sungem.c 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
  3. * sungem.c: Sun GEM ethernet driver.
  4. *
  5. * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller ([email protected])
  6. *
  7. * Support for Apple GMAC and assorted PHYs, WOL, Power Management
  8. * (C) 2001,2002,2003 Benjamin Herrenscmidt ([email protected])
  9. * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  10. *
  11. * NAPI and NETPOLL support
  12. * (C) 2004 by Eric Lemoine ([email protected])
  13. *
  14. */
  15. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16. #include <linux/module.h>
  17. #include <linux/kernel.h>
  18. #include <linux/types.h>
  19. #include <linux/fcntl.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/ioport.h>
  22. #include <linux/in.h>
  23. #include <linux/sched.h>
  24. #include <linux/string.h>
  25. #include <linux/delay.h>
  26. #include <linux/errno.h>
  27. #include <linux/pci.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/mii.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/crc32.h>
  35. #include <linux/random.h>
  36. #include <linux/workqueue.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/bitops.h>
  39. #include <linux/mm.h>
  40. #include <linux/gfp.h>
  41. #include <asm/io.h>
  42. #include <asm/byteorder.h>
  43. #include <linux/uaccess.h>
  44. #include <asm/irq.h>
  45. #ifdef CONFIG_SPARC
  46. #include <asm/idprom.h>
  47. #include <asm/prom.h>
  48. #endif
  49. #ifdef CONFIG_PPC_PMAC
  50. #include <asm/machdep.h>
  51. #include <asm/pmac_feature.h>
  52. #endif
  53. #include <linux/sungem_phy.h>
  54. #include "sungem.h"
  55. #define STRIP_FCS
  56. #define DEFAULT_MSG (NETIF_MSG_DRV | \
  57. NETIF_MSG_PROBE | \
  58. NETIF_MSG_LINK)
  59. #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  60. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  61. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  62. SUPPORTED_Pause | SUPPORTED_Autoneg)
  63. #define DRV_NAME "sungem"
  64. #define DRV_VERSION "1.0"
  65. #define DRV_AUTHOR "David S. Miller <[email protected]>"
  66. static char version[] =
  67. DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
  68. MODULE_AUTHOR(DRV_AUTHOR);
  69. MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  70. MODULE_LICENSE("GPL");
  71. #define GEM_MODULE_NAME "gem"
  72. static const struct pci_device_id gem_pci_tbl[] = {
  73. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  74. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  75. /* These models only differ from the original GEM in
  76. * that their tx/rx fifos are of a different size and
  77. * they only support 10/100 speeds. -DaveM
  78. *
  79. * Apple's GMAC does support gigabit on machines with
  80. * the BCM54xx PHYs. -BenH
  81. */
  82. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  83. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  84. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
  85. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  86. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
  87. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  88. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
  89. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  90. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
  91. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  92. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
  93. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  94. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
  95. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  96. {0, }
  97. };
  98. MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
  99. static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
  100. {
  101. u32 cmd;
  102. int limit = 10000;
  103. cmd = (1 << 30);
  104. cmd |= (2 << 28);
  105. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  106. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  107. cmd |= (MIF_FRAME_TAMSB);
  108. writel(cmd, gp->regs + MIF_FRAME);
  109. while (--limit) {
  110. cmd = readl(gp->regs + MIF_FRAME);
  111. if (cmd & MIF_FRAME_TALSB)
  112. break;
  113. udelay(10);
  114. }
  115. if (!limit)
  116. cmd = 0xffff;
  117. return cmd & MIF_FRAME_DATA;
  118. }
  119. static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
  120. {
  121. struct gem *gp = netdev_priv(dev);
  122. return __sungem_phy_read(gp, mii_id, reg);
  123. }
  124. static inline u16 sungem_phy_read(struct gem *gp, int reg)
  125. {
  126. return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
  127. }
  128. static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
  129. {
  130. u32 cmd;
  131. int limit = 10000;
  132. cmd = (1 << 30);
  133. cmd |= (1 << 28);
  134. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  135. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  136. cmd |= (MIF_FRAME_TAMSB);
