mscc_ptp.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589
  1. // SPDX-License-Identifier: (GPL-2.0 OR MIT)
  2. /*
  3. * Driver for Microsemi VSC85xx PHYs - timestamping and PHC support
  4. *
  5. * Authors: Quentin Schulz & Antoine Tenart
  6. * License: Dual MIT/GPL
  7. * Copyright (c) 2020 Microsemi Corporation
  8. */
  9. #include <linux/gpio/consumer.h>
  10. #include <linux/ip.h>
  11. #include <linux/net_tstamp.h>
  12. #include <linux/mii.h>
  13. #include <linux/phy.h>
  14. #include <linux/ptp_classify.h>
  15. #include <linux/ptp_clock_kernel.h>
  16. #include <linux/udp.h>
  17. #include <asm/unaligned.h>
  18. #include "mscc.h"
  19. #include "mscc_ptp.h"
  20. /* Two PHYs share the same 1588 processor and it's to be entirely configured
  21. * through the base PHY of this processor.
  22. */
  23. /* phydev->bus->mdio_lock should be locked when using this function */
  24. static int phy_ts_base_write(struct phy_device *phydev, u32 regnum, u16 val)
  25. {
  26. struct vsc8531_private *priv = phydev->priv;
  27. WARN_ON_ONCE(!mutex_is_locked(&phydev->mdio.bus->mdio_lock));
  28. return __mdiobus_write(phydev->mdio.bus, priv->ts_base_addr, regnum,
  29. val);
  30. }
  31. /* phydev->bus->mdio_lock should be locked when using this function */
  32. static int phy_ts_base_read(struct phy_device *phydev, u32 regnum)
  33. {
  34. struct vsc8531_private *priv = phydev->priv;
  35. WARN_ON_ONCE(!mutex_is_locked(&phydev->mdio.bus->mdio_lock));
  36. return __mdiobus_read(phydev->mdio.bus, priv->ts_base_addr, regnum);
  37. }
  38. enum ts_blk_hw {
  39. INGRESS_ENGINE_0,
  40. EGRESS_ENGINE_0,
  41. INGRESS_ENGINE_1,
  42. EGRESS_ENGINE_1,
  43. INGRESS_ENGINE_2,
  44. EGRESS_ENGINE_2,
  45. PROCESSOR_0,
  46. PROCESSOR_1,
  47. };
  48. enum ts_blk {
  49. INGRESS,
  50. EGRESS,
  51. PROCESSOR,
  52. };
  53. static u32 vsc85xx_ts_read_csr(struct phy_device *phydev, enum ts_blk blk,
  54. u16 addr)
  55. {
  56. struct vsc8531_private *priv = phydev->priv;
  57. bool base_port = phydev->mdio.addr == priv->ts_base_addr;
  58. u32 val, cnt = 0;
  59. enum ts_blk_hw blk_hw;
  60. switch (blk) {
  61. case INGRESS:
  62. blk_hw = base_port ? INGRESS_ENGINE_0 : INGRESS_ENGINE_1;
  63. break;
  64. case EGRESS:
  65. blk_hw = base_port ? EGRESS_ENGINE_0 : EGRESS_ENGINE_1;
  66. break;
  67. case PROCESSOR:
  68. default:
  69. blk_hw = base_port ? PROCESSOR_0 : PROCESSOR_1;
  70. break;
  71. }
  72. phy_lock_mdio_bus(phydev);
  73. phy_ts_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_1588);
  74. phy_ts_base_write(phydev, MSCC_PHY_TS_BIU_ADDR_CNTL, BIU_ADDR_EXE |
  75. BIU_ADDR_READ | BIU_BLK_ID(blk_hw) |
  76. BIU_CSR_ADDR(addr));
  77. do {
  78. val = phy_ts_base_read(phydev, MSCC_PHY_TS_BIU_ADDR_CNTL);
  79. } while (!(val & BIU_ADDR_EXE) && cnt++ < BIU_ADDR_CNT_MAX);
  80. val = phy_ts_base_read(phydev, MSCC_PHY_TS_CSR_DATA_MSB);
  81. val <<= 16;
  82. val |= phy_ts_base_read(phydev, MSCC_PHY_TS_CSR_DATA_LSB);
  83. phy_ts_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
  84. phy_unlock_mdio_bus(phydev);
  85. return val;
  86. }
  87. static void vsc85xx_ts_write_csr(struct phy_device *phydev, enum ts_blk blk,
  88. u16 addr, u32 val)
  89. {
  90. struct vsc8531_private *priv = phydev->priv;
  91. bool base_port = phydev->mdio.addr == priv->ts_base_addr;
  92. u32 reg, bypass, cnt = 0, lower = val & 0xffff, upper = val >> 16;
  93. bool cond = (addr == MSCC_PHY_PTP_LTC_CTRL ||
  94. addr == MSCC_PHY_1588_INGR_VSC85XX_INT_MASK ||
  95. addr == MSCC_PHY_1588_VSC85XX_INT_MASK ||
  96. addr == MSCC_PHY_1588_INGR_VSC85XX_INT_STATUS ||
  97. addr == MSCC_PHY_1588_VSC85XX_INT_STATUS) &&
  98. blk == PROCESSOR;
  99. enum ts_blk_hw blk_hw;
  100. switch (blk) {
  101. case INGRESS:
  102. blk_hw = base_port ? INGRESS_ENGINE_0 : INGRESS_ENGINE_1;
  103. break;
  104. case EGRESS:
  105. blk_hw = base_port ? EGRESS_ENGINE_0 : EGRESS_ENGINE_1;
  106. break;
  107. case PROCESSOR:
  108. default:
  109. blk_hw = base_port ? PROCESSOR_0 : PROCESSOR_1;
  110. break;
  111. }
  112. phy_lock_mdio_bus(phydev);
  113. bypass = phy_ts_base_read(phydev, MSCC_PHY_BYPASS_CONTROL);
  114. phy_ts_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_1588);
  115. if (!cond || upper)
  116. phy_ts_base_write(phydev, MSCC_PHY_TS_CSR_DATA_MSB, upper);
  117. phy_ts_base_write(phydev, MSCC_PHY_TS_CSR_DATA_LSB, lower);
  118. phy_ts_base_write(phydev, MSCC_PHY_TS_BIU_ADDR_CNTL, BIU_ADDR_EXE |
  119. BIU_ADDR_WRITE | BIU_BLK_ID(blk_hw) |
  120. BIU_CSR_ADDR(addr));
  121. do {
  122. reg = phy_ts_base_read(phydev, MSCC_PHY_TS_BIU_ADDR_CNTL);
  123. } while (!(reg & BIU_ADDR_EXE) && cnt++ < BIU_ADDR_CNT_MAX);
  124. phy_ts_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
  125. if (cond && upper)
  126. phy_ts_base_write(phydev, MSCC_PHY_BYPASS_CONTROL, bypass);
  127. phy_unlock_mdio_bus(phydev);
  128. }
  129. /* Pick bytes from PTP header */
  130. #define PTP_HEADER_TRNSP_MSG 26
  131. #define PTP_HEADER_DOMAIN_NUM 25
  132. #define PTP_HEADER_BYTE_8_31(x) (31 - (x))
  133. #define MAC_ADDRESS_BYTE(x) ((x) + (35 - ETH_ALEN + 1))
  134. static int vsc85xx_ts_fsb_init(struct phy_device *phydev)
  135. {
  136. u8 sig_sel[16] = {};
  137. signed char i, pos = 0;
  138. /* Seq ID is 2B long and starts at 30th byte */
  139. for (i = 1; i >= 0; i--)
  140. sig_sel[pos++] = PTP_HEADER_BYTE_8_31(30 + i);
  141. /* DomainNum */
  142. sig_sel[pos++] = PTP_HEADER_DOMAIN_NUM;
  143. /* MsgType */
  144. sig_sel[pos++] = PTP_HEADER_TRNSP_MSG;
  145. /* MAC address is 6B long */
  146. for (i = ETH_ALEN - 1; i >= 0; i--)
  147. sig_sel[pos++] = MAC_ADDRESS_BYTE(i);
  148. /* Fill the last bytes of the signature to reach a 16B signature */
  149. for (; pos < ARRAY_SIZE(sig_sel); pos++)
  150. sig_sel[pos] = PTP_HEADER_TRNSP_MSG;
  151. for (i = 0; i <= 2; i++) {
  152. u32 val = 0;
  153. for (pos = i * 5 + 4; pos >= i * 5; pos--)
  154. val = (val << 6) | sig_sel[pos];
  155. vsc85xx_ts_write_csr(phydev, EGRESS, MSCC_PHY_ANA_FSB_REG(i),
  156. val);
  157. }
  158. vsc85xx_ts_write_csr(phydev, EGRESS, MSCC_PHY_ANA_FSB_REG(3),
  159. sig_sel[15]);
  160. return 0;
  161. }
  162. static const u32 vsc85xx_egr_latency[] = {
  163. /* Copper Egress */
  164. 1272, /* 1000Mbps */
  165. 12516, /* 100Mbps */
  166. 125444, /* 10Mbps */
  167. /* Fiber Egress */
  168. 1277, /* 1000Mbps */
  169. 12537, /* 100Mbps */
  170. };
  171. static const u32 vsc85xx_egr_latency_macsec[] = {
  172. /* Copper Egress ON */
  173. 3496, /* 1000Mbps */
  174. 34760, /* 100Mbps */
  175. 347844, /* 10Mbps */
  176. /* Fiber Egress ON */
  177. 3502, /* 1000Mbps */
  178. 34780, /* 100Mbps */
  179. };
  180. static const u32 vsc85xx_ingr_latency[] = {
  181. /* Copper Ingress */
  182. 208, /* 1000Mbps */
  183. 304, /* 100Mbps */
  184. 2023, /* 10Mbps */
  185. /* Fiber Ingress */
  186. 98, /* 1000Mbps */
  187. 197, /* 100Mbps */
  188. };
  189. static const u32 vsc85xx_ingr_latency_macsec[] = {
  190. /* Copper Ingress */
  191. 2408, /* 1000Mbps */
  192. 22300, /* 100Mbps */
  193. 222009, /* 10Mbps */
  194. /* Fiber Ingress */
  195. 2299, /* 1000Mbps */
  196. 22192, /* 100Mbps */
  197. };
  198. static void vsc85xx_ts_set_latencies(struct phy_device *phydev)
  199. {
  200. u32 val, ingr_latency, egr_latency;
  201. u8 idx;
  202. /* No need to set latencies of packets if the PHY is not connected */
  203. if (!phydev->link)
  204. return;
  205. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_STALL_LATENCY,
  206. STALL_EGR_LATENCY(phydev->speed));
  207. switch (phydev->speed) {
  208. case SPEED_100:
  209. idx = 1;
  210. break;
  211. case SPEED_1000:
  212. idx = 0;
  213. break;
  214. default:
  215. idx = 2;
  216. break;
  217. }
  218. ingr_latency = IS_ENABLED(CONFIG_MACSEC) ?
