adin.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Driver for Analog Devices Industrial Ethernet PHYs
  4. *
  5. * Copyright 2019 Analog Devices Inc.
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/bitfield.h>
  9. #include <linux/delay.h>
  10. #include <linux/errno.h>
  11. #include <linux/ethtool_netlink.h>
  12. #include <linux/init.h>
  13. #include <linux/module.h>
  14. #include <linux/mii.h>
  15. #include <linux/phy.h>
  16. #include <linux/property.h>
  17. #define PHY_ID_ADIN1200 0x0283bc20
  18. #define PHY_ID_ADIN1300 0x0283bc30
  19. #define ADIN1300_MII_EXT_REG_PTR 0x0010
  20. #define ADIN1300_MII_EXT_REG_DATA 0x0011
  21. #define ADIN1300_PHY_CTRL1 0x0012
  22. #define ADIN1300_AUTO_MDI_EN BIT(10)
  23. #define ADIN1300_MAN_MDIX_EN BIT(9)
  24. #define ADIN1300_DIAG_CLK_EN BIT(2)
  25. #define ADIN1300_RX_ERR_CNT 0x0014
  26. #define ADIN1300_PHY_CTRL_STATUS2 0x0015
  27. #define ADIN1300_NRG_PD_EN BIT(3)
  28. #define ADIN1300_NRG_PD_TX_EN BIT(2)
  29. #define ADIN1300_NRG_PD_STATUS BIT(1)
  30. #define ADIN1300_PHY_CTRL2 0x0016
  31. #define ADIN1300_DOWNSPEED_AN_100_EN BIT(11)
  32. #define ADIN1300_DOWNSPEED_AN_10_EN BIT(10)
  33. #define ADIN1300_GROUP_MDIO_EN BIT(6)
  34. #define ADIN1300_DOWNSPEEDS_EN \
  35. (ADIN1300_DOWNSPEED_AN_100_EN | ADIN1300_DOWNSPEED_AN_10_EN)
  36. #define ADIN1300_PHY_CTRL3 0x0017
  37. #define ADIN1300_LINKING_EN BIT(13)
  38. #define ADIN1300_DOWNSPEED_RETRIES_MSK GENMASK(12, 10)
  39. #define ADIN1300_INT_MASK_REG 0x0018
  40. #define ADIN1300_INT_MDIO_SYNC_EN BIT(9)
  41. #define ADIN1300_INT_ANEG_STAT_CHNG_EN BIT(8)
  42. #define ADIN1300_INT_ANEG_PAGE_RX_EN BIT(6)
  43. #define ADIN1300_INT_IDLE_ERR_CNT_EN BIT(5)
  44. #define ADIN1300_INT_MAC_FIFO_OU_EN BIT(4)
  45. #define ADIN1300_INT_RX_STAT_CHNG_EN BIT(3)
  46. #define ADIN1300_INT_LINK_STAT_CHNG_EN BIT(2)
  47. #define ADIN1300_INT_SPEED_CHNG_EN BIT(1)
  48. #define ADIN1300_INT_HW_IRQ_EN BIT(0)
  49. #define ADIN1300_INT_MASK_EN \
  50. (ADIN1300_INT_LINK_STAT_CHNG_EN | ADIN1300_INT_HW_IRQ_EN)
  51. #define ADIN1300_INT_STATUS_REG 0x0019
  52. #define ADIN1300_PHY_STATUS1 0x001a
  53. #define ADIN1300_PAIR_01_SWAP BIT(11)
  54. /* EEE register addresses, accessible via Clause 22 access using
  55. * ADIN1300_MII_EXT_REG_PTR & ADIN1300_MII_EXT_REG_DATA.
  56. * The bit-fields are the same as specified by IEEE for EEE.
  57. */
  58. #define ADIN1300_EEE_CAP_REG 0x8000
  59. #define ADIN1300_EEE_ADV_REG 0x8001
  60. #define ADIN1300_EEE_LPABLE_REG 0x8002
  61. #define ADIN1300_CLOCK_STOP_REG 0x9400
  62. #define ADIN1300_LPI_WAKE_ERR_CNT_REG 0xa000
  63. #define ADIN1300_CDIAG_RUN 0xba1b
  64. #define ADIN1300_CDIAG_RUN_EN BIT(0)
  65. /*
  66. * The XSIM3/2/1 and XSHRT3/2/1 are actually relative.
