below the host maximum and the
  1507. * module appears not to implement bus address 0xa2, so assume
  1508. * that the module powers up in the indicated mode.
  1509. */
  1510. return 0;
  1511. }
  1512. /* If the module requires a higher power mode, but also requires
  1513. * an address change sequence, warn the user that the module may
  1514. * not be functional.
  1515. */
  1516. if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
  1517. dev_warn(sfp->dev,
  1518. "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
  1519. power_mW / 1000, (power_mW / 100) % 10);
  1520. return 0;
  1521. }
  1522. sfp->module_power_mW = power_mW;
  1523. return 0;
  1524. }
  1525. static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
  1526. {
  1527. u8 val;
  1528. int err;
  1529. err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
  1530. if (err != sizeof(val)) {
  1531. dev_err(sfp->dev, "Failed to read EEPROM: %pe\n", ERR_PTR(err));
  1532. return -EAGAIN;
  1533. }
  1534. /* DM7052 reports as a high power module, responds to reads (with
  1535. * all bytes 0xff) at 0x51 but does not accept writes. In any case,
  1536. * if the bit is already set, we're already in high power mode.
  1537. */
  1538. if (!!(val & BIT(0)) == enable)
  1539. return 0;
  1540. if (enable)
  1541. val |= BIT(0);
  1542. else
  1543. val &= ~BIT(0);
  1544. err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
  1545. if (err != sizeof(val)) {
  1546. dev_err(sfp->dev, "Failed to write EEPROM: %pe\n",
  1547. ERR_PTR(err));
  1548. return -EAGAIN;
  1549. }
  1550. if (enable)
  1551. dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
  1552. sfp->module_power_mW / 1000,
  1553. (sfp->module_power_mW / 100) % 10);
  1554. return 0;
  1555. }
  1556. /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
  1557. * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
  1558. * not support multibyte reads from the EEPROM. Each multi-byte read
  1559. * operation returns just one byte of EEPROM followed by zeros. There is
  1560. * no way to identify which modules are using Realtek RTL8672 and RTL9601C
  1561. * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
  1562. * name and vendor id into EEPROM, so there is even no way to detect if
  1563. * module is V-SOL V2801F. Therefore check for those zeros in the read
  1564. * data and then based on check switch to reading EEPROM to one byte
  1565. * at a time.
  1566. */
  1567. static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
  1568. {
  1569. size_t i, block_size = sfp->i2c_block_size;
  1570. /* Already using byte IO */
  1571. if (block_size == 1)
  1572. return false;
  1573. for (i = 1; i < len; i += block_size) {
  1574. if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
  1575. return false;
  1576. }
  1577. return true;
  1578. }
  1579. static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
  1580. {
  1581. u8 check;
  1582. int err;
  1583. if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
  1584. id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
  1585. id->base.connector != SFF8024_CONNECTOR_LC) {
  1586. dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
  1587. id->base.phys_id = SFF8024_ID_SFF_8472;
  1588. id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
  1589. id->base.connector = SFF8024_CONNECTOR_LC;
  1590. err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
  1591. if (err != 3) {
  1592. dev_err(sfp->dev,
  1593. "Failed to rewrite module EEPROM: %pe\n",
  1594. ERR_PTR(err));
  1595. return err;
  1596. }
  1597. /* Cotsworks modules have been found to require a delay between write operations. */
  1598. mdelay(50);
  1599. /* Update base structure checksum */
  1600. check = sfp_check(&id->base, sizeof(id->base) - 1);
  1601. err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
  1602. if (err != 1) {
  1603. dev_err(sfp->dev,
  1604. "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
  1605. ERR_PTR(err));
  1606. return err;
  1607. }
  1608. }
  1609. return 0;
  1610. }
  1611. static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
  1612. {
  1613. /* SFP module inserted - read I2C data */
  1614. struct sfp_eeprom_id id;
  1615. bool cotsworks_sfbg;
  1616. bool cotsworks;
  1617. u8 check;
  1618. int ret;
  1619. sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
  1620. ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
  1621. if (ret < 0) {
  1622. if (report)
  1623. dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
  1624. ERR_PTR(ret));
  1625. return -EAGAIN;
  1626. }
  1627. if (ret != sizeof(id.base)) {
  1628. dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
  1629. return -EAGAIN;
  1630. }
  1631. /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
  1632. * address 0x51 is just one byte at a time. Also SFF-8472 requires
  1633. * that EEPROM supports atomic 16bit read operation for diagnostic
  1634. * fields, so do not switch to one byte reading at a time unless it
  1635. * is really required and we have no other option.