  219. vsc85xx_ingr_latency_macsec[idx] : vsc85xx_ingr_latency[idx];
  220. egr_latency = IS_ENABLED(CONFIG_MACSEC) ?
  221. vsc85xx_egr_latency_macsec[idx] : vsc85xx_egr_latency[idx];
  222. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_INGR_LOCAL_LATENCY,
  223. PTP_INGR_LOCAL_LATENCY(ingr_latency));
  224. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  225. MSCC_PHY_PTP_INGR_TSP_CTRL);
  226. val |= PHY_PTP_INGR_TSP_CTRL_LOAD_DELAYS;
  227. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_INGR_TSP_CTRL,
  228. val);
  229. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_LOCAL_LATENCY,
  230. PTP_EGR_LOCAL_LATENCY(egr_latency));
  231. val = vsc85xx_ts_read_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_TSP_CTRL);
  232. val |= PHY_PTP_EGR_TSP_CTRL_LOAD_DELAYS;
  233. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_TSP_CTRL, val);
  234. }
  235. static int vsc85xx_ts_disable_flows(struct phy_device *phydev, enum ts_blk blk)
  236. {
  237. u8 i;
  238. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_NXT_PROT_NXT_COMP, 0);
  239. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_NXT_PROT_UDP_CHKSUM,
  240. IP1_NXT_PROT_UDP_CHKSUM_WIDTH(2));
  241. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP2_NXT_PROT_NXT_COMP, 0);
  242. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP2_NXT_PROT_UDP_CHKSUM,
  243. IP2_NXT_PROT_UDP_CHKSUM_WIDTH(2));
  244. vsc85xx_ts_write_csr(phydev, blk, MSCC_PHY_ANA_MPLS_COMP_NXT_COMP, 0);
  245. vsc85xx_ts_write_csr(phydev, blk, MSCC_PHY_ANA_ETH1_NTX_PROT, 0);
  246. vsc85xx_ts_write_csr(phydev, blk, MSCC_PHY_ANA_ETH2_NTX_PROT, 0);
  247. for (i = 0; i < COMP_MAX_FLOWS; i++) {
  248. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_FLOW_ENA(i),
  249. IP1_FLOW_VALID_CH0 | IP1_FLOW_VALID_CH1);
  250. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP2_FLOW_ENA(i),
  251. IP2_FLOW_VALID_CH0 | IP2_FLOW_VALID_CH1);
  252. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_ETH1_FLOW_ENA(i),
  253. ETH1_FLOW_VALID_CH0 | ETH1_FLOW_VALID_CH1);
  254. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_ETH2_FLOW_ENA(i),
  255. ETH2_FLOW_VALID_CH0 | ETH2_FLOW_VALID_CH1);
  256. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_MPLS_FLOW_CTRL(i),
  257. MPLS_FLOW_VALID_CH0 | MPLS_FLOW_VALID_CH1);
  258. if (i >= PTP_COMP_MAX_FLOWS)
  259. continue;
  260. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_PTP_FLOW_ENA(i), 0);
  261. vsc85xx_ts_write_csr(phydev, blk,
  262. MSCC_ANA_PTP_FLOW_DOMAIN_RANGE(i), 0);
  263. vsc85xx_ts_write_csr(phydev, blk,
  264. MSCC_ANA_PTP_FLOW_MASK_UPPER(i), 0);
  265. vsc85xx_ts_write_csr(phydev, blk,
  266. MSCC_ANA_PTP_FLOW_MASK_LOWER(i), 0);
  267. vsc85xx_ts_write_csr(phydev, blk,
  268. MSCC_ANA_PTP_FLOW_MATCH_UPPER(i), 0);
  269. vsc85xx_ts_write_csr(phydev, blk,
  270. MSCC_ANA_PTP_FLOW_MATCH_LOWER(i), 0);
  271. vsc85xx_ts_write_csr(phydev, blk,
  272. MSCC_ANA_PTP_FLOW_PTP_ACTION(i), 0);
  273. vsc85xx_ts_write_csr(phydev, blk,
  274. MSCC_ANA_PTP_FLOW_PTP_ACTION2(i), 0);
  275. vsc85xx_ts_write_csr(phydev, blk,
  276. MSCC_ANA_PTP_FLOW_PTP_0_FIELD(i), 0);
  277. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_OAM_PTP_FLOW_ENA(i),
  278. 0);
  279. }
  280. return 0;
  281. }
  282. static int vsc85xx_ts_eth_cmp1_sig(struct phy_device *phydev)
  283. {
  284. u32 val;
  285. val = vsc85xx_ts_read_csr(phydev, EGRESS, MSCC_PHY_ANA_ETH1_NTX_PROT);
  286. val &= ~ANA_ETH1_NTX_PROT_SIG_OFF_MASK;
  287. val |= ANA_ETH1_NTX_PROT_SIG_OFF(0);
  288. vsc85xx_ts_write_csr(phydev, EGRESS, MSCC_PHY_ANA_ETH1_NTX_PROT, val);
  289. val = vsc85xx_ts_read_csr(phydev, EGRESS, MSCC_PHY_ANA_FSB_CFG);
  290. val &= ~ANA_FSB_ADDR_FROM_BLOCK_SEL_MASK;
  291. val |= ANA_FSB_ADDR_FROM_ETH1;
  292. vsc85xx_ts_write_csr(phydev, EGRESS, MSCC_PHY_ANA_FSB_CFG, val);
  293. return 0;
  294. }
  295. static struct vsc85xx_ptphdr *get_ptp_header_l4(struct sk_buff *skb,
  296. struct iphdr *iphdr,
  297. struct udphdr *udphdr)
  298. {
  299. if (iphdr->version != 4 || iphdr->protocol != IPPROTO_UDP)
  300. return NULL;
  301. return (struct vsc85xx_ptphdr *)(((unsigned char *)udphdr) + UDP_HLEN);
  302. }
  303. static struct vsc85xx_ptphdr *get_ptp_header_tx(struct sk_buff *skb)
  304. {
  305. struct ethhdr *ethhdr = eth_hdr(skb);
  306. struct udphdr *udphdr;
  307. struct iphdr *iphdr;
  308. if (ethhdr->h_proto == htons(ETH_P_1588))
  309. return (struct vsc85xx_ptphdr *)(((unsigned char *)ethhdr) +
  310. skb_mac_header_len(skb));
  311. if (ethhdr->h_proto != htons(ETH_P_IP))
  312. return NULL;
  313. iphdr = ip_hdr(skb);
  314. udphdr = udp_hdr(skb);
  315. return get_ptp_header_l4(skb, iphdr, udphdr);
  316. }
  317. static struct vsc85xx_ptphdr *get_ptp_header_rx(struct sk_buff *skb,
  318. enum hwtstamp_rx_filters rx_filter)
  319. {
  320. struct udphdr *udphdr;
  321. struct iphdr *iphdr;
  322. if (rx_filter == HWTSTAMP_FILTER_PTP_V2_L2_EVENT)
  323. return (struct vsc85xx_ptphdr *)skb->data;
  324. iphdr = (struct iphdr *)skb->data;
  325. udphdr = (struct udphdr *)(skb->data + iphdr->ihl * 4);
  326. return get_ptp_header_l4(skb, iphdr, udphdr);
  327. }
  328. static int get_sig(struct sk_buff *skb, u8 *sig)
  329. {
  330. struct vsc85xx_ptphdr *ptphdr = get_ptp_header_tx(skb);
  331. struct ethhdr *ethhdr = eth_hdr(skb);
  332. unsigned int i;
  333. if (!ptphdr)
  334. return -EOPNOTSUPP;
  335. sig[0] = (__force u16)ptphdr->seq_id >> 8;
  336. sig[1] = (__force u16)ptphdr->seq_id & GENMASK(7, 0);
  337. sig[2] = ptphdr->domain;
  338. sig[3] = ptphdr->tsmt & GENMASK(3, 0);
  339. memcpy(&sig[4], ethhdr->h_dest, ETH_ALEN);
  340. /* Fill the last bytes of the signature to reach a 16B signature */
  341. for (i = 10; i < 16; i++)
  342. sig[i] = ptphdr->tsmt & GENMASK(3, 0);
  343. return 0;
  344. }
  345. static void vsc85xx_dequeue_skb(struct vsc85xx_ptp *ptp)
  346. {
  347. struct skb_shared_hwtstamps shhwtstamps;
  348. struct vsc85xx_ts_fifo fifo;
  349. struct sk_buff *skb;
  350. u8 skb_sig[16], *p;
  351. int i, len;
  352. u32 reg;
  353. memset(&fifo, 0, sizeof(fifo));
  354. p = (u8 *)&fifo;
  355. reg = vsc85xx_ts_read_csr(ptp->phydev, PROCESSOR,
  356. MSCC_PHY_PTP_EGR_TS_FIFO(0));
  357. if (reg & PTP_EGR_TS_FIFO_EMPTY)
  358. return;
  359. *p++ = reg & 0xff;
  360. *p++ = (reg >> 8) & 0xff;
  361. /* Read the current FIFO item. Reading FIFO6 pops the next one. */
  362. for (i = 1; i < 7; i++) {
  363. reg = vsc85xx_ts_read_csr(ptp->phydev, PROCESSOR,
  364. MSCC_PHY_PTP_EGR_TS_FIFO(i));
  365. *p++ = reg & 0xff;
  366. *p++ = (reg >> 8) & 0xff;
  367. *p++ = (reg >> 16) & 0xff;
  368. *p++ = (reg >> 24) & 0xff;
  369. }
  370. len = skb_queue_len(&ptp->tx_queue);
  371. if (len < 1)
  372. return;
  373. while (len--) {
  374. skb = __skb_dequeue(&ptp->tx_queue);
  375. if (!skb)
  376. return;
  377. /* Can't get the signature of the packet, won't ever
  378. * be able to have one so let's dequeue the packet.