  67. * For CDIAG_DTLD_RSLTS(0) it's ADIN1300_CDIAG_RSLT_XSIM3/2/1
  68. * For CDIAG_DTLD_RSLTS(1) it's ADIN1300_CDIAG_RSLT_XSIM3/2/0
  69. * For CDIAG_DTLD_RSLTS(2) it's ADIN1300_CDIAG_RSLT_XSIM3/1/0
  70. * For CDIAG_DTLD_RSLTS(3) it's ADIN1300_CDIAG_RSLT_XSIM2/1/0
  71. */
  72. #define ADIN1300_CDIAG_DTLD_RSLTS(x) (0xba1d + (x))
  73. #define ADIN1300_CDIAG_RSLT_BUSY BIT(10)
  74. #define ADIN1300_CDIAG_RSLT_XSIM3 BIT(9)
  75. #define ADIN1300_CDIAG_RSLT_XSIM2 BIT(8)
  76. #define ADIN1300_CDIAG_RSLT_XSIM1 BIT(7)
  77. #define ADIN1300_CDIAG_RSLT_SIM BIT(6)
  78. #define ADIN1300_CDIAG_RSLT_XSHRT3 BIT(5)
  79. #define ADIN1300_CDIAG_RSLT_XSHRT2 BIT(4)
  80. #define ADIN1300_CDIAG_RSLT_XSHRT1 BIT(3)
  81. #define ADIN1300_CDIAG_RSLT_SHRT BIT(2)
  82. #define ADIN1300_CDIAG_RSLT_OPEN BIT(1)
  83. #define ADIN1300_CDIAG_RSLT_GOOD BIT(0)
  84. #define ADIN1300_CDIAG_FLT_DIST(x) (0xba21 + (x))
  85. #define ADIN1300_GE_SOFT_RESET_REG 0xff0c
  86. #define ADIN1300_GE_SOFT_RESET BIT(0)
  87. #define ADIN1300_GE_CLK_CFG_REG 0xff1f
  88. #define ADIN1300_GE_CLK_CFG_MASK GENMASK(5, 0)
  89. #define ADIN1300_GE_CLK_CFG_RCVR_125 BIT(5)
  90. #define ADIN1300_GE_CLK_CFG_FREE_125 BIT(4)
  91. #define ADIN1300_GE_CLK_CFG_REF_EN BIT(3)
  92. #define ADIN1300_GE_CLK_CFG_HRT_RCVR BIT(2)
  93. #define ADIN1300_GE_CLK_CFG_HRT_FREE BIT(1)
  94. #define ADIN1300_GE_CLK_CFG_25 BIT(0)
  95. #define ADIN1300_GE_RGMII_CFG_REG 0xff23
  96. #define ADIN1300_GE_RGMII_RX_MSK GENMASK(8, 6)
  97. #define ADIN1300_GE_RGMII_RX_SEL(x) \
  98. FIELD_PREP(ADIN1300_GE_RGMII_RX_MSK, x)
  99. #define ADIN1300_GE_RGMII_GTX_MSK GENMASK(5, 3)
  100. #define ADIN1300_GE_RGMII_GTX_SEL(x) \
  101. FIELD_PREP(ADIN1300_GE_RGMII_GTX_MSK, x)
  102. #define ADIN1300_GE_RGMII_RXID_EN BIT(2)
  103. #define ADIN1300_GE_RGMII_TXID_EN BIT(1)
  104. #define ADIN1300_GE_RGMII_EN BIT(0)
  105. /* RGMII internal delay settings for rx and tx for ADIN1300 */
  106. #define ADIN1300_RGMII_1_60_NS 0x0001
  107. #define ADIN1300_RGMII_1_80_NS 0x0002
  108. #define ADIN1300_RGMII_2_00_NS 0x0000
  109. #define ADIN1300_RGMII_2_20_NS 0x0006
  110. #define ADIN1300_RGMII_2_40_NS 0x0007
  111. #define ADIN1300_GE_RMII_CFG_REG 0xff24
  112. #define ADIN1300_GE_RMII_FIFO_DEPTH_MSK GENMASK(6, 4)
  113. #define ADIN1300_GE_RMII_FIFO_DEPTH_SEL(x) \
  114. FIELD_PREP(ADIN1300_GE_RMII_FIFO_DEPTH_MSK, x)
  115. #define ADIN1300_GE_RMII_EN BIT(0)
  116. /* RMII fifo depth values */
  117. #define ADIN1300_RMII_4_BITS 0x0000
  118. #define ADIN1300_RMII_8_BITS 0x0001
  119. #define ADIN1300_RMII_12_BITS 0x0002
  120. #define ADIN1300_RMII_16_BITS 0x0003
  121. #define ADIN1300_RMII_20_BITS 0x0004
  122. #define ADIN1300_RMII_24_BITS 0x0005
  123. /**
  124. * struct adin_cfg_reg_map - map a config value to aregister value
  125. * @cfg: value in device configuration
  126. * @reg: value in the register
  127. */
  128. struct adin_cfg_reg_map {
  129. int cfg;
  130. int reg;
  131. };
  132. static const struct adin_cfg_reg_map adin_rgmii_delays[] = {
  133. { 1600, ADIN1300_RGMII_1_60_NS },
  134. { 1800, ADIN1300_RGMII_1_80_NS },
  135. { 2000, ADIN1300_RGMII_2_00_NS },
  136. { 2200, ADIN1300_RGMII_2_20_NS },
  137. { 2400, ADIN1300_RGMII_2_40_NS },
  138. { },
  139. };
  140. static const struct adin_cfg_reg_map adin_rmii_fifo_depths[] = {
  141. { 4, ADIN1300_RMII_4_BITS },
  142. { 8, ADIN1300_RMII_8_BITS },
  143. { 12, ADIN1300_RMII_12_BITS },
  144. { 16, ADIN1300_RMII_16_BITS },
  145. { 20, ADIN1300_RMII_20_BITS },
  146. { 24, ADIN1300_RMII_24_BITS },
  147. { },
  148. };
  149. /**