  137. cmd |= (val & MIF_FRAME_DATA);
  138. writel(cmd, gp->regs + MIF_FRAME);
  139. while (limit--) {
  140. cmd = readl(gp->regs + MIF_FRAME);
  141. if (cmd & MIF_FRAME_TALSB)
  142. break;
  143. udelay(10);
  144. }
  145. }
  146. static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
  147. {
  148. struct gem *gp = netdev_priv(dev);
  149. __sungem_phy_write(gp, mii_id, reg, val & 0xffff);
  150. }
  151. static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
  152. {
  153. __sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
  154. }
  155. static inline void gem_enable_ints(struct gem *gp)
  156. {
  157. /* Enable all interrupts but TXDONE */
  158. writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  159. }
  160. static inline void gem_disable_ints(struct gem *gp)
  161. {
  162. /* Disable all interrupts, including TXDONE */
  163. writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  164. (void)readl(gp->regs + GREG_IMASK); /* write posting */
  165. }
  166. static void gem_get_cell(struct gem *gp)
  167. {
  168. BUG_ON(gp->cell_enabled < 0);
  169. gp->cell_enabled++;
  170. #ifdef CONFIG_PPC_PMAC
  171. if (gp->cell_enabled == 1) {
  172. mb();
  173. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
  174. udelay(10);
  175. }
  176. #endif /* CONFIG_PPC_PMAC */
  177. }
  178. /* Turn off the chip's clock */
  179. static void gem_put_cell(struct gem *gp)
  180. {
  181. BUG_ON(gp->cell_enabled <= 0);
  182. gp->cell_enabled--;
  183. #ifdef CONFIG_PPC_PMAC
  184. if (gp->cell_enabled == 0) {
  185. mb();
  186. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
  187. udelay(10);
  188. }
  189. #endif /* CONFIG_PPC_PMAC */
  190. }
  191. static inline void gem_netif_stop(struct gem *gp)
  192. {
  193. netif_trans_update(gp->dev); /* prevent tx timeout */
  194. napi_disable(&gp->napi);
  195. netif_tx_disable(gp->dev);
  196. }
  197. static inline void gem_netif_start(struct gem *gp)
  198. {
  199. /* NOTE: unconditional netif_wake_queue is only
  200. * appropriate so long as all callers are assured to
  201. * have free tx slots.
  202. */
  203. netif_wake_queue(gp->dev);
  204. napi_enable(&gp->napi);
  205. }
  206. static void gem_schedule_reset(struct gem *gp)
  207. {
  208. gp->reset_task_pending = 1;
  209. schedule_work(&gp->reset_task);
  210. }
  211. static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
  212. {
  213. if (netif_msg_intr(gp))
  214. printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
  215. }
  216. static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  217. {
  218. u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
  219. u32 pcs_miistat;
  220. if (netif_msg_intr(gp))
  221. printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
  222. gp->dev->name, pcs_istat);
  223. if (!(pcs_istat & PCS_ISTAT_LSC)) {
  224. netdev_err(dev, "PCS irq but no link status change???\n");
  225. return 0;
  226. }
  227. /* The link status bit latches on zero, so you must
  228. * read it twice in such a case to see a transition
  229. * to the link being up.
  230. */
  231. pcs_miistat = readl(gp->regs + PCS_MIISTAT);
  232. if (!(pcs_miistat & PCS_MIISTAT_LS))
  233. pcs_miistat |=
  234. (readl(gp->regs + PCS_MIISTAT) &
  235. PCS_MIISTAT_LS);
  236. if (pcs_miistat & PCS_MIISTAT_ANC) {
  237. /* The remote-fault indication is only valid
  238. * when autoneg has completed.
  239. */
  240. if (pcs_miistat & PCS_MIISTAT_RF)
  241. netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
  242. else
  243. netdev_info(dev, "PCS AutoNEG complete\n");
  244. }
  245. if (pcs_miistat & PCS_MIISTAT_LS) {
  246. netdev_info(dev, "PCS link is now up\n");
  247. netif_carrier_on(gp->dev);
  248. } else {
  249. netdev_info(dev, "PCS link is now down\n");
  250. netif_carrier_off(gp->dev);
  251. /* If this happens and the link timer is not running,
  252. * reset so we re-negotiate.
  253. */
  254. if (!timer_pending(&gp->link_timer))
  255. return 1;
  256. }
  257. return 0;
  258. }
  259. static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  260. {
  261. u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
  262. if (netif_msg_intr(gp))
  263. printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
  264. gp->dev->name, txmac_stat);
  265. /* Defer timer expiration is quite normal,
  266. * don't even log the event.
  267. */
  268. if ((txmac_stat & MAC_TXSTAT_DTE) &&
  269. !(txmac_stat & ~MAC_TXSTAT_DTE))
  270. return 0;
  271. if (txmac_stat & MAC_TXSTAT_URUN) {
  272. netdev_err(dev, "TX MAC xmit underrun\n");
  273. dev->stats.tx_fifo_errors++;
  274. }
  275. if (txmac_stat & MAC_TXSTAT_MPE) {
  276. netdev_err(dev, "TX MAC max packet size error\n");
  277. dev->stats.tx_errors++;
  278. }
  279. /* The rest are all cases of one of the 16-bit TX
  280. * counters expiring.