  379. */
  380. if (get_sig(skb, skb_sig) < 0) {
  381. kfree_skb(skb);
  382. continue;
  383. }
  384. /* Check if we found the signature we were looking for. */
  385. if (!memcmp(skb_sig, fifo.sig, sizeof(fifo.sig))) {
  386. memset(&shhwtstamps, 0, sizeof(shhwtstamps));
  387. shhwtstamps.hwtstamp = ktime_set(fifo.secs, fifo.ns);
  388. skb_complete_tx_timestamp(skb, &shhwtstamps);
  389. return;
  390. }
  391. /* Valid signature but does not match the one of the
  392. * packet in the FIFO right now, reschedule it for later
  393. * packets.
  394. */
  395. __skb_queue_tail(&ptp->tx_queue, skb);
  396. }
  397. }
  398. static void vsc85xx_get_tx_ts(struct vsc85xx_ptp *ptp)
  399. {
  400. u32 reg;
  401. do {
  402. vsc85xx_dequeue_skb(ptp);
  403. /* If other timestamps are available in the FIFO, process them. */
  404. reg = vsc85xx_ts_read_csr(ptp->phydev, PROCESSOR,
  405. MSCC_PHY_PTP_EGR_TS_FIFO_CTRL);
  406. } while (PTP_EGR_FIFO_LEVEL_LAST_READ(reg) > 1);
  407. }
  408. static int vsc85xx_ptp_cmp_init(struct phy_device *phydev, enum ts_blk blk)
  409. {
  410. struct vsc8531_private *vsc8531 = phydev->priv;
  411. bool base = phydev->mdio.addr == vsc8531->ts_base_addr;
  412. static const u8 msgs[] = {
  413. PTP_MSGTYPE_SYNC,
  414. PTP_MSGTYPE_DELAY_REQ
  415. };
  416. u32 val;
  417. u8 i;
  418. for (i = 0; i < ARRAY_SIZE(msgs); i++) {
  419. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_PTP_FLOW_ENA(i),
  420. base ? PTP_FLOW_VALID_CH0 :
  421. PTP_FLOW_VALID_CH1);
  422. val = vsc85xx_ts_read_csr(phydev, blk,
  423. MSCC_ANA_PTP_FLOW_DOMAIN_RANGE(i));
  424. val &= ~PTP_FLOW_DOMAIN_RANGE_ENA;
  425. vsc85xx_ts_write_csr(phydev, blk,
  426. MSCC_ANA_PTP_FLOW_DOMAIN_RANGE(i), val);
  427. vsc85xx_ts_write_csr(phydev, blk,
  428. MSCC_ANA_PTP_FLOW_MATCH_UPPER(i),
  429. msgs[i] << 24);
  430. vsc85xx_ts_write_csr(phydev, blk,
  431. MSCC_ANA_PTP_FLOW_MASK_UPPER(i),
  432. PTP_FLOW_MSG_TYPE_MASK);
  433. }
  434. return 0;
  435. }
  436. static int vsc85xx_eth_cmp1_init(struct phy_device *phydev, enum ts_blk blk)
  437. {
  438. struct vsc8531_private *vsc8531 = phydev->priv;
  439. bool base = phydev->mdio.addr == vsc8531->ts_base_addr;
  440. u32 val;
  441. vsc85xx_ts_write_csr(phydev, blk, MSCC_PHY_ANA_ETH1_NXT_PROT_TAG, 0);
  442. vsc85xx_ts_write_csr(phydev, blk, MSCC_PHY_ANA_ETH1_NTX_PROT_VLAN_TPID,
  443. ANA_ETH1_NTX_PROT_VLAN_TPID(ETH_P_8021AD));
  444. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_ETH1_FLOW_ENA(0),
  445. base ? ETH1_FLOW_VALID_CH0 : ETH1_FLOW_VALID_CH1);
  446. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_ETH1_FLOW_MATCH_MODE(0),
  447. ANA_ETH1_FLOW_MATCH_VLAN_TAG2);
  448. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_ETH1_FLOW_ADDR_MATCH1(0), 0);
  449. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_ETH1_FLOW_ADDR_MATCH2(0), 0);
  450. vsc85xx_ts_write_csr(phydev, blk,
  451. MSCC_ANA_ETH1_FLOW_VLAN_RANGE_I_TAG(0), 0);
  452. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_ETH1_FLOW_VLAN_TAG1(0), 0);
  453. vsc85xx_ts_write_csr(phydev, blk,
  454. MSCC_ANA_ETH1_FLOW_VLAN_TAG2_I_TAG(0), 0);
  455. val = vsc85xx_ts_read_csr(phydev, blk,
  456. MSCC_ANA_ETH1_FLOW_MATCH_MODE(0));
  457. val &= ~ANA_ETH1_FLOW_MATCH_VLAN_TAG_MASK;
  458. val |= ANA_ETH1_FLOW_MATCH_VLAN_VERIFY;
  459. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_ETH1_FLOW_MATCH_MODE(0),
  460. val);
  461. return 0;
  462. }
  463. static int vsc85xx_ip_cmp1_init(struct phy_device *phydev, enum ts_blk blk)
  464. {
  465. struct vsc8531_private *vsc8531 = phydev->priv;
  466. bool base = phydev->mdio.addr == vsc8531->ts_base_addr;
  467. u32 val;
  468. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_NXT_PROT_MATCH2_UPPER,
  469. PTP_EV_PORT);
  470. /* Match on dest port only, ignore src */
  471. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_NXT_PROT_MASK2_UPPER,
  472. 0xffff);
  473. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_NXT_PROT_MATCH2_LOWER,
  474. 0);
  475. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_NXT_PROT_MASK2_LOWER, 0);
  476. val = vsc85xx_ts_read_csr(phydev, blk, MSCC_ANA_IP1_FLOW_ENA(0));
  477. val &= ~IP1_FLOW_ENA_CHANNEL_MASK_MASK;
  478. val |= base ? IP1_FLOW_VALID_CH0 : IP1_FLOW_VALID_CH1;
  479. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_FLOW_ENA(0), val);
  480. /* Match all IPs */
  481. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_FLOW_MATCH_UPPER(0), 0);
  482. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_FLOW_MASK_UPPER(0), 0);
  483. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_FLOW_MATCH_UPPER_MID(0),
  484. 0);
  485. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_FLOW_MASK_UPPER_MID(0),
  486. 0);
  487. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_FLOW_MATCH_LOWER_MID(0),
  488. 0);
  489. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_FLOW_MASK_LOWER_MID(0),
  490. 0);
  491. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_FLOW_MATCH_LOWER(0), 0);
  492. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_FLOW_MASK_LOWER(0), 0);
  493. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_PTP_IP_CHKSUM_SEL, 0);
  494. return 0;
  495. }
  496. static int vsc85xx_adjfine(struct ptp_clock_info *info, long scaled_ppm)
  497. {
  498. struct vsc85xx_ptp *ptp = container_of(info, struct vsc85xx_ptp, caps);
  499. struct phy_device *phydev = ptp->phydev;
  500. struct vsc8531_private *priv = phydev->priv;
  501. u64 adj = 0;
  502. u32 val;
  503. if (abs(scaled_ppm) < 66 || abs(scaled_ppm) > 65536UL * 1000000UL)
  504. return 0;
  505. adj = div64_u64(1000000ULL * 65536ULL, abs(scaled_ppm));
  506. if (adj > 1000000000L)
  507. adj = 1000000000L;
  508. val = PTP_AUTO_ADJ_NS_ROLLOVER(adj);
  509. val |= scaled_ppm > 0 ? PTP_AUTO_ADJ_ADD_1NS : PTP_AUTO_ADJ_SUB_1NS;
  510. mutex_lock(&priv->phc_lock);
  511. /* Update the ppb val in nano seconds to the auto adjust reg. */
  512. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_AUTO_ADJ,
  513. val);
  514. /* The auto adjust update val is set to 0 after write operation. */
  515. val = vsc85xx_ts_read_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_CTRL);
  516. val |= PTP_LTC_CTRL_AUTO_ADJ_UPDATE;
  517. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_CTRL, val);
  518. mutex_unlock(&priv->phc_lock);
  519. return 0;
  520. }
  521. static int __vsc85xx_gettime(struct ptp_clock_info *info, struct timespec64 *ts)
  522. {
  523. struct vsc85xx_ptp *ptp = container_of(info, struct vsc85xx_ptp, caps);
  524. struct phy_device *phydev = ptp->phydev;
  525. struct vsc85xx_shared_private *shared =
  526. (struct vsc85xx_shared_private *)phydev->shared->priv;
  527. struct vsc8531_private *priv = phydev->priv;
  528. u32 val;
  529. val = vsc85xx_ts_read_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_CTRL);
  530. val |= PTP_LTC_CTRL_SAVE_ENA;
  531. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_CTRL, val);
  532. /* Local Time Counter (LTC) is put in SAVE* regs on rising edge of
  533. * LOAD_SAVE pin.