  1636. */
  1637. if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
  1638. dev_info(sfp->dev,
  1639. "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
  1640. dev_info(sfp->dev,
  1641. "Switching to reading EEPROM to one byte at a time\n");
  1642. sfp->i2c_block_size = 1;
  1643. ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
  1644. if (ret < 0) {
  1645. if (report)
  1646. dev_err(sfp->dev,
  1647. "failed to read EEPROM: %pe\n",
  1648. ERR_PTR(ret));
  1649. return -EAGAIN;
  1650. }
  1651. if (ret != sizeof(id.base)) {
  1652. dev_err(sfp->dev, "EEPROM short read: %pe\n",
  1653. ERR_PTR(ret));
  1654. return -EAGAIN;
  1655. }
  1656. }
  1657. /* Cotsworks do not seem to update the checksums when they
  1658. * do the final programming with the final module part number,
  1659. * serial number and date code.
  1660. */
  1661. cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
  1662. cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
  1663. /* Cotsworks SFF module EEPROM do not always have valid phys_id,
  1664. * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
  1665. * Cotsworks PN matches and bytes are not correct.
  1666. */
  1667. if (cotsworks && cotsworks_sfbg) {
  1668. ret = sfp_cotsworks_fixup_check(sfp, &id);
  1669. if (ret < 0)
  1670. return ret;
  1671. }
  1672. /* Validate the checksum over the base structure */
  1673. check = sfp_check(&id.base, sizeof(id.base) - 1);
  1674. if (check != id.base.cc_base) {
  1675. if (cotsworks) {
  1676. dev_warn(sfp->dev,
  1677. "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
  1678. check, id.base.cc_base);
  1679. } else {
  1680. dev_err(sfp->dev,
  1681. "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
  1682. check, id.base.cc_base);
  1683. print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
  1684. 16, 1, &id, sizeof(id), true);
  1685. return -EINVAL;
  1686. }
  1687. }
  1688. ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
  1689. if (ret < 0) {
  1690. if (report)
  1691. dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
  1692. ERR_PTR(ret));
  1693. return -EAGAIN;
  1694. }
  1695. if (ret != sizeof(id.ext)) {
  1696. dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
  1697. return -EAGAIN;
  1698. }
  1699. check = sfp_check(&id.ext, sizeof(id.ext) - 1);
  1700. if (check != id.ext.cc_ext) {
  1701. if (cotsworks) {
  1702. dev_warn(sfp->dev,
  1703. "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
  1704. check, id.ext.cc_ext);
  1705. } else {
  1706. dev_err(sfp->dev,
  1707. "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
  1708. check, id.ext.cc_ext);
  1709. print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
  1710. 16, 1, &id, sizeof(id), true);
  1711. memset(&id.ext, 0, sizeof(id.ext));
  1712. }
  1713. }
  1714. sfp->id = id;
  1715. dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
  1716. (int)sizeof(id.base.vendor_name), id.base.vendor_name,
  1717. (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
  1718. (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
  1719. (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
  1720. (int)sizeof(id.ext.datecode), id.ext.datecode);
  1721. /* Check whether we support this module */
  1722. if (!sfp->type->module_supported(&id)) {
  1723. dev_err(sfp->dev,
  1724. "module is not supported - phys id 0x%02x 0x%02x\n",
  1725. sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
  1726. return -EINVAL;
  1727. }
  1728. /* If the module requires address swap mode, warn about it */
  1729. if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
  1730. dev_warn(sfp->dev,
  1731. "module address swap to access page 0xA2 is not supported.\n");
  1732. /* Parse the module power requirement */
  1733. ret = sfp_module_parse_power(sfp);
  1734. if (ret < 0)
  1735. return ret;
  1736. /* Initialise state bits to use from hardware */
  1737. sfp->state_hw_mask = SFP_F_PRESENT;
  1738. if (sfp->gpio[GPIO_TX_DISABLE])
  1739. sfp->state_hw_mask |= SFP_F_TX_DISABLE;