  150. * struct adin_clause45_mmd_map - map to convert Clause 45 regs to Clause 22
  151. * @devad: device address used in Clause 45 access
  152. * @cl45_regnum: register address defined by Clause 45
  153. * @adin_regnum: equivalent register address accessible via Clause 22
  154. */
  155. struct adin_clause45_mmd_map {
  156. int devad;
  157. u16 cl45_regnum;
  158. u16 adin_regnum;
  159. };
  160. static const struct adin_clause45_mmd_map adin_clause45_mmd_map[] = {
  161. { MDIO_MMD_PCS, MDIO_PCS_EEE_ABLE, ADIN1300_EEE_CAP_REG },
  162. { MDIO_MMD_AN, MDIO_AN_EEE_LPABLE, ADIN1300_EEE_LPABLE_REG },
  163. { MDIO_MMD_AN, MDIO_AN_EEE_ADV, ADIN1300_EEE_ADV_REG },
  164. { MDIO_MMD_PCS, MDIO_CTRL1, ADIN1300_CLOCK_STOP_REG },
  165. { MDIO_MMD_PCS, MDIO_PCS_EEE_WK_ERR, ADIN1300_LPI_WAKE_ERR_CNT_REG },
  166. };
  167. struct adin_hw_stat {
  168. const char *string;
  169. u16 reg1;
  170. u16 reg2;
  171. };
  172. static const struct adin_hw_stat adin_hw_stats[] = {
  173. { "total_frames_checked_count", 0x940A, 0x940B }, /* hi + lo */
  174. { "length_error_frames_count", 0x940C },
  175. { "alignment_error_frames_count", 0x940D },
  176. { "symbol_error_count", 0x940E },
  177. { "oversized_frames_count", 0x940F },
  178. { "undersized_frames_count", 0x9410 },
  179. { "odd_nibble_frames_count", 0x9411 },
  180. { "odd_preamble_packet_count", 0x9412 },
  181. { "dribble_bits_frames_count", 0x9413 },
  182. { "false_carrier_events_count", 0x9414 },
  183. };
  184. /**
  185. * struct adin_priv - ADIN PHY driver private data
  186. * @stats: statistic counters for the PHY
  187. */
  188. struct adin_priv {
  189. u64 stats[ARRAY_SIZE(adin_hw_stats)];
  190. };
  191. static int adin_lookup_reg_value(const struct adin_cfg_reg_map *tbl, int cfg)
  192. {
  193. size_t i;
  194. for (i = 0; tbl[i].cfg; i++) {
  195. if (tbl[i].cfg == cfg)
  196. return tbl[i].reg;
  197. }
  198. return -EINVAL;
  199. }
  200. static u32 adin_get_reg_value(struct phy_device *phydev,
  201. const char *prop_name,
  202. const struct adin_cfg_reg_map *tbl,
  203. u32 dflt)
  204. {
  205. struct device *dev = &phydev->mdio.dev;
  206. u32 val;
  207. int rc;
  208. if (device_property_read_u32(dev, prop_name, &val))
  209. return dflt;
  210. rc = adin_lookup_reg_value(tbl, val);
  211. if (rc < 0) {
  212. phydev_warn(phydev,
  213. "Unsupported value %u for %s using default (%u)\n",
  214. val, prop_name, dflt);
  215. return dflt;
  216. }
  217. return rc;
  218. }
  219. static int adin_config_rgmii_mode(struct phy_device *phydev)
  220. {
  221. u32 val;
  222. int reg;
  223. if (!phy_interface_is_rgmii(phydev))
  224. return phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
  225. ADIN1300_GE_RGMII_CFG_REG,
  226. ADIN1300_GE_RGMII_EN);
  227. reg = phy_read_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_GE_RGMII_CFG_REG);
  228. if (reg < 0)
  229. return reg;
  230. reg |= ADIN1300_GE_RGMII_EN;
  231. if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
  232. phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) {
  233. reg |= ADIN1300_GE_RGMII_RXID_EN;
  234. val = adin_get_reg_value(phydev, "adi,rx-internal-delay-ps",
  235. adin_rgmii_delays,
  236. ADIN1300_RGMII_2_00_NS);
  237. reg &= ~ADIN1300_GE_RGMII_RX_MSK;
  238. reg |= ADIN1300_GE_RGMII_RX_SEL(val);
  239. } else {
  240. reg &= ~ADIN1300_GE_RGMII_RXID_EN;
  241. }
  242. if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
  243. phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) {
  244. reg |= ADIN1300_GE_RGMII_TXID_EN;