  534. */
  535. mutex_lock(&shared->gpio_lock);
  536. gpiod_set_value(priv->load_save, 1);
  537. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  538. MSCC_PHY_PTP_LTC_SAVED_SEC_MSB);
  539. ts->tv_sec = ((time64_t)val) << 32;
  540. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  541. MSCC_PHY_PTP_LTC_SAVED_SEC_LSB);
  542. ts->tv_sec += val;
  543. ts->tv_nsec = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  544. MSCC_PHY_PTP_LTC_SAVED_NS);
  545. gpiod_set_value(priv->load_save, 0);
  546. mutex_unlock(&shared->gpio_lock);
  547. return 0;
  548. }
  549. static int vsc85xx_gettime(struct ptp_clock_info *info, struct timespec64 *ts)
  550. {
  551. struct vsc85xx_ptp *ptp = container_of(info, struct vsc85xx_ptp, caps);
  552. struct phy_device *phydev = ptp->phydev;
  553. struct vsc8531_private *priv = phydev->priv;
  554. mutex_lock(&priv->phc_lock);
  555. __vsc85xx_gettime(info, ts);
  556. mutex_unlock(&priv->phc_lock);
  557. return 0;
  558. }
  559. static int __vsc85xx_settime(struct ptp_clock_info *info,
  560. const struct timespec64 *ts)
  561. {
  562. struct vsc85xx_ptp *ptp = container_of(info, struct vsc85xx_ptp, caps);
  563. struct phy_device *phydev = ptp->phydev;
  564. struct vsc85xx_shared_private *shared =
  565. (struct vsc85xx_shared_private *)phydev->shared->priv;
  566. struct vsc8531_private *priv = phydev->priv;
  567. u32 val;
  568. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_LOAD_SEC_MSB,
  569. PTP_LTC_LOAD_SEC_MSB(ts->tv_sec));
  570. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_LOAD_SEC_LSB,
  571. PTP_LTC_LOAD_SEC_LSB(ts->tv_sec));
  572. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_LOAD_NS,
  573. PTP_LTC_LOAD_NS(ts->tv_nsec));
  574. val = vsc85xx_ts_read_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_CTRL);
  575. val |= PTP_LTC_CTRL_LOAD_ENA;
  576. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_CTRL, val);
  577. /* Local Time Counter (LTC) is set from LOAD* regs on rising edge of
  578. * LOAD_SAVE pin.
  579. */
  580. mutex_lock(&shared->gpio_lock);
  581. gpiod_set_value(priv->load_save, 1);
  582. val &= ~PTP_LTC_CTRL_LOAD_ENA;
  583. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_CTRL, val);
  584. gpiod_set_value(priv->load_save, 0);
  585. mutex_unlock(&shared->gpio_lock);
  586. return 0;
  587. }
  588. static int vsc85xx_settime(struct ptp_clock_info *info,
  589. const struct timespec64 *ts)
  590. {
  591. struct vsc85xx_ptp *ptp = container_of(info, struct vsc85xx_ptp, caps);
  592. struct phy_device *phydev = ptp->phydev;
  593. struct vsc8531_private *priv = phydev->priv;
  594. mutex_lock(&priv->phc_lock);
  595. __vsc85xx_settime(info, ts);
  596. mutex_unlock(&priv->phc_lock);
  597. return 0;
  598. }
  599. static int vsc85xx_adjtime(struct ptp_clock_info *info, s64 delta)
  600. {
  601. struct vsc85xx_ptp *ptp = container_of(info, struct vsc85xx_ptp, caps);
  602. struct phy_device *phydev = ptp->phydev;
  603. struct vsc8531_private *priv = phydev->priv;
  604. u32 val;
  605. /* Can't recover that big of an offset. Let's set the time directly. */
  606. if (abs(delta) >= NSEC_PER_SEC) {
  607. struct timespec64 ts;
  608. u64 now;
  609. mutex_lock(&priv->phc_lock);
  610. __vsc85xx_gettime(info, &ts);
  611. now = ktime_to_ns(timespec64_to_ktime(ts));
  612. ts = ns_to_timespec64(now + delta);
  613. __vsc85xx_settime(info, &ts);
  614. mutex_unlock(&priv->phc_lock);
  615. return 0;
  616. }
  617. mutex_lock(&priv->phc_lock);
  618. val = PTP_LTC_OFFSET_VAL(abs(delta)) | PTP_LTC_OFFSET_ADJ;
  619. if (delta > 0)
  620. val |= PTP_LTC_OFFSET_ADD;
  621. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_OFFSET, val);
  622. mutex_unlock(&priv->phc_lock);
  623. return 0;
  624. }
  625. static int vsc85xx_eth1_next_comp(struct phy_device *phydev, enum ts_blk blk,
  626. u32 next_comp, u32 etype)
  627. {
  628. u32 val;
  629. val = vsc85xx_ts_read_csr(phydev, blk, MSCC_PHY_ANA_ETH1_NTX_PROT);
  630. val &= ~ANA_ETH1_NTX_PROT_COMPARATOR_MASK;
  631. val |= next_comp;
  632. vsc85xx_ts_write_csr(phydev, blk, MSCC_PHY_ANA_ETH1_NTX_PROT, val);
  633. val = ANA_ETH1_NXT_PROT_ETYPE_MATCH(etype) |
  634. ANA_ETH1_NXT_PROT_ETYPE_MATCH_ENA;
  635. vsc85xx_ts_write_csr(phydev, blk,
  636. MSCC_PHY_ANA_ETH1_NXT_PROT_ETYPE_MATCH, val);
  637. return 0;
  638. }
  639. static int vsc85xx_ip1_next_comp(struct phy_device *phydev, enum ts_blk blk,
  640. u32 next_comp, u32 header)
  641. {
  642. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_NXT_PROT_NXT_COMP,
  643. ANA_IP1_NXT_PROT_NXT_COMP_BYTES_HDR(header) |
  644. next_comp);
  645. return 0;
  646. }
  647. static int vsc85xx_ts_ptp_action_flow(struct phy_device *phydev, enum ts_blk blk, u8 flow, enum ptp_cmd cmd)
  648. {
  649. u32 val;
  650. /* Check non-zero reserved field */
  651. val = PTP_FLOW_PTP_0_FIELD_PTP_FRAME | PTP_FLOW_PTP_0_FIELD_RSVRD_CHECK;