  1740. if (sfp->gpio[GPIO_TX_FAULT])
  1741. sfp->state_hw_mask |= SFP_F_TX_FAULT;
  1742. if (sfp->gpio[GPIO_LOS])
  1743. sfp->state_hw_mask |= SFP_F_LOS;
  1744. sfp->module_t_start_up = T_START_UP;
  1745. sfp->module_t_wait = T_WAIT;
  1746. sfp->tx_fault_ignore = false;
  1747. if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
  1748. sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
  1749. sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
  1750. sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
  1751. sfp->mdio_protocol = MDIO_I2C_C45;
  1752. else if (sfp->id.base.e1000_base_t)
  1753. sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
  1754. else
  1755. sfp->mdio_protocol = MDIO_I2C_NONE;
  1756. sfp->quirk = sfp_lookup_quirk(&id);
  1757. if (sfp->quirk && sfp->quirk->fixup)
  1758. sfp->quirk->fixup(sfp);
  1759. return 0;
  1760. }
  1761. static void sfp_sm_mod_remove(struct sfp *sfp)
  1762. {
  1763. if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
  1764. sfp_module_remove(sfp->sfp_bus);
  1765. sfp_hwmon_remove(sfp);
  1766. memset(&sfp->id, 0, sizeof(sfp->id));
  1767. sfp->module_power_mW = 0;
  1768. dev_info(sfp->dev, "module removed\n");
  1769. }
  1770. /* This state machine tracks the upstream's state */
  1771. static void sfp_sm_device(struct sfp *sfp, unsigned int event)
  1772. {
  1773. switch (sfp->sm_dev_state) {
  1774. default:
  1775. if (event == SFP_E_DEV_ATTACH)
  1776. sfp->sm_dev_state = SFP_DEV_DOWN;
  1777. break;
  1778. case SFP_DEV_DOWN:
  1779. if (event == SFP_E_DEV_DETACH)
  1780. sfp->sm_dev_state = SFP_DEV_DETACHED;
  1781. else if (event == SFP_E_DEV_UP)
  1782. sfp->sm_dev_state = SFP_DEV_UP;
  1783. break;
  1784. case SFP_DEV_UP:
  1785. if (event == SFP_E_DEV_DETACH)
  1786. sfp->sm_dev_state = SFP_DEV_DETACHED;
  1787. else if (event == SFP_E_DEV_DOWN)
  1788. sfp->sm_dev_state = SFP_DEV_DOWN;
  1789. break;
  1790. }
  1791. }
  1792. /* This state machine tracks the insert/remove state of the module, probes
  1793. * the on-board EEPROM, and sets up the power level.
  1794. */
  1795. static void sfp_sm_module(struct sfp *sfp, unsigned int event)
  1796. {
  1797. int err;
  1798. /* Handle remove event globally, it resets this state machine */
  1799. if (event == SFP_E_REMOVE) {
  1800. if (sfp->sm_mod_state > SFP_MOD_PROBE)
  1801. sfp_sm_mod_remove(sfp);
  1802. sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
  1803. return;
  1804. }
  1805. /* Handle device detach globally */
  1806. if (sfp->sm_dev_state < SFP_DEV_DOWN &&
  1807. sfp->sm_mod_state > SFP_MOD_WAITDEV) {
  1808. if (sfp->module_power_mW > 1000 &&
  1809. sfp->sm_mod_state > SFP_MOD_HPOWER)
  1810. sfp_sm_mod_hpower(sfp, false);
  1811. sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
  1812. return;
  1813. }
  1814. switch (sfp->sm_mod_state) {
  1815. default:
  1816. if (event == SFP_E_INSERT) {
  1817. sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
  1818. sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
  1819. sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
  1820. }
  1821. break;
  1822. case SFP_MOD_PROBE:
  1823. /* Wait for T_PROBE_INIT to time out */
  1824. if (event != SFP_E_TIMEOUT)
  1825. break;
  1826. err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
  1827. if (err == -EAGAIN) {
  1828. if (sfp->sm_mod_tries_init &&
  1829. --sfp->sm_mod_tries_init) {
  1830. sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
  1831. break;
  1832. } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
  1833. if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
  1834. dev_warn(sfp->dev,
  1835. "please wait, module slow to respond\n");
  1836. sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
  1837. break;
  1838. }
  1839. }
  1840. if (err < 0) {
  1841. sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
  1842. break;
  1843. }
  1844. /* Force a poll to re-read the hardware signal state after
  1845. * sfp_sm_mod_probe() changed state_hw_mask.