  245. val = adin_get_reg_value(phydev, "adi,tx-internal-delay-ps",
  246. adin_rgmii_delays,
  247. ADIN1300_RGMII_2_00_NS);
  248. reg &= ~ADIN1300_GE_RGMII_GTX_MSK;
  249. reg |= ADIN1300_GE_RGMII_GTX_SEL(val);
  250. } else {
  251. reg &= ~ADIN1300_GE_RGMII_TXID_EN;
  252. }
  253. return phy_write_mmd(phydev, MDIO_MMD_VEND1,
  254. ADIN1300_GE_RGMII_CFG_REG, reg);
  255. }
  256. static int adin_config_rmii_mode(struct phy_device *phydev)
  257. {
  258. u32 val;
  259. int reg;
  260. if (phydev->interface != PHY_INTERFACE_MODE_RMII)
  261. return phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
  262. ADIN1300_GE_RMII_CFG_REG,
  263. ADIN1300_GE_RMII_EN);
  264. reg = phy_read_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_GE_RMII_CFG_REG);
  265. if (reg < 0)
  266. return reg;
  267. reg |= ADIN1300_GE_RMII_EN;
  268. val = adin_get_reg_value(phydev, "adi,fifo-depth-bits",
  269. adin_rmii_fifo_depths,
  270. ADIN1300_RMII_8_BITS);
  271. reg &= ~ADIN1300_GE_RMII_FIFO_DEPTH_MSK;
  272. reg |= ADIN1300_GE_RMII_FIFO_DEPTH_SEL(val);
  273. return phy_write_mmd(phydev, MDIO_MMD_VEND1,
  274. ADIN1300_GE_RMII_CFG_REG, reg);
  275. }
  276. static int adin_get_downshift(struct phy_device *phydev, u8 *data)
  277. {
  278. int val, cnt, enable;
  279. val = phy_read(phydev, ADIN1300_PHY_CTRL2);
  280. if (val < 0)
  281. return val;
  282. cnt = phy_read(phydev, ADIN1300_PHY_CTRL3);
  283. if (cnt < 0)
  284. return cnt;
  285. enable = FIELD_GET(ADIN1300_DOWNSPEEDS_EN, val);
  286. cnt = FIELD_GET(ADIN1300_DOWNSPEED_RETRIES_MSK, cnt);
  287. *data = (enable && cnt) ? cnt : DOWNSHIFT_DEV_DISABLE;
  288. return 0;
  289. }
  290. static int adin_set_downshift(struct phy_device *phydev, u8 cnt)
  291. {
  292. u16 val;
  293. int rc;
  294. if (cnt == DOWNSHIFT_DEV_DISABLE)
  295. return phy_clear_bits(phydev, ADIN1300_PHY_CTRL2,
  296. ADIN1300_DOWNSPEEDS_EN);
  297. if (cnt > 7)
  298. return -E2BIG;
  299. val = FIELD_PREP(ADIN1300_DOWNSPEED_RETRIES_MSK, cnt);
  300. rc = phy_modify(phydev, ADIN1300_PHY_CTRL3,
  301. ADIN1300_DOWNSPEED_RETRIES_MSK,
  302. val);
  303. if (rc < 0)
  304. return rc;
  305. return phy_set_bits(phydev, ADIN1300_PHY_CTRL2,
  306. ADIN1300_DOWNSPEEDS_EN);
  307. }
  308. static int adin_get_edpd(struct phy_device *phydev, u16 *tx_interval)
  309. {
  310. int val;
  311. val = phy_read(phydev, ADIN1300_PHY_CTRL_STATUS2);
  312. if (val < 0)
  313. return val;
  314. if (ADIN1300_NRG_PD_EN & val) {
  315. if (val & ADIN1300_NRG_PD_TX_EN)
  316. /* default is 1 second */
  317. *tx_interval = ETHTOOL_PHY_EDPD_DFLT_TX_MSECS;
  318. else
  319. *tx_interval = ETHTOOL_PHY_EDPD_NO_TX;
  320. } else {
  321. *tx_interval = ETHTOOL_PHY_EDPD_DISABLE;
  322. }
  323. return 0;
  324. }
  325. static int adin_set_edpd(struct phy_device *phydev, u16 tx_interval)
  326. {
  327. u16 val;
  328. if (tx_interval == ETHTOOL_PHY_EDPD_DISABLE)
  329. return phy_clear_bits(phydev, ADIN1300_PHY_CTRL_STATUS2,
  330. (ADIN1300_NRG_PD_EN | ADIN1300_NRG_PD_TX_EN));
  331. val = ADIN1300_NRG_PD_EN;
  332. switch (tx_interval) {
  333. case 1000: /* 1 second */
  334. fallthrough;
  335. case ETHTOOL_PHY_EDPD_DFLT_TX_MSECS:
  336. val |= ADIN1300_NRG_PD_TX_EN;
  337. fallthrough;
  338. case ETHTOOL_PHY_EDPD_NO_TX:
  339. break;
  340. default:
  341. return -EINVAL;
  342. }
  343. return phy_modify(phydev, ADIN1300_PHY_CTRL_STATUS2,
  344. (ADIN1300_NRG_PD_EN | ADIN1300_NRG_PD_TX_EN),
  345. val);
  346. }
  347. static int adin_get_tunable(struct phy_device *phydev,
  348. struct ethtool_tunable *tuna, void *data)