  652. vsc85xx_ts_write_csr(phydev, blk,
  653. MSCC_ANA_PTP_FLOW_PTP_0_FIELD(flow), val);
  654. val = PTP_FLOW_PTP_ACTION_CORR_OFFSET(8) |
  655. PTP_FLOW_PTP_ACTION_TIME_OFFSET(8) |
  656. PTP_FLOW_PTP_ACTION_PTP_CMD(cmd == PTP_SAVE_IN_TS_FIFO ?
  657. PTP_NOP : cmd);
  658. if (cmd == PTP_SAVE_IN_TS_FIFO)
  659. val |= PTP_FLOW_PTP_ACTION_SAVE_LOCAL_TIME;
  660. else if (cmd == PTP_WRITE_NS)
  661. val |= PTP_FLOW_PTP_ACTION_MOD_FRAME_STATUS_UPDATE |
  662. PTP_FLOW_PTP_ACTION_MOD_FRAME_STATUS_BYTE_OFFSET(6);
  663. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_PTP_FLOW_PTP_ACTION(flow),
  664. val);
  665. if (cmd == PTP_WRITE_1588)
  666. /* Rewrite timestamp directly in frame */
  667. val = PTP_FLOW_PTP_ACTION2_REWRITE_OFFSET(34) |
  668. PTP_FLOW_PTP_ACTION2_REWRITE_BYTES(10);
  669. else if (cmd == PTP_SAVE_IN_TS_FIFO)
  670. /* no rewrite */
  671. val = PTP_FLOW_PTP_ACTION2_REWRITE_OFFSET(0) |
  672. PTP_FLOW_PTP_ACTION2_REWRITE_BYTES(0);
  673. else
  674. /* Write in reserved field */
  675. val = PTP_FLOW_PTP_ACTION2_REWRITE_OFFSET(16) |
  676. PTP_FLOW_PTP_ACTION2_REWRITE_BYTES(4);
  677. vsc85xx_ts_write_csr(phydev, blk,
  678. MSCC_ANA_PTP_FLOW_PTP_ACTION2(flow), val);
  679. return 0;
  680. }
  681. static int vsc85xx_ptp_conf(struct phy_device *phydev, enum ts_blk blk,
  682. bool one_step, bool enable)
  683. {
  684. static const u8 msgs[] = {
  685. PTP_MSGTYPE_SYNC,
  686. PTP_MSGTYPE_DELAY_REQ
  687. };
  688. u32 val;
  689. u8 i;
  690. for (i = 0; i < ARRAY_SIZE(msgs); i++) {
  691. if (blk == INGRESS)
  692. vsc85xx_ts_ptp_action_flow(phydev, blk, msgs[i],
  693. PTP_WRITE_NS);
  694. else if (msgs[i] == PTP_MSGTYPE_SYNC && one_step)
  695. /* no need to know Sync t when sending in one_step */
  696. vsc85xx_ts_ptp_action_flow(phydev, blk, msgs[i],
  697. PTP_WRITE_1588);
  698. else
  699. vsc85xx_ts_ptp_action_flow(phydev, blk, msgs[i],
  700. PTP_SAVE_IN_TS_FIFO);
  701. val = vsc85xx_ts_read_csr(phydev, blk,
  702. MSCC_ANA_PTP_FLOW_ENA(i));
  703. val &= ~PTP_FLOW_ENA;
  704. if (enable)
  705. val |= PTP_FLOW_ENA;
  706. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_PTP_FLOW_ENA(i),
  707. val);
  708. }
  709. return 0;
  710. }
  711. static int vsc85xx_eth1_conf(struct phy_device *phydev, enum ts_blk blk,
  712. bool enable)
  713. {
  714. struct vsc8531_private *vsc8531 = phydev->priv;
  715. u32 val = ANA_ETH1_FLOW_ADDR_MATCH2_DEST;
  716. if (vsc8531->ptp->rx_filter == HWTSTAMP_FILTER_PTP_V2_L2_EVENT) {
  717. /* PTP over Ethernet multicast address for SYNC and DELAY msg */
  718. u8 ptp_multicast[6] = {0x01, 0x1b, 0x19, 0x00, 0x00, 0x00};
  719. val |= ANA_ETH1_FLOW_ADDR_MATCH2_FULL_ADDR |
  720. get_unaligned_be16(&ptp_multicast[4]);
  721. vsc85xx_ts_write_csr(phydev, blk,
  722. MSCC_ANA_ETH1_FLOW_ADDR_MATCH2(0), val);
  723. vsc85xx_ts_write_csr(phydev, blk,
  724. MSCC_ANA_ETH1_FLOW_ADDR_MATCH1(0),
  725. get_unaligned_be32(ptp_multicast));
  726. } else {
  727. val |= ANA_ETH1_FLOW_ADDR_MATCH2_ANY_MULTICAST;
  728. vsc85xx_ts_write_csr(phydev, blk,
  729. MSCC_ANA_ETH1_FLOW_ADDR_MATCH2(0), val);
  730. vsc85xx_ts_write_csr(phydev, blk,
  731. MSCC_ANA_ETH1_FLOW_ADDR_MATCH1(0), 0);
  732. }
  733. val = vsc85xx_ts_read_csr(phydev, blk, MSCC_ANA_ETH1_FLOW_ENA(0));
  734. val &= ~ETH1_FLOW_ENA;
  735. if (enable)
  736. val |= ETH1_FLOW_ENA;
  737. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_ETH1_FLOW_ENA(0), val);
  738. return 0;
  739. }
  740. static int vsc85xx_ip1_conf(struct phy_device *phydev, enum ts_blk blk,
  741. bool enable)
  742. {
  743. u32 val;
  744. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_NXT_PROT_IP1_MODE,
  745. ANA_IP1_NXT_PROT_IPV4 |
  746. ANA_IP1_NXT_PROT_FLOW_OFFSET_IPV4);
  747. /* Matching UDP protocol number */
  748. val = ANA_IP1_NXT_PROT_IP_MATCH1_PROT_MASK(0xff) |
  749. ANA_IP1_NXT_PROT_IP_MATCH1_PROT_MATCH(IPPROTO_UDP) |
  750. ANA_IP1_NXT_PROT_IP_MATCH1_PROT_OFF(9);
  751. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_NXT_PROT_IP_MATCH1,
  752. val);
  753. /* End of IP protocol, start of next protocol (UDP) */
  754. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_NXT_PROT_OFFSET2,
  755. ANA_IP1_NXT_PROT_OFFSET2(20));
  756. val = vsc85xx_ts_read_csr(phydev, blk,
  757. MSCC_ANA_IP1_NXT_PROT_UDP_CHKSUM);
  758. val &= ~(IP1_NXT_PROT_UDP_CHKSUM_OFF_MASK |
  759. IP1_NXT_PROT_UDP_CHKSUM_WIDTH_MASK);
  760. val |= IP1_NXT_PROT_UDP_CHKSUM_WIDTH(2);
  761. val &= ~(IP1_NXT_PROT_UDP_CHKSUM_UPDATE |
  762. IP1_NXT_PROT_UDP_CHKSUM_CLEAR);
  763. /* UDP checksum offset in IPv4 packet
  764. * according to: https://tools.ietf.org/html/rfc768
  765. */
  766. val |= IP1_NXT_PROT_UDP_CHKSUM_OFF(26) | IP1_NXT_PROT_UDP_CHKSUM_CLEAR;
  767. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_NXT_PROT_UDP_CHKSUM,
  768. val);
  769. val = vsc85xx_ts_read_csr(phydev, blk, MSCC_ANA_IP1_FLOW_ENA(0));
  770. val &= ~(IP1_FLOW_MATCH_ADDR_MASK | IP1_FLOW_ENA);
  771. val |= IP1_FLOW_MATCH_DEST_SRC_ADDR;
  772. if (enable)
  773. val |= IP1_FLOW_ENA;
  774. vsc85xx_ts_write_csr(phydev, blk, MSCC_ANA_IP1_FLOW_ENA(0), val);
  775. return 0;
  776. }
  777. static int vsc85xx_ts_engine_init(struct phy_device *phydev, bool one_step)
  778. {
  779. struct vsc8531_private *vsc8531 = phydev->priv;
  780. bool ptp_l4, base = phydev->mdio.addr == vsc8531->ts_base_addr;
  781. u8 eng_id = base ? 0 : 1;
  782. u32 val;
  783. ptp_l4 = vsc8531->ptp->rx_filter == HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
  784. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  785. MSCC_PHY_PTP_ANALYZER_MODE);
  786. /* Disable INGRESS and EGRESS so engine eng_id can be reconfigured */
  787. val &= ~(PTP_ANALYZER_MODE_EGR_ENA(BIT(eng_id)) |
  788. PTP_ANALYZER_MODE_INGR_ENA(BIT(eng_id)));
  789. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_ANALYZER_MODE,
  790. val);
  791. if (vsc8531->ptp->rx_filter == HWTSTAMP_FILTER_PTP_V2_L2_EVENT) {
  792. vsc85xx_eth1_next_comp(phydev, INGRESS,
  793. ANA_ETH1_NTX_PROT_PTP_OAM, ETH_P_1588);
  794. vsc85xx_eth1_next_comp(phydev, EGRESS,
  795. ANA_ETH1_NTX_PROT_PTP_OAM, ETH_P_1588);
  796. } else {
  797. vsc85xx_eth1_next_comp(phydev, INGRESS,
  798. ANA_ETH1_NTX_PROT_IP_UDP_ACH_1,
  799. ETH_P_IP);
  800. vsc85xx_eth1_next_comp(phydev, EGRESS,
  801. ANA_ETH1_NTX_PROT_IP_UDP_ACH_1,
  802. ETH_P_IP);
  803. /* Header length of IPv[4/6] + UDP */
  804. vsc85xx_ip1_next_comp(phydev, INGRESS,
  805. ANA_ETH1_NTX_PROT_PTP_OAM, 28);
  806. vsc85xx_ip1_next_comp(phydev, EGRESS,
  807. ANA_ETH1_NTX_PROT_PTP_OAM, 28);
  808. }
  809. vsc85xx_eth1_conf(phydev, INGRESS,
  810. vsc8531->ptp->rx_filter != HWTSTAMP_FILTER_NONE);
  811. vsc85xx_ip1_conf(phydev, INGRESS,
  812. ptp_l4 && vsc8531->ptp->rx_filter != HWTSTAMP_FILTER_NONE);
  813. vsc85xx_ptp_conf(phydev, INGRESS, one_step,
  814. vsc8531->ptp->rx_filter != HWTSTAMP_FILTER_NONE);
  815. vsc85xx_eth1_conf(phydev, EGRESS,
  816. vsc8531->ptp->tx_type != HWTSTAMP_TX_OFF);
  817. vsc85xx_ip1_conf(phydev, EGRESS,
  818. ptp_l4 && vsc8531->ptp->tx_type != HWTSTAMP_TX_OFF);
  819. vsc85xx_ptp_conf(phydev, EGRESS, one_step,
  820. vsc8531->ptp->tx_type != HWTSTAMP_TX_OFF);
  821. val &= ~PTP_ANALYZER_MODE_EGR_ENA(BIT(eng_id));
  822. if (vsc8531->ptp->tx_type != HWTSTAMP_TX_OFF)
  823. val |= PTP_ANALYZER_MODE_EGR_ENA(BIT(eng_id));
  824. val &= ~PTP_ANALYZER_MODE_INGR_ENA(BIT(eng_id));
  825. if (vsc8531->ptp->rx_filter != HWTSTAMP_FILTER_NONE)
  826. val |= PTP_ANALYZER_MODE_INGR_ENA(BIT(eng_id));
  827. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_ANALYZER_MODE,
  828. val);
  829. return 0;
  830. }
  831. void vsc85xx_link_change_notify(struct phy_device *phydev)
  832. {
  833. struct vsc8531_private *priv = phydev->priv;