  1846. */
  1847. mod_delayed_work(system_wq, &sfp->poll, 1);
  1848. err = sfp_hwmon_insert(sfp);
  1849. if (err)
  1850. dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
  1851. ERR_PTR(err));
  1852. sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
  1853. fallthrough;
  1854. case SFP_MOD_WAITDEV:
  1855. /* Ensure that the device is attached before proceeding */
  1856. if (sfp->sm_dev_state < SFP_DEV_DOWN)
  1857. break;
  1858. /* Report the module insertion to the upstream device */
  1859. err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
  1860. sfp->quirk);
  1861. if (err < 0) {
  1862. sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
  1863. break;
  1864. }
  1865. /* If this is a power level 1 module, we are done */
  1866. if (sfp->module_power_mW <= 1000)
  1867. goto insert;
  1868. sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
  1869. fallthrough;
  1870. case SFP_MOD_HPOWER:
  1871. /* Enable high power mode */
  1872. err = sfp_sm_mod_hpower(sfp, true);
  1873. if (err < 0) {
  1874. if (err != -EAGAIN) {
  1875. sfp_module_remove(sfp->sfp_bus);
  1876. sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
  1877. } else {
  1878. sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
  1879. }
  1880. break;
  1881. }
  1882. sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
  1883. break;
  1884. case SFP_MOD_WAITPWR:
  1885. /* Wait for T_HPOWER_LEVEL to time out */
  1886. if (event != SFP_E_TIMEOUT)
  1887. break;
  1888. insert:
  1889. sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
  1890. break;
  1891. case SFP_MOD_PRESENT:
  1892. case SFP_MOD_ERROR:
  1893. break;
  1894. }
  1895. }
  1896. static void sfp_sm_main(struct sfp *sfp, unsigned int event)
  1897. {
  1898. unsigned long timeout;
  1899. int ret;
  1900. /* Some events are global */
  1901. if (sfp->sm_state != SFP_S_DOWN &&
  1902. (sfp->sm_mod_state != SFP_MOD_PRESENT ||
  1903. sfp->sm_dev_state != SFP_DEV_UP)) {
  1904. if (sfp->sm_state == SFP_S_LINK_UP &&
  1905. sfp->sm_dev_state == SFP_DEV_UP)
  1906. sfp_sm_link_down(sfp);
  1907. if (sfp->sm_state > SFP_S_INIT)
  1908. sfp_module_stop(sfp->sfp_bus);
  1909. if (sfp->mod_phy)
  1910. sfp_sm_phy_detach(sfp);
  1911. if (sfp->i2c_mii)
  1912. sfp_i2c_mdiobus_destroy(sfp);
  1913. sfp_module_tx_disable(sfp);
  1914. sfp_soft_stop_poll(sfp);
  1915. sfp_sm_next(sfp, SFP_S_DOWN, 0);
  1916. return;
  1917. }
  1918. /* The main state machine */
  1919. switch (sfp->sm_state) {
  1920. case SFP_S_DOWN:
  1921. if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
  1922. sfp->sm_dev_state != SFP_DEV_UP)
  1923. break;
  1924. if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
  1925. sfp_soft_start_poll(sfp);
  1926. sfp_module_tx_enable(sfp);
  1927. /* Initialise the fault clearance retries */
  1928. sfp->sm_fault_retries = N_FAULT_INIT;
  1929. /* We need to check the TX_FAULT state, which is not defined
  1930. * while TX_DISABLE is asserted. The earliest we want to do
  1931. * anything (such as probe for a PHY) is 50ms (or more on
  1932. * specific modules).
  1933. */
  1934. sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
  1935. break;
  1936. case SFP_S_WAIT:
  1937. if (event != SFP_E_TIMEOUT)
  1938. break;
  1939. if (sfp->state & SFP_F_TX_FAULT) {
  1940. /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
  1941. * from the TX_DISABLE deassertion for the module to
  1942. * initialise, which is indicated by TX_FAULT
  1943. * deasserting.
  1944. */
  1945. timeout = sfp->module_t_start_up;
  1946. if (timeout > sfp->module_t_wait)
  1947. timeout -= sfp->module_t_wait;
  1948. else
  1949. timeout = 1;
  1950. sfp_sm_next(sfp, SFP_S_INIT, timeout);
  1951. } else {
  1952. /* TX_FAULT is not asserted, assume the module has
  1953. * finished initialising.
  1954. */
  1955. goto init_done;
  1956. }
  1957. break;
  1958. case SFP_S_INIT:
  1959. if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
  1960. /* TX_FAULT is still asserted after t_init
  1961. * or t_start_up, so assume there is a fault.