  349. {
  350. switch (tuna->id) {
  351. case ETHTOOL_PHY_DOWNSHIFT:
  352. return adin_get_downshift(phydev, data);
  353. case ETHTOOL_PHY_EDPD:
  354. return adin_get_edpd(phydev, data);
  355. default:
  356. return -EOPNOTSUPP;
  357. }
  358. }
  359. static int adin_set_tunable(struct phy_device *phydev,
  360. struct ethtool_tunable *tuna, const void *data)
  361. {
  362. switch (tuna->id) {
  363. case ETHTOOL_PHY_DOWNSHIFT:
  364. return adin_set_downshift(phydev, *(const u8 *)data);
  365. case ETHTOOL_PHY_EDPD:
  366. return adin_set_edpd(phydev, *(const u16 *)data);
  367. default:
  368. return -EOPNOTSUPP;
  369. }
  370. }
  371. static int adin_config_clk_out(struct phy_device *phydev)
  372. {
  373. struct device *dev = &phydev->mdio.dev;
  374. const char *val = NULL;
  375. u8 sel = 0;
  376. device_property_read_string(dev, "adi,phy-output-clock", &val);
  377. if (!val) {
  378. /* property not present, do not enable GP_CLK pin */
  379. } else if (strcmp(val, "25mhz-reference") == 0) {
  380. sel |= ADIN1300_GE_CLK_CFG_25;
  381. } else if (strcmp(val, "125mhz-free-running") == 0) {
  382. sel |= ADIN1300_GE_CLK_CFG_FREE_125;
  383. } else if (strcmp(val, "adaptive-free-running") == 0) {
  384. sel |= ADIN1300_GE_CLK_CFG_HRT_FREE;
  385. } else {
  386. phydev_err(phydev, "invalid adi,phy-output-clock\n");
  387. return -EINVAL;
  388. }
  389. if (device_property_read_bool(dev, "adi,phy-output-reference-clock"))
  390. sel |= ADIN1300_GE_CLK_CFG_REF_EN;
  391. return phy_modify_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_GE_CLK_CFG_REG,
  392. ADIN1300_GE_CLK_CFG_MASK, sel);
  393. }
  394. static int adin_config_init(struct phy_device *phydev)
  395. {
  396. int rc;
  397. phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
  398. rc = adin_config_rgmii_mode(phydev);
  399. if (rc < 0)
  400. return rc;
  401. rc = adin_config_rmii_mode(phydev);
  402. if (rc < 0)
  403. return rc;
  404. rc = adin_set_downshift(phydev, 4);
  405. if (rc < 0)
  406. return rc;
  407. rc = adin_set_edpd(phydev, ETHTOOL_PHY_EDPD_DFLT_TX_MSECS);
  408. if (rc < 0)
  409. return rc;
  410. rc = adin_config_clk_out(phydev);
  411. if (rc < 0)
  412. return rc;
  413. phydev_dbg(phydev, "PHY is using mode '%s'\n",
  414. phy_modes(phydev->interface));
  415. return 0;
  416. }
  417. static int adin_phy_ack_intr(struct phy_device *phydev)
  418. {
  419. /* Clear pending interrupts */
  420. int rc = phy_read(phydev, ADIN1300_INT_STATUS_REG);
  421. return rc < 0 ? rc : 0;
  422. }
  423. static int adin_phy_config_intr(struct phy_device *phydev)
  424. {
  425. int err;
  426. if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
  427. err = adin_phy_ack_intr(phydev);
  428. if (err)
  429. return err;
  430. err = phy_set_bits(phydev, ADIN1300_INT_MASK_REG,
  431. ADIN1300_INT_MASK_EN);
  432. } else {
  433. err = phy_clear_bits(phydev, ADIN1300_INT_MASK_REG,
  434. ADIN1300_INT_MASK_EN);
  435. if (err)
  436. return err;
  437. err = adin_phy_ack_intr(phydev);
  438. }
  439. return err;
  440. }
  441. static irqreturn_t adin_phy_handle_interrupt(struct phy_device *phydev)
  442. {
  443. int irq_status;
  444. irq_status = phy_read(phydev, ADIN1300_INT_STATUS_REG);
  445. if (irq_status < 0) {
  446. phy_error(phydev);
  447. return IRQ_NONE;
  448. }
  449. if (!(irq_status & ADIN1300_INT_LINK_STAT_CHNG_EN))
  450. return IRQ_NONE;
  451. phy_trigger_machine(phydev);
  452. return IRQ_HANDLED;
  453. }
  454. static int adin_cl45_to_adin_reg(struct phy_device *phydev, int devad,