  834. mutex_lock(&priv->ts_lock);
  835. vsc85xx_ts_set_latencies(phydev);
  836. mutex_unlock(&priv->ts_lock);
  837. }
  838. static void vsc85xx_ts_reset_fifo(struct phy_device *phydev)
  839. {
  840. u32 val;
  841. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  842. MSCC_PHY_PTP_EGR_TS_FIFO_CTRL);
  843. val |= PTP_EGR_TS_FIFO_RESET;
  844. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_TS_FIFO_CTRL,
  845. val);
  846. val &= ~PTP_EGR_TS_FIFO_RESET;
  847. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_TS_FIFO_CTRL,
  848. val);
  849. }
  850. static int vsc85xx_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
  851. {
  852. struct vsc8531_private *vsc8531 =
  853. container_of(mii_ts, struct vsc8531_private, mii_ts);
  854. struct phy_device *phydev = vsc8531->ptp->phydev;
  855. struct hwtstamp_config cfg;
  856. bool one_step = false;
  857. u32 val;
  858. if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
  859. return -EFAULT;
  860. switch (cfg.tx_type) {
  861. case HWTSTAMP_TX_ONESTEP_SYNC:
  862. one_step = true;
  863. break;
  864. case HWTSTAMP_TX_ON:
  865. break;
  866. case HWTSTAMP_TX_OFF:
  867. break;
  868. default:
  869. return -ERANGE;
  870. }
  871. vsc8531->ptp->tx_type = cfg.tx_type;
  872. switch (cfg.rx_filter) {
  873. case HWTSTAMP_FILTER_NONE:
  874. break;
  875. case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
  876. /* ETH->IP->UDP->PTP */
  877. break;
  878. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  879. /* ETH->PTP */
  880. break;
  881. default:
  882. return -ERANGE;
  883. }
  884. vsc8531->ptp->rx_filter = cfg.rx_filter;
  885. mutex_lock(&vsc8531->ts_lock);
  886. __skb_queue_purge(&vsc8531->ptp->tx_queue);
  887. __skb_queue_head_init(&vsc8531->ptp->tx_queue);
  888. /* Disable predictor while configuring the 1588 block */
  889. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  890. MSCC_PHY_PTP_INGR_PREDICTOR);
  891. val &= ~PTP_INGR_PREDICTOR_EN;
  892. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_INGR_PREDICTOR,
  893. val);
  894. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  895. MSCC_PHY_PTP_EGR_PREDICTOR);
  896. val &= ~PTP_EGR_PREDICTOR_EN;
  897. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_PREDICTOR,
  898. val);
  899. /* Bypass egress or ingress blocks if timestamping isn't used */
  900. val = vsc85xx_ts_read_csr(phydev, PROCESSOR, MSCC_PHY_PTP_IFACE_CTRL);
  901. val &= ~(PTP_IFACE_CTRL_EGR_BYPASS | PTP_IFACE_CTRL_INGR_BYPASS);
  902. if (vsc8531->ptp->tx_type == HWTSTAMP_TX_OFF)
  903. val |= PTP_IFACE_CTRL_EGR_BYPASS;
  904. if (vsc8531->ptp->rx_filter == HWTSTAMP_FILTER_NONE)
  905. val |= PTP_IFACE_CTRL_INGR_BYPASS;
  906. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_IFACE_CTRL, val);
  907. /* Resetting FIFO so that it's empty after reconfiguration */
  908. vsc85xx_ts_reset_fifo(phydev);
  909. vsc85xx_ts_engine_init(phydev, one_step);
  910. /* Re-enable predictors now */
  911. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  912. MSCC_PHY_PTP_INGR_PREDICTOR);
  913. val |= PTP_INGR_PREDICTOR_EN;
  914. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_INGR_PREDICTOR,
  915. val);
  916. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  917. MSCC_PHY_PTP_EGR_PREDICTOR);
  918. val |= PTP_EGR_PREDICTOR_EN;
  919. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_PREDICTOR,
  920. val);
  921. vsc8531->ptp->configured = 1;
  922. mutex_unlock(&vsc8531->ts_lock);
  923. return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
  924. }
  925. static int vsc85xx_ts_info(struct mii_timestamper *mii_ts,
  926. struct ethtool_ts_info *info)
  927. {
  928. struct vsc8531_private *vsc8531 =
  929. container_of(mii_ts, struct vsc8531_private, mii_ts);
  930. info->phc_index = ptp_clock_index(vsc8531->ptp->ptp_clock);
  931. info->so_timestamping =
  932. SOF_TIMESTAMPING_TX_HARDWARE |
  933. SOF_TIMESTAMPING_RX_HARDWARE |
  934. SOF_TIMESTAMPING_RAW_HARDWARE;
  935. info->tx_types =
  936. (1 << HWTSTAMP_TX_OFF) |
  937. (1 << HWTSTAMP_TX_ON) |
  938. (1 << HWTSTAMP_TX_ONESTEP_SYNC);
  939. info->rx_filters =
  940. (1 << HWTSTAMP_FILTER_NONE) |
  941. (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
  942. (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT);
  943. return 0;
  944. }
  945. static void vsc85xx_txtstamp(struct mii_timestamper *mii_ts,
  946. struct sk_buff *skb, int type)
  947. {
  948. struct vsc8531_private *vsc8531 =
  949. container_of(mii_ts, struct vsc8531_private, mii_ts);
  950. if (!vsc8531->ptp->configured)
  951. return;
  952. if (vsc8531->ptp->tx_type == HWTSTAMP_TX_OFF) {
  953. kfree_skb(skb);
  954. return;
  955. }
  956. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  957. mutex_lock(&vsc8531->ts_lock);
  958. __skb_queue_tail(&vsc8531->ptp->tx_queue, skb);
  959. mutex_unlock(&vsc8531->ts_lock);
  960. }
  961. static bool vsc85xx_rxtstamp(struct mii_timestamper *mii_ts,
  962. struct sk_buff *skb, int type)
  963. {
  964. struct vsc8531_private *vsc8531 =
  965. container_of(mii_ts, struct vsc8531_private, mii_ts);
  966. struct skb_shared_hwtstamps *shhwtstamps = NULL;
  967. struct vsc85xx_ptphdr *ptphdr;
  968. struct timespec64 ts;
  969. unsigned long ns;
  970. if (!vsc8531->ptp->configured)
  971. return false;
  972. if (vsc8531->ptp->rx_filter == HWTSTAMP_FILTER_NONE ||
  973. type == PTP_CLASS_NONE)
  974. return false;
  975. vsc85xx_gettime(&vsc8531->ptp->caps, &ts);
  976. ptphdr = get_ptp_header_rx(skb, vsc8531->ptp->rx_filter);
  977. if (!ptphdr)
  978. return false;
  979. shhwtstamps = skb_hwtstamps(skb);
  980. memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
  981. ns = ntohl(ptphdr->rsrvd2);
  982. /* nsec is in reserved field */
  983. if (ts.tv_nsec < ns)
  984. ts.tv_sec--;
  985. shhwtstamps->hwtstamp = ktime_set(ts.tv_sec, ns);
  986. netif_rx(skb);
  987. return true;
  988. }
  989. static const struct ptp_clock_info vsc85xx_clk_caps = {
  990. .owner = THIS_MODULE,
  991. .name = "VSC85xx timer",
  992. .max_adj = S32_MAX,
  993. .n_alarm = 0,
  994. .n_pins = 0,
  995. .n_ext_ts = 0,
  996. .n_per_out = 0,
  997. .pps = 0,
  998. .adjtime = &vsc85xx_adjtime,
  999. .adjfine = &vsc85xx_adjfine,
  1000. .gettime64 = &vsc85xx_gettime,
  1001. .settime64 = &vsc85xx_settime,
  1002. };
  1003. static struct vsc8531_private *vsc8584_base_priv(struct phy_device *phydev)
  1004. {
  1005. struct vsc8531_private *vsc8531 = phydev->priv;
  1006. if (vsc8531->ts_base_addr != phydev->mdio.addr) {
  1007. struct mdio_device *dev;
  1008. dev = phydev->mdio.bus->mdio_map[vsc8531->ts_base_addr];
  1009. phydev = container_of(dev, struct phy_device, mdio);
  1010. return phydev->priv;
  1011. }
  1012. return vsc8531;
  1013. }
  1014. static bool vsc8584_is_1588_input_clk_configured(struct phy_device *phydev)
  1015. {
  1016. struct vsc8531_private *vsc8531 = vsc8584_base_priv(phydev);
  1017. return vsc8531->input_clk_init;
  1018. }
  1019. static void vsc8584_set_input_clk_configured(struct phy_device *phydev)
  1020. {
  1021. struct vsc8531_private *vsc8531 = vsc8584_base_priv(phydev);
  1022. vsc8531->input_clk_init = true;
  1023. }
  1024. static int __vsc8584_init_ptp(struct phy_device *phydev)
  1025. {
  1026. struct vsc8531_private *vsc8531 = phydev->priv;
  1027. static const u32 ltc_seq_e[] = { 0, 400000, 0, 0, 0 };
  1028. static const u8 ltc_seq_a[] = { 8, 6, 5, 4, 2 };
  1029. u32 val;
  1030. if (!vsc8584_is_1588_input_clk_configured(phydev)) {
  1031. phy_lock_mdio_bus(phydev);
  1032. /* 1588_DIFF_INPUT_CLK configuration: Use an external clock for
  1033. * the LTC, as per 3.13.29 in the VSC8584 datasheet.