  1962. */
  1963. sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
  1964. sfp->sm_fault_retries == N_FAULT_INIT);
  1965. } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
  1966. init_done:
  1967. /* Create mdiobus and start trying for PHY */
  1968. ret = sfp_sm_add_mdio_bus(sfp);
  1969. if (ret < 0) {
  1970. sfp_sm_next(sfp, SFP_S_FAIL, 0);
  1971. break;
  1972. }
  1973. sfp->sm_phy_retries = R_PHY_RETRY;
  1974. goto phy_probe;
  1975. }
  1976. break;
  1977. case SFP_S_INIT_PHY:
  1978. if (event != SFP_E_TIMEOUT)
  1979. break;
  1980. phy_probe:
  1981. /* TX_FAULT deasserted or we timed out with TX_FAULT
  1982. * clear. Probe for the PHY and check the LOS state.
  1983. */
  1984. ret = sfp_sm_probe_for_phy(sfp);
  1985. if (ret == -ENODEV) {
  1986. if (--sfp->sm_phy_retries) {
  1987. sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
  1988. break;
  1989. } else {
  1990. dev_info(sfp->dev, "no PHY detected\n");
  1991. }
  1992. } else if (ret) {
  1993. sfp_sm_next(sfp, SFP_S_FAIL, 0);
  1994. break;
  1995. }
  1996. if (sfp_module_start(sfp->sfp_bus)) {
  1997. sfp_sm_next(sfp, SFP_S_FAIL, 0);
  1998. break;
  1999. }
  2000. sfp_sm_link_check_los(sfp);
  2001. /* Reset the fault retry count */
  2002. sfp->sm_fault_retries = N_FAULT;
  2003. break;
  2004. case SFP_S_INIT_TX_FAULT:
  2005. if (event == SFP_E_TIMEOUT) {
  2006. sfp_module_tx_fault_reset(sfp);
  2007. sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
  2008. }
  2009. break;
  2010. case SFP_S_WAIT_LOS:
  2011. if (event == SFP_E_TX_FAULT)
  2012. sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
  2013. else if (sfp_los_event_inactive(sfp, event))
  2014. sfp_sm_link_up(sfp);
  2015. break;
  2016. case SFP_S_LINK_UP:
  2017. if (event == SFP_E_TX_FAULT) {
  2018. sfp_sm_link_down(sfp);
  2019. sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
  2020. } else if (sfp_los_event_active(sfp, event)) {
  2021. sfp_sm_link_down(sfp);
  2022. sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
  2023. }
  2024. break;
  2025. case SFP_S_TX_FAULT:
  2026. if (event == SFP_E_TIMEOUT) {
  2027. sfp_module_tx_fault_reset(sfp);
  2028. sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
  2029. }
  2030. break;
  2031. case SFP_S_REINIT:
  2032. if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
  2033. sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
  2034. } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
  2035. dev_info(sfp->dev, "module transmit fault recovered\n");
  2036. sfp_sm_link_check_los(sfp);
  2037. }
  2038. break;
  2039. case SFP_S_TX_DISABLE:
  2040. break;
  2041. }
  2042. }
  2043. static void sfp_sm_event(struct sfp *sfp, unsigned int event)
  2044. {
  2045. mutex_lock(&sfp->sm_mutex);
  2046. dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
  2047. mod_state_to_str(sfp->sm_mod_state),
  2048. dev_state_to_str(sfp->sm_dev_state),
  2049. sm_state_to_str(sfp->sm_state),
  2050. event_to_str(event));
  2051. sfp_sm_device(sfp, event);
  2052. sfp_sm_module(sfp, event);
  2053. sfp_sm_main(sfp, event);
  2054. dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
  2055. mod_state_to_str(sfp->sm_mod_state),
  2056. dev_state_to_str(sfp->sm_dev_state),
  2057. sm_state_to_str(sfp->sm_state));
  2058. mutex_unlock(&sfp->sm_mutex);
  2059. }
  2060. static void sfp_attach(struct sfp *sfp)
  2061. {
  2062. sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
  2063. }
  2064. static void sfp_detach(struct sfp *sfp)
  2065. {
  2066. sfp_sm_event(sfp, SFP_E_DEV_DETACH);
  2067. }
  2068. static void sfp_start(struct sfp *sfp)
  2069. {
  2070. sfp_sm_event(sfp, SFP_E_DEV_UP);
  2071. }
  2072. static void sfp_stop(struct sfp *sfp)