  455. u16 cl45_regnum)
  456. {
  457. const struct adin_clause45_mmd_map *m;
  458. int i;
  459. if (devad == MDIO_MMD_VEND1)
  460. return cl45_regnum;
  461. for (i = 0; i < ARRAY_SIZE(adin_clause45_mmd_map); i++) {
  462. m = &adin_clause45_mmd_map[i];
  463. if (m->devad == devad && m->cl45_regnum == cl45_regnum)
  464. return m->adin_regnum;
  465. }
  466. phydev_err(phydev,
  467. "No translation available for devad: %d reg: %04x\n",
  468. devad, cl45_regnum);
  469. return -EINVAL;
  470. }
  471. static int adin_read_mmd(struct phy_device *phydev, int devad, u16 regnum)
  472. {
  473. struct mii_bus *bus = phydev->mdio.bus;
  474. int phy_addr = phydev->mdio.addr;
  475. int adin_regnum;
  476. int err;
  477. adin_regnum = adin_cl45_to_adin_reg(phydev, devad, regnum);
  478. if (adin_regnum < 0)
  479. return adin_regnum;
  480. err = __mdiobus_write(bus, phy_addr, ADIN1300_MII_EXT_REG_PTR,
  481. adin_regnum);
  482. if (err)
  483. return err;
  484. return __mdiobus_read(bus, phy_addr, ADIN1300_MII_EXT_REG_DATA);
  485. }
  486. static int adin_write_mmd(struct phy_device *phydev, int devad, u16 regnum,
  487. u16 val)
  488. {
  489. struct mii_bus *bus = phydev->mdio.bus;
  490. int phy_addr = phydev->mdio.addr;
  491. int adin_regnum;
  492. int err;
  493. adin_regnum = adin_cl45_to_adin_reg(phydev, devad, regnum);
  494. if (adin_regnum < 0)
  495. return adin_regnum;
  496. err = __mdiobus_write(bus, phy_addr, ADIN1300_MII_EXT_REG_PTR,
  497. adin_regnum);
  498. if (err)
  499. return err;
  500. return __mdiobus_write(bus, phy_addr, ADIN1300_MII_EXT_REG_DATA, val);
  501. }
  502. static int adin_config_mdix(struct phy_device *phydev)
  503. {
  504. bool auto_en, mdix_en;
  505. int reg;
  506. mdix_en = false;
  507. auto_en = false;
  508. switch (phydev->mdix_ctrl) {
  509. case ETH_TP_MDI:
  510. break;
  511. case ETH_TP_MDI_X:
  512. mdix_en = true;
  513. break;
  514. case ETH_TP_MDI_AUTO:
  515. auto_en = true;
  516. break;
  517. default:
  518. return -EINVAL;
  519. }
  520. reg = phy_read(phydev, ADIN1300_PHY_CTRL1);
  521. if (reg < 0)
  522. return reg;
  523. if (mdix_en)
  524. reg |= ADIN1300_MAN_MDIX_EN;
  525. else
  526. reg &= ~ADIN1300_MAN_MDIX_EN;
  527. if (auto_en)
  528. reg |= ADIN1300_AUTO_MDI_EN;
  529. else
  530. reg &= ~ADIN1300_AUTO_MDI_EN;
  531. return phy_write(phydev, ADIN1300_PHY_CTRL1, reg);
  532. }
  533. static int adin_config_aneg(struct phy_device *phydev)
  534. {
  535. int ret;
  536. ret = phy_clear_bits(phydev, ADIN1300_PHY_CTRL1, ADIN1300_DIAG_CLK_EN);
  537. if (ret < 0)
  538. return ret;
  539. ret = phy_set_bits(phydev, ADIN1300_PHY_CTRL3, ADIN1300_LINKING_EN);
  540. if (ret < 0)
  541. return ret;
  542. ret = adin_config_mdix(phydev);
  543. if (ret)
  544. return ret;
  545. return genphy_config_aneg(phydev);
  546. }
  547. static int adin_mdix_update(struct phy_device *phydev)
  548. {
  549. bool auto_en, mdix_en;
  550. bool swapped;
  551. int reg;
  552. reg = phy_read(phydev, ADIN1300_PHY_CTRL1);
  553. if (reg < 0)
  554. return reg;
  555. auto_en = !!(reg & ADIN1300_AUTO_MDI_EN);
  556. mdix_en = !!(reg & ADIN1300_MAN_MDIX_EN);
  557. /* If MDI/MDIX is forced, just read it from the control reg */
  558. if (!auto_en) {
  559. if (mdix_en)
  560. phydev->mdix = ETH_TP_MDI_X;
  561. else
  562. phydev->mdix = ETH_TP_MDI;
  563. return 0;
  564. }
  565. /**
  566. * Otherwise, we need to deduce it from the PHY status2 reg.
  567. * When Auto-MDI is enabled, the ADIN1300_MAN_MDIX_EN bit implies
  568. * a preference for MDIX when it is set.