  1034. */
  1035. phy_ts_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
  1036. MSCC_PHY_PAGE_1588);
  1037. phy_ts_base_write(phydev, 29, 0x7ae0);
  1038. phy_ts_base_write(phydev, 30, 0xb71c);
  1039. phy_ts_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
  1040. MSCC_PHY_PAGE_STANDARD);
  1041. phy_unlock_mdio_bus(phydev);
  1042. vsc8584_set_input_clk_configured(phydev);
  1043. }
  1044. /* Disable predictor before configuring the 1588 block */
  1045. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1046. MSCC_PHY_PTP_INGR_PREDICTOR);
  1047. val &= ~PTP_INGR_PREDICTOR_EN;
  1048. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_INGR_PREDICTOR,
  1049. val);
  1050. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1051. MSCC_PHY_PTP_EGR_PREDICTOR);
  1052. val &= ~PTP_EGR_PREDICTOR_EN;
  1053. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_PREDICTOR,
  1054. val);
  1055. /* By default, the internal clock of fixed rate 250MHz is used */
  1056. val = vsc85xx_ts_read_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_CTRL);
  1057. val &= ~PTP_LTC_CTRL_CLK_SEL_MASK;
  1058. val |= PTP_LTC_CTRL_CLK_SEL_INTERNAL_250;
  1059. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_CTRL, val);
  1060. val = vsc85xx_ts_read_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_SEQUENCE);
  1061. val &= ~PTP_LTC_SEQUENCE_A_MASK;
  1062. val |= PTP_LTC_SEQUENCE_A(ltc_seq_a[PHC_CLK_250MHZ]);
  1063. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_SEQUENCE, val);
  1064. val = vsc85xx_ts_read_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_SEQ);
  1065. val &= ~(PTP_LTC_SEQ_ERR_MASK | PTP_LTC_SEQ_ADD_SUB);
  1066. if (ltc_seq_e[PHC_CLK_250MHZ])
  1067. val |= PTP_LTC_SEQ_ADD_SUB;
  1068. val |= PTP_LTC_SEQ_ERR(ltc_seq_e[PHC_CLK_250MHZ]);
  1069. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_SEQ, val);
  1070. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_LTC_1PPS_WIDTH_ADJ,
  1071. PPS_WIDTH_ADJ);
  1072. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_INGR_DELAY_FIFO,
  1073. IS_ENABLED(CONFIG_MACSEC) ?
  1074. PTP_INGR_DELAY_FIFO_DEPTH_MACSEC :
  1075. PTP_INGR_DELAY_FIFO_DEPTH_DEFAULT);
  1076. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_DELAY_FIFO,
  1077. IS_ENABLED(CONFIG_MACSEC) ?
  1078. PTP_EGR_DELAY_FIFO_DEPTH_MACSEC :
  1079. PTP_EGR_DELAY_FIFO_DEPTH_DEFAULT);
  1080. /* Enable n-phase sampler for Viper Rev-B */
  1081. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1082. MSCC_PHY_PTP_ACCUR_CFG_STATUS);
  1083. val &= ~(PTP_ACCUR_PPS_OUT_BYPASS | PTP_ACCUR_PPS_IN_BYPASS |
  1084. PTP_ACCUR_EGR_SOF_BYPASS | PTP_ACCUR_INGR_SOF_BYPASS |
  1085. PTP_ACCUR_LOAD_SAVE_BYPASS);
  1086. val |= PTP_ACCUR_PPS_OUT_CALIB_ERR | PTP_ACCUR_PPS_OUT_CALIB_DONE |
  1087. PTP_ACCUR_PPS_IN_CALIB_ERR | PTP_ACCUR_PPS_IN_CALIB_DONE |
  1088. PTP_ACCUR_EGR_SOF_CALIB_ERR | PTP_ACCUR_EGR_SOF_CALIB_DONE |
  1089. PTP_ACCUR_INGR_SOF_CALIB_ERR | PTP_ACCUR_INGR_SOF_CALIB_DONE |
  1090. PTP_ACCUR_LOAD_SAVE_CALIB_ERR | PTP_ACCUR_LOAD_SAVE_CALIB_DONE;
  1091. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_ACCUR_CFG_STATUS,
  1092. val);
  1093. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1094. MSCC_PHY_PTP_ACCUR_CFG_STATUS);
  1095. val |= PTP_ACCUR_CALIB_TRIGG;
  1096. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_ACCUR_CFG_STATUS,
  1097. val);
  1098. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1099. MSCC_PHY_PTP_ACCUR_CFG_STATUS);
  1100. val &= ~PTP_ACCUR_CALIB_TRIGG;
  1101. val |= PTP_ACCUR_PPS_OUT_CALIB_ERR | PTP_ACCUR_PPS_OUT_CALIB_DONE |
  1102. PTP_ACCUR_PPS_IN_CALIB_ERR | PTP_ACCUR_PPS_IN_CALIB_DONE |
  1103. PTP_ACCUR_EGR_SOF_CALIB_ERR | PTP_ACCUR_EGR_SOF_CALIB_DONE |
  1104. PTP_ACCUR_INGR_SOF_CALIB_ERR | PTP_ACCUR_INGR_SOF_CALIB_DONE |
  1105. PTP_ACCUR_LOAD_SAVE_CALIB_ERR | PTP_ACCUR_LOAD_SAVE_CALIB_DONE;
  1106. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_ACCUR_CFG_STATUS,
  1107. val);
  1108. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1109. MSCC_PHY_PTP_ACCUR_CFG_STATUS);
  1110. val |= PTP_ACCUR_CALIB_TRIGG;
  1111. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_ACCUR_CFG_STATUS,
  1112. val);
  1113. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1114. MSCC_PHY_PTP_ACCUR_CFG_STATUS);
  1115. val &= ~PTP_ACCUR_CALIB_TRIGG;
  1116. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_ACCUR_CFG_STATUS,
  1117. val);
  1118. /* Do not access FIFO via SI */
  1119. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1120. MSCC_PHY_PTP_TSTAMP_FIFO_SI);
  1121. val &= ~PTP_TSTAMP_FIFO_SI_EN;
  1122. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_TSTAMP_FIFO_SI,
  1123. val);
  1124. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1125. MSCC_PHY_PTP_INGR_REWRITER_CTRL);
  1126. val &= ~PTP_INGR_REWRITER_REDUCE_PREAMBLE;
  1127. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_INGR_REWRITER_CTRL,
  1128. val);
  1129. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1130. MSCC_PHY_PTP_EGR_REWRITER_CTRL);
  1131. val &= ~PTP_EGR_REWRITER_REDUCE_PREAMBLE;
  1132. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_REWRITER_CTRL,
  1133. val);
  1134. /* Put the flag that indicates the frame has been modified to bit 7 */
  1135. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1136. MSCC_PHY_PTP_INGR_REWRITER_CTRL);
  1137. val |= PTP_INGR_REWRITER_FLAG_BIT_OFF(7) | PTP_INGR_REWRITER_FLAG_VAL;
  1138. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_INGR_REWRITER_CTRL,
  1139. val);
  1140. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1141. MSCC_PHY_PTP_EGR_REWRITER_CTRL);
  1142. val |= PTP_EGR_REWRITER_FLAG_BIT_OFF(7);
  1143. val &= ~PTP_EGR_REWRITER_FLAG_VAL;
  1144. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_REWRITER_CTRL,
  1145. val);
  1146. /* 30bit mode for RX timestamp, only the nanoseconds are kept in
  1147. * reserved field.