  2073. {
  2074. sfp_sm_event(sfp, SFP_E_DEV_DOWN);
  2075. }
  2076. static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
  2077. {
  2078. /* locking... and check module is present */
  2079. if (sfp->id.ext.sff8472_compliance &&
  2080. !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
  2081. modinfo->type = ETH_MODULE_SFF_8472;
  2082. modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
  2083. } else {
  2084. modinfo->type = ETH_MODULE_SFF_8079;
  2085. modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
  2086. }
  2087. return 0;
  2088. }
  2089. static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
  2090. u8 *data)
  2091. {
  2092. unsigned int first, last, len;
  2093. int ret;
  2094. if (ee->len == 0)
  2095. return -EINVAL;
  2096. first = ee->offset;
  2097. last = ee->offset + ee->len;
  2098. if (first < ETH_MODULE_SFF_8079_LEN) {
  2099. len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
  2100. len -= first;
  2101. ret = sfp_read(sfp, false, first, data, len);
  2102. if (ret < 0)
  2103. return ret;
  2104. first += len;
  2105. data += len;
  2106. }
  2107. if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
  2108. len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
  2109. len -= first;
  2110. first -= ETH_MODULE_SFF_8079_LEN;
  2111. ret = sfp_read(sfp, true, first, data, len);
  2112. if (ret < 0)
  2113. return ret;
  2114. }
  2115. return 0;
  2116. }
  2117. static int sfp_module_eeprom_by_page(struct sfp *sfp,
  2118. const struct ethtool_module_eeprom *page,
  2119. struct netlink_ext_ack *extack)
  2120. {
  2121. if (page->bank) {
  2122. NL_SET_ERR_MSG(extack, "Banks not supported");
  2123. return -EOPNOTSUPP;
  2124. }
  2125. if (page->page) {
  2126. NL_SET_ERR_MSG(extack, "Only page 0 supported");
  2127. return -EOPNOTSUPP;
  2128. }
  2129. if (page->i2c_address != 0x50 &&
  2130. page->i2c_address != 0x51) {
  2131. NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
  2132. return -EOPNOTSUPP;
  2133. }
  2134. return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
  2135. page->data, page->length);
  2136. };
  2137. static const struct sfp_socket_ops sfp_module_ops = {
  2138. .attach = sfp_attach,
  2139. .detach = sfp_detach,
  2140. .start = sfp_start,
  2141. .stop = sfp_stop,
  2142. .module_info = sfp_module_info,
  2143. .module_eeprom = sfp_module_eeprom,
  2144. .module_eeprom_by_page = sfp_module_eeprom_by_page,
  2145. };
  2146. static void sfp_timeout(struct work_struct *work)
  2147. {
  2148. struct sfp *sfp = container_of(work, struct sfp, timeout.work);
  2149. rtnl_lock();
  2150. sfp_sm_event(sfp, SFP_E_TIMEOUT);
  2151. rtnl_unlock();
  2152. }
  2153. static void sfp_check_state(struct sfp *sfp)
  2154. {
  2155. unsigned int state, i, changed;
  2156. mutex_lock(&sfp->st_mutex);
  2157. state = sfp_get_state(sfp);
  2158. changed = state ^ sfp->state;
  2159. if (sfp->tx_fault_ignore)
  2160. changed &= SFP_F_PRESENT | SFP_F_LOS;
  2161. else
  2162. changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
  2163. for (i = 0; i < GPIO_MAX; i++)
  2164. if (changed & BIT(i))
  2165. dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
  2166. !!(sfp->state & BIT(i)), !!(state & BIT(i)));
  2167. state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
  2168. sfp->state = state;
  2169. rtnl_lock();
  2170. if (changed & SFP_F_PRESENT)
  2171. sfp_sm_event(sfp, state & SFP_F_PRESENT ?
  2172. SFP_E_INSERT : SFP_E_REMOVE);
  2173. if (changed & SFP_F_TX_FAULT)
  2174. sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
  2175. SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
  2176. if (changed & SFP_F_LOS)
  2177. sfp_sm_event(sfp, state & SFP_F_LOS ?