  569. */
  570. reg = phy_read(phydev, ADIN1300_PHY_STATUS1);
  571. if (reg < 0)
  572. return reg;
  573. swapped = !!(reg & ADIN1300_PAIR_01_SWAP);
  574. if (mdix_en != swapped)
  575. phydev->mdix = ETH_TP_MDI_X;
  576. else
  577. phydev->mdix = ETH_TP_MDI;
  578. return 0;
  579. }
  580. static int adin_read_status(struct phy_device *phydev)
  581. {
  582. int ret;
  583. ret = adin_mdix_update(phydev);
  584. if (ret < 0)
  585. return ret;
  586. return genphy_read_status(phydev);
  587. }
  588. static int adin_soft_reset(struct phy_device *phydev)
  589. {
  590. int rc;
  591. /* The reset bit is self-clearing, set it and wait */
  592. rc = phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
  593. ADIN1300_GE_SOFT_RESET_REG,
  594. ADIN1300_GE_SOFT_RESET);
  595. if (rc < 0)
  596. return rc;
  597. msleep(20);
  598. /* If we get a read error something may be wrong */
  599. rc = phy_read_mmd(phydev, MDIO_MMD_VEND1,
  600. ADIN1300_GE_SOFT_RESET_REG);
  601. return rc < 0 ? rc : 0;
  602. }
  603. static int adin_get_sset_count(struct phy_device *phydev)
  604. {
  605. return ARRAY_SIZE(adin_hw_stats);
  606. }
  607. static void adin_get_strings(struct phy_device *phydev, u8 *data)
  608. {
  609. int i;
  610. for (i = 0; i < ARRAY_SIZE(adin_hw_stats); i++) {
  611. strscpy(&data[i * ETH_GSTRING_LEN],
  612. adin_hw_stats[i].string, ETH_GSTRING_LEN);
  613. }
  614. }
  615. static int adin_read_mmd_stat_regs(struct phy_device *phydev,
  616. const struct adin_hw_stat *stat,
  617. u32 *val)
  618. {
  619. int ret;
  620. ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, stat->reg1);
  621. if (ret < 0)
  622. return ret;
  623. *val = (ret & 0xffff);
  624. if (stat->reg2 == 0)
  625. return 0;
  626. ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, stat->reg2);
  627. if (ret < 0)
  628. return ret;
  629. *val <<= 16;
  630. *val |= (ret & 0xffff);
  631. return 0;
  632. }
  633. static u64 adin_get_stat(struct phy_device *phydev, int i)
  634. {
  635. const struct adin_hw_stat *stat = &adin_hw_stats[i];
  636. struct adin_priv *priv = phydev->priv;
  637. u32 val;
  638. int ret;
  639. if (stat->reg1 > 0x1f) {
  640. ret = adin_read_mmd_stat_regs(phydev, stat, &val);
  641. if (ret < 0)
  642. return (u64)(~0);
  643. } else {
  644. ret = phy_read(phydev, stat->reg1);
  645. if (ret < 0)
  646. return (u64)(~0);
  647. val = (ret & 0xffff);
  648. }
  649. priv->stats[i] += val;
  650. return priv->stats[i];
  651. }
  652. static void adin_get_stats(struct phy_device *phydev,
  653. struct ethtool_stats *stats, u64 *data)
  654. {
  655. int i, rc;
  656. /* latch copies of all the frame-checker counters */
  657. rc = phy_read(phydev, ADIN1300_RX_ERR_CNT);
  658. if (rc < 0)
  659. return;
  660. for (i = 0; i < ARRAY_SIZE(adin_hw_stats); i++)
  661. data[i] = adin_get_stat(phydev, i);
  662. }
  663. static int adin_probe(struct phy_device *phydev)
  664. {
  665. struct device *dev = &phydev->mdio.dev;
  666. struct adin_priv *priv;
  667. priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
  668. if (!priv)
  669. return -ENOMEM;
  670. phydev->priv = priv;
  671. return 0;
  672. }
  673. static int adin_cable_test_start(struct phy_device *phydev)
  674. {
  675. int ret;
  676. ret = phy_clear_bits(phydev, ADIN1300_PHY_CTRL3, ADIN1300_LINKING_EN);
  677. if (ret < 0)
  678. return ret;
  679. ret = phy_clear_bits(phydev, ADIN1300_PHY_CTRL1, ADIN1300_DIAG_CLK_EN);
  680. if (ret < 0)
  681. return ret;
  682. /* wait a bit for the clock to stabilize */
  683. msleep(50);
  684. return phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_CDIAG_RUN,
  685. ADIN1300_CDIAG_RUN_EN);
  686. }
  687. static int adin_cable_test_report_trans(int result)
  688. {
  689. int mask;
  690. if (result & ADIN1300_CDIAG_RSLT_GOOD)
  691. return ETHTOOL_A_CABLE_RESULT_CODE_OK;
  692. if (result & ADIN1300_CDIAG_RSLT_OPEN)
  693. return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
  694. /* short with other pairs */
  695. mask = ADIN1300_CDIAG_RSLT_XSHRT3 |