  1148. */
  1149. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1150. MSCC_PHY_PTP_INGR_TSP_CTRL);
  1151. val |= PHY_PTP_INGR_TSP_CTRL_FRACT_NS;
  1152. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_INGR_TSP_CTRL,
  1153. val);
  1154. val = vsc85xx_ts_read_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_TSP_CTRL);
  1155. val |= PHY_PTP_EGR_TSP_CTRL_FRACT_NS;
  1156. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_TSP_CTRL, val);
  1157. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1158. MSCC_PHY_PTP_SERIAL_TOD_IFACE);
  1159. val |= PTP_SERIAL_TOD_IFACE_LS_AUTO_CLR;
  1160. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_SERIAL_TOD_IFACE,
  1161. val);
  1162. vsc85xx_ts_fsb_init(phydev);
  1163. /* Set the Egress timestamp FIFO configuration and status register */
  1164. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1165. MSCC_PHY_PTP_EGR_TS_FIFO_CTRL);
  1166. val &= ~(PTP_EGR_TS_FIFO_SIG_BYTES_MASK | PTP_EGR_TS_FIFO_THRESH_MASK);
  1167. /* 16 bytes for the signature, 10 for the timestamp in the TS FIFO */
  1168. val |= PTP_EGR_TS_FIFO_SIG_BYTES(16) | PTP_EGR_TS_FIFO_THRESH(7);
  1169. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_EGR_TS_FIFO_CTRL,
  1170. val);
  1171. vsc85xx_ts_reset_fifo(phydev);
  1172. val = PTP_IFACE_CTRL_CLK_ENA;
  1173. if (!IS_ENABLED(CONFIG_MACSEC))
  1174. val |= PTP_IFACE_CTRL_GMII_PROT;
  1175. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_IFACE_CTRL, val);
  1176. vsc85xx_ts_set_latencies(phydev);
  1177. val = vsc85xx_ts_read_csr(phydev, PROCESSOR, MSCC_PHY_PTP_VERSION_CODE);
  1178. val = vsc85xx_ts_read_csr(phydev, PROCESSOR, MSCC_PHY_PTP_IFACE_CTRL);
  1179. val |= PTP_IFACE_CTRL_EGR_BYPASS;
  1180. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_IFACE_CTRL, val);
  1181. vsc85xx_ts_disable_flows(phydev, EGRESS);
  1182. vsc85xx_ts_disable_flows(phydev, INGRESS);
  1183. val = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1184. MSCC_PHY_PTP_ANALYZER_MODE);
  1185. /* Disable INGRESS and EGRESS so engine eng_id can be reconfigured */
  1186. val &= ~(PTP_ANALYZER_MODE_EGR_ENA_MASK |
  1187. PTP_ANALYZER_MODE_INGR_ENA_MASK |
  1188. PTP_ANA_INGR_ENCAP_FLOW_MODE_MASK |
  1189. PTP_ANA_EGR_ENCAP_FLOW_MODE_MASK);
  1190. /* Strict matching in flow (packets should match flows from the same
  1191. * index in all enabled comparators (except PTP)).
  1192. */
  1193. val |= PTP_ANA_SPLIT_ENCAP_FLOW | PTP_ANA_INGR_ENCAP_FLOW_MODE(0x7) |
  1194. PTP_ANA_EGR_ENCAP_FLOW_MODE(0x7);
  1195. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_PTP_ANALYZER_MODE,
  1196. val);
  1197. /* Initialized for ingress and egress flows:
  1198. * - The Ethernet comparator.
  1199. * - The IP comparator.
  1200. * - The PTP comparator.
  1201. */
  1202. vsc85xx_eth_cmp1_init(phydev, INGRESS);
  1203. vsc85xx_ip_cmp1_init(phydev, INGRESS);
  1204. vsc85xx_ptp_cmp_init(phydev, INGRESS);
  1205. vsc85xx_eth_cmp1_init(phydev, EGRESS);
  1206. vsc85xx_ip_cmp1_init(phydev, EGRESS);
  1207. vsc85xx_ptp_cmp_init(phydev, EGRESS);
  1208. vsc85xx_ts_eth_cmp1_sig(phydev);
  1209. vsc8531->mii_ts.rxtstamp = vsc85xx_rxtstamp;
  1210. vsc8531->mii_ts.txtstamp = vsc85xx_txtstamp;
  1211. vsc8531->mii_ts.hwtstamp = vsc85xx_hwtstamp;
  1212. vsc8531->mii_ts.ts_info = vsc85xx_ts_info;
  1213. phydev->mii_ts = &vsc8531->mii_ts;
  1214. memcpy(&vsc8531->ptp->caps, &vsc85xx_clk_caps, sizeof(vsc85xx_clk_caps));
  1215. vsc8531->ptp->ptp_clock = ptp_clock_register(&vsc8531->ptp->caps,
  1216. &phydev->mdio.dev);
  1217. return PTR_ERR_OR_ZERO(vsc8531->ptp->ptp_clock);
  1218. }
  1219. void vsc8584_config_ts_intr(struct phy_device *phydev)
  1220. {
  1221. struct vsc8531_private *priv = phydev->priv;
  1222. mutex_lock(&priv->ts_lock);
  1223. vsc85xx_ts_write_csr(phydev, PROCESSOR, MSCC_PHY_1588_VSC85XX_INT_MASK,
  1224. VSC85XX_1588_INT_MASK_MASK);
  1225. mutex_unlock(&priv->ts_lock);
  1226. }
  1227. int vsc8584_ptp_init(struct phy_device *phydev)
  1228. {
  1229. switch (phydev->phy_id & phydev->drv->phy_id_mask) {
  1230. case PHY_ID_VSC8572:
  1231. case PHY_ID_VSC8574:
  1232. case PHY_ID_VSC8575:
  1233. case PHY_ID_VSC8582:
  1234. case PHY_ID_VSC8584:
  1235. return __vsc8584_init_ptp(phydev);
  1236. }
  1237. return 0;
  1238. }
  1239. irqreturn_t vsc8584_handle_ts_interrupt(struct phy_device *phydev)
  1240. {
  1241. struct vsc8531_private *priv = phydev->priv;
  1242. int rc;
  1243. mutex_lock(&priv->ts_lock);
  1244. rc = vsc85xx_ts_read_csr(phydev, PROCESSOR,
  1245. MSCC_PHY_1588_VSC85XX_INT_STATUS);
  1246. /* Ack the PTP interrupt */
  1247. vsc85xx_ts_write_csr(phydev, PROCESSOR,
  1248. MSCC_PHY_1588_VSC85XX_INT_STATUS, rc);
  1249. if (!(rc & VSC85XX_1588_INT_MASK_MASK)) {
  1250. mutex_unlock(&priv->ts_lock);
  1251. return IRQ_NONE;
  1252. }
  1253. if (rc & VSC85XX_1588_INT_FIFO_ADD) {
  1254. vsc85xx_get_tx_ts(priv->ptp);
  1255. } else if (rc & VSC85XX_1588_INT_FIFO_OVERFLOW) {
  1256. __skb_queue_purge(&priv->ptp->tx_queue);
  1257. vsc85xx_ts_reset_fifo(phydev);
  1258. }
  1259. mutex_unlock(&priv->ts_lock);
  1260. return IRQ_HANDLED;
  1261. }
  1262. int vsc8584_ptp_probe(struct phy_device *phydev)
  1263. {
  1264. struct vsc8531_private *vsc8531 = phydev->priv;
  1265. vsc8531->ptp = devm_kzalloc(&phydev->mdio.dev, sizeof(*vsc8531->ptp),
  1266. GFP_KERNEL);
  1267. if (!vsc8531->ptp)
  1268. return -ENOMEM;
  1269. mutex_init(&vsc8531->phc_lock);
  1270. mutex_init(&vsc8531->ts_lock);
  1271. /* Retrieve the shared load/save GPIO. Request it as non exclusive as
  1272. * the same GPIO can be requested by all the PHYs of the same package.
  1273. * This GPIO must be used with the gpio_lock taken (the lock is shared
  1274. * between all PHYs).
  1275. */
  1276. vsc8531->load_save = devm_gpiod_get_optional(&phydev->mdio.dev, "load-save",
  1277. GPIOD_FLAGS_BIT_NONEXCLUSIVE |
  1278. GPIOD_OUT_LOW);
  1279. if (IS_ERR(vsc8531->load_save)) {
  1280. phydev_err(phydev, "Can't get load-save GPIO (%ld)\n",
  1281. PTR_ERR(vsc8531->load_save));
  1282. return PTR_ERR(vsc8531->load_save);
  1283. }
  1284. vsc8531->ptp->phydev = phydev;
  1285. return 0;
  1286. }
  1287. int vsc8584_ptp_probe_once(struct phy_device *phydev)
  1288. {
  1289. struct vsc85xx_shared_private *shared =
  1290. (struct vsc85xx_shared_private *)phydev->shared->priv;
  1291. /* Initialize shared GPIO lock */
  1292. mutex_init(&shared->gpio_lock);
  1293. return 0;
  1294. }