  2178. SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
  2179. rtnl_unlock();
  2180. mutex_unlock(&sfp->st_mutex);
  2181. }
  2182. static irqreturn_t sfp_irq(int irq, void *data)
  2183. {
  2184. struct sfp *sfp = data;
  2185. sfp_check_state(sfp);
  2186. return IRQ_HANDLED;
  2187. }
  2188. static void sfp_poll(struct work_struct *work)
  2189. {
  2190. struct sfp *sfp = container_of(work, struct sfp, poll.work);
  2191. sfp_check_state(sfp);
  2192. if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
  2193. sfp->need_poll)
  2194. mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
  2195. }
  2196. static struct sfp *sfp_alloc(struct device *dev)
  2197. {
  2198. struct sfp *sfp;
  2199. sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
  2200. if (!sfp)
  2201. return ERR_PTR(-ENOMEM);
  2202. sfp->dev = dev;
  2203. sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
  2204. mutex_init(&sfp->sm_mutex);
  2205. mutex_init(&sfp->st_mutex);
  2206. INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
  2207. INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
  2208. sfp_hwmon_init(sfp);
  2209. return sfp;
  2210. }
  2211. static void sfp_cleanup(void *data)
  2212. {
  2213. struct sfp *sfp = data;
  2214. sfp_hwmon_exit(sfp);
  2215. cancel_delayed_work_sync(&sfp->poll);
  2216. cancel_delayed_work_sync(&sfp->timeout);
  2217. if (sfp->i2c_mii) {
  2218. mdiobus_unregister(sfp->i2c_mii);
  2219. mdiobus_free(sfp->i2c_mii);
  2220. }
  2221. if (sfp->i2c)
  2222. i2c_put_adapter(sfp->i2c);
  2223. kfree(sfp);
  2224. }
  2225. static int sfp_probe(struct platform_device *pdev)
  2226. {
  2227. const struct sff_data *sff;
  2228. struct i2c_adapter *i2c;
  2229. char *sfp_irq_name;
  2230. struct sfp *sfp;
  2231. int err, i;
  2232. sfp = sfp_alloc(&pdev->dev);
  2233. if (IS_ERR(sfp))
  2234. return PTR_ERR(sfp);
  2235. platform_set_drvdata(pdev, sfp);
  2236. err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
  2237. if (err < 0)
  2238. return err;
  2239. sff = sfp->type = &sfp_data;
  2240. if (pdev->dev.of_node) {
  2241. struct device_node *node = pdev->dev.of_node;
  2242. const struct of_device_id *id;
  2243. struct device_node *np;
  2244. id = of_match_node(sfp_of_match, node);
  2245. if (WARN_ON(!id))
  2246. return -EINVAL;
  2247. sff = sfp->type = id->data;
  2248. np = of_parse_phandle(node, "i2c-bus", 0);
  2249. if (!np) {
  2250. dev_err(sfp->dev, "missing 'i2c-bus' property\n");
  2251. return -ENODEV;
  2252. }
  2253. i2c = of_find_i2c_adapter_by_node(np);
  2254. of_node_put(np);
  2255. } else if (has_acpi_companion(&pdev->dev)) {
  2256. struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
  2257. struct fwnode_handle *fw = acpi_fwnode_handle(adev);
  2258. struct fwnode_reference_args args;
  2259. struct acpi_handle *acpi_handle;
  2260. int ret;
  2261. ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
  2262. if (ret || !is_acpi_device_node(args.fwnode)) {
  2263. dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
  2264. return -ENODEV;
  2265. }
  2266. acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
  2267. i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
  2268. } else {
  2269. return -EINVAL;
  2270. }
  2271. if (!i2c)
  2272. return -EPROBE_DEFER;
  2273. err = sfp_i2c_configure(sfp, i2c);
  2274. if (err < 0) {
  2275. i2c_put_adapter(i2c);
  2276. return err;
  2277. }
  2278. for (i = 0; i < GPIO_MAX; i++)
  2279. if (sff->gpios & BIT(i)) {
  2280. sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
  2281. gpio_of_names[i], gpio_flags[i]);
  2282. if (IS_ERR(sfp->gpio[i]))
  2283. return PTR_ERR(sfp->gpio[i]);
  2284. }
  2285. sfp->state_hw_mask = SFP_F_PRESENT;
  2286. sfp->get_state = sfp_gpio_get_state;
  2287. sfp->set_state = sfp_gpio_set_state;
  2288. /* Modules that have no detect signal are always present */
  2289. if (!(sfp->gpio[GPIO_MODDEF0]))
  2290. sfp->get_state = sff_gpio_get_state;
  2291. device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
  2292. &sfp->max_power_mW);
  2293. if (!sfp->max_power_mW)
  2294. sfp->max_power_mW = 1000;
  2295. dev_info(sfp->dev, "Host maximum power %u.%uW\n",
  2296. sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
  2297. /* Get the initial state, and always signal TX disable,
  2298. * since the network interface will not be up.