  696. ADIN1300_CDIAG_RSLT_XSHRT2 |
  697. ADIN1300_CDIAG_RSLT_XSHRT1;
  698. if (result & mask)
  699. return ETHTOOL_A_CABLE_RESULT_CODE_CROSS_SHORT;
  700. if (result & ADIN1300_CDIAG_RSLT_SHRT)
  701. return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
  702. return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
  703. }
  704. static int adin_cable_test_report_pair(struct phy_device *phydev,
  705. unsigned int pair)
  706. {
  707. int fault_rslt;
  708. int ret;
  709. ret = phy_read_mmd(phydev, MDIO_MMD_VEND1,
  710. ADIN1300_CDIAG_DTLD_RSLTS(pair));
  711. if (ret < 0)
  712. return ret;
  713. fault_rslt = adin_cable_test_report_trans(ret);
  714. ret = ethnl_cable_test_result(phydev, pair, fault_rslt);
  715. if (ret < 0)
  716. return ret;
  717. ret = phy_read_mmd(phydev, MDIO_MMD_VEND1,
  718. ADIN1300_CDIAG_FLT_DIST(pair));
  719. if (ret < 0)
  720. return ret;
  721. switch (fault_rslt) {
  722. case ETHTOOL_A_CABLE_RESULT_CODE_OPEN:
  723. case ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT:
  724. case ETHTOOL_A_CABLE_RESULT_CODE_CROSS_SHORT:
  725. return ethnl_cable_test_fault_length(phydev, pair, ret * 100);
  726. default:
  727. return 0;
  728. }
  729. }
  730. static int adin_cable_test_report(struct phy_device *phydev)
  731. {
  732. unsigned int pair;
  733. int ret;
  734. for (pair = ETHTOOL_A_CABLE_PAIR_A; pair <= ETHTOOL_A_CABLE_PAIR_D; pair++) {
  735. ret = adin_cable_test_report_pair(phydev, pair);
  736. if (ret < 0)
  737. return ret;
  738. }
  739. return 0;
  740. }
  741. static int adin_cable_test_get_status(struct phy_device *phydev,
  742. bool *finished)
  743. {
  744. int ret;
  745. *finished = false;
  746. ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_CDIAG_RUN);
  747. if (ret < 0)
  748. return ret;
  749. if (ret & ADIN1300_CDIAG_RUN_EN)
  750. return 0;
  751. *finished = true;
  752. return adin_cable_test_report(phydev);
  753. }
  754. static struct phy_driver adin_driver[] = {
  755. {
  756. PHY_ID_MATCH_MODEL(PHY_ID_ADIN1200),
  757. .name = "ADIN1200",
  758. .flags = PHY_POLL_CABLE_TEST,
  759. .probe = adin_probe,
  760. .config_init = adin_config_init,
  761. .soft_reset = adin_soft_reset,
  762. .config_aneg = adin_config_aneg,
  763. .read_status = adin_read_status,
  764. .get_tunable = adin_get_tunable,
  765. .set_tunable = adin_set_tunable,
  766. .config_intr = adin_phy_config_intr,
  767. .handle_interrupt = adin_phy_handle_interrupt,
  768. .get_sset_count = adin_get_sset_count,
  769. .get_strings = adin_get_strings,
  770. .get_stats = adin_get_stats,
  771. .resume = genphy_resume,
  772. .suspend = genphy_suspend,
  773. .read_mmd = adin_read_mmd,
  774. .write_mmd = adin_write_mmd,
  775. .cable_test_start = adin_cable_test_start,
  776. .cable_test_get_status = adin_cable_test_get_status,
  777. },
  778. {
  779. PHY_ID_MATCH_MODEL(PHY_ID_ADIN1300),
  780. .name = "ADIN1300",
  781. .flags = PHY_POLL_CABLE_TEST,
  782. .probe = adin_probe,
  783. .config_init = adin_config_init,
  784. .soft_reset = adin_soft_reset,
  785. .config_aneg = adin_config_aneg,
  786. .read_status = adin_read_status,
  787. .get_tunable = adin_get_tunable,
  788. .set_tunable = adin_set_tunable,
  789. .config_intr = adin_phy_config_intr,
  790. .handle_interrupt = adin_phy_handle_interrupt,
  791. .get_sset_count = adin_get_sset_count,
  792. .get_strings = adin_get_strings,
  793. .get_stats = adin_get_stats,
  794. .resume = genphy_resume,
  795. .suspend = genphy_suspend,
  796. .read_mmd = adin_read_mmd,
  797. .write_mmd = adin_write_mmd,
  798. .cable_test_start = adin_cable_test_start,
  799. .cable_test_get_status = adin_cable_test_get_status,
  800. },
  801. };
  802. module_phy_driver(adin_driver);
  803. static struct mdio_device_id __maybe_unused adin_tbl[] = {
  804. { PHY_ID_MATCH_MODEL(PHY_ID_ADIN1200) },
  805. { PHY_ID_MATCH_MODEL(PHY_ID_ADIN1300) },
  806. { }
  807. };
  808. MODULE_DEVICE_TABLE(mdio, adin_tbl);
  809. MODULE_DESCRIPTION("Analog Devices Industrial Ethernet PHY driver");
  810. MODULE_LICENSE("GPL");