  2299. */
  2300. sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
  2301. if (sfp->gpio[GPIO_RATE_SELECT] &&
  2302. gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
  2303. sfp->state |= SFP_F_RATE_SELECT;
  2304. sfp_set_state(sfp, sfp->state);
  2305. sfp_module_tx_disable(sfp);
  2306. if (sfp->state & SFP_F_PRESENT) {
  2307. rtnl_lock();
  2308. sfp_sm_event(sfp, SFP_E_INSERT);
  2309. rtnl_unlock();
  2310. }
  2311. for (i = 0; i < GPIO_MAX; i++) {
  2312. if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
  2313. continue;
  2314. sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
  2315. if (sfp->gpio_irq[i] < 0) {
  2316. sfp->gpio_irq[i] = 0;
  2317. sfp->need_poll = true;
  2318. continue;
  2319. }
  2320. sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
  2321. "%s-%s", dev_name(sfp->dev),
  2322. gpio_of_names[i]);
  2323. if (!sfp_irq_name)
  2324. return -ENOMEM;
  2325. err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
  2326. NULL, sfp_irq,
  2327. IRQF_ONESHOT |
  2328. IRQF_TRIGGER_RISING |
  2329. IRQF_TRIGGER_FALLING,
  2330. sfp_irq_name, sfp);
  2331. if (err) {
  2332. sfp->gpio_irq[i] = 0;
  2333. sfp->need_poll = true;
  2334. }
  2335. }
  2336. if (sfp->need_poll)
  2337. mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
  2338. /* We could have an issue in cases no Tx disable pin is available or
  2339. * wired as modules using a laser as their light source will continue to
  2340. * be active when the fiber is removed. This could be a safety issue and
  2341. * we should at least warn the user about that.
  2342. */
  2343. if (!sfp->gpio[GPIO_TX_DISABLE])
  2344. dev_warn(sfp->dev,
  2345. "No tx_disable pin: SFP modules will always be emitting.\n");
  2346. sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
  2347. if (!sfp->sfp_bus)
  2348. return -ENOMEM;
  2349. sfp_debugfs_init(sfp);
  2350. return 0;
  2351. }
  2352. static int sfp_remove(struct platform_device *pdev)
  2353. {
  2354. struct sfp *sfp = platform_get_drvdata(pdev);
  2355. sfp_debugfs_exit(sfp);
  2356. sfp_unregister_socket(sfp->sfp_bus);
  2357. rtnl_lock();
  2358. sfp_sm_event(sfp, SFP_E_REMOVE);
  2359. rtnl_unlock();
  2360. return 0;
  2361. }
  2362. static void sfp_shutdown(struct platform_device *pdev)
  2363. {
  2364. struct sfp *sfp = platform_get_drvdata(pdev);
  2365. int i;
  2366. for (i = 0; i < GPIO_MAX; i++) {
  2367. if (!sfp->gpio_irq[i])
  2368. continue;
  2369. devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
  2370. }
  2371. cancel_delayed_work_sync(&sfp->poll);
  2372. cancel_delayed_work_sync(&sfp->timeout);
  2373. }
  2374. static struct platform_driver sfp_driver = {
  2375. .probe = sfp_probe,
  2376. .remove = sfp_remove,
  2377. .shutdown = sfp_shutdown,
  2378. .driver = {
  2379. .name = "sfp",
  2380. .of_match_table = sfp_of_match,
  2381. },
  2382. };
  2383. static int sfp_init(void)
  2384. {
  2385. poll_jiffies = msecs_to_jiffies(100);
  2386. return platform_driver_register(&sfp_driver);
  2387. }
  2388. module_init(sfp_init);
  2389. static void sfp_exit(void)
  2390. {
  2391. platform_driver_unregister(&sfp_driver);
  2392. }
  2393. module_exit(sfp_exit);
  2394. MODULE_ALIAS("platform:sfp");
  2395. MODULE_AUTHOR("Russell King");
  2396. MODULE_LICENSE("GPL v2");