  281. */
  282. if (txmac_stat & MAC_TXSTAT_NCE)
  283. dev->stats.collisions += 0x10000;
  284. if (txmac_stat & MAC_TXSTAT_ECE) {
  285. dev->stats.tx_aborted_errors += 0x10000;
  286. dev->stats.collisions += 0x10000;
  287. }
  288. if (txmac_stat & MAC_TXSTAT_LCE) {
  289. dev->stats.tx_aborted_errors += 0x10000;
  290. dev->stats.collisions += 0x10000;
  291. }
  292. /* We do not keep track of MAC_TXSTAT_FCE and
  293. * MAC_TXSTAT_PCE events.
  294. */
  295. return 0;
  296. }
  297. /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
  298. * so we do the following.
  299. *
  300. * If any part of the reset goes wrong, we return 1 and that causes the
  301. * whole chip to be reset.
  302. */
  303. static int gem_rxmac_reset(struct gem *gp)
  304. {
  305. struct net_device *dev = gp->dev;
  306. int limit, i;
  307. u64 desc_dma;
  308. u32 val;
  309. /* First, reset & disable MAC RX. */
  310. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  311. for (limit = 0; limit < 5000; limit++) {
  312. if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
  313. break;
  314. udelay(10);
  315. }
  316. if (limit == 5000) {
  317. netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
  318. return 1;
  319. }
  320. writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
  321. gp->regs + MAC_RXCFG);
  322. for (limit = 0; limit < 5000; limit++) {
  323. if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
  324. break;
  325. udelay(10);
  326. }
  327. if (limit == 5000) {
  328. netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
  329. return 1;
  330. }
  331. /* Second, disable RX DMA. */
  332. writel(0, gp->regs + RXDMA_CFG);
  333. for (limit = 0; limit < 5000; limit++) {
  334. if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
  335. break;
  336. udelay(10);
  337. }
  338. if (limit == 5000) {
  339. netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
  340. return 1;
  341. }
  342. mdelay(5);
  343. /* Execute RX reset command. */
  344. writel(gp->swrst_base | GREG_SWRST_RXRST,
  345. gp->regs + GREG_SWRST);
  346. for (limit = 0; limit < 5000; limit++) {
  347. if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
  348. break;
  349. udelay(10);
  350. }
  351. if (limit == 5000) {
  352. netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
  353. return 1;
  354. }
  355. /* Refresh the RX ring. */
  356. for (i = 0; i < RX_RING_SIZE; i++) {
  357. struct gem_rxd *rxd = &gp->init_block->rxd[i];
  358. if (gp->rx_skbs[i] == NULL) {
  359. netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
  360. return 1;
  361. }
  362. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  363. }
  364. gp->rx_new = gp->rx_old = 0;
  365. /* Now we must reprogram the rest of RX unit. */
  366. desc_dma = (u64) gp->gblock_dvma;
  367. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  368. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  369. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  370. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  371. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  372. (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
  373. writel(val, gp->regs + RXDMA_CFG);
  374. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  375. writel(((5 & RXDMA_BLANK_IPKTS) |
  376. ((8 << 12) & RXDMA_BLANK_ITIME)),
  377. gp->regs + RXDMA_BLANK);
  378. else
  379. writel(((5 & RXDMA_BLANK_IPKTS) |
  380. ((4 << 12) & RXDMA_BLANK_ITIME)),
  381. gp->regs + RXDMA_BLANK);
  382. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  383. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  384. writel(val, gp->regs + RXDMA_PTHRESH);
  385. val = readl(gp->regs + RXDMA_CFG);
  386. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  387. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  388. val = readl(gp->regs + MAC_RXCFG);
  389. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  390. return 0;
  391. }
  392. static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  393. {
  394. u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
  395. int ret = 0;
  396. if (netif_msg_intr(gp))
  397. printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
  398. gp->dev->name, rxmac_stat);
  399. if (rxmac_stat & MAC_RXSTAT_OFLW) {
  400. u32 smac = readl(gp->regs + MAC_SMACHINE);
  401. netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
  402. dev->stats.rx_over_errors++;
  403. dev->stats.rx_fifo_errors++;
  404. ret = gem_rxmac_reset(gp);
  405. }
  406. if (rxmac_stat & MAC_RXSTAT_ACE)
  407. dev->stats.rx_frame_errors += 0x10000;
  408. if (rxmac_stat & MAC_RXSTAT_CCE)
  409. dev->stats.rx_crc_errors += 0x10000;
  410. if (rxmac_stat & MAC_RXSTAT_LCE)
  411. dev->stats.rx_length_errors += 0x10000;
  412. /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
  413. * events.
  414. */
  415. return ret;
  416. }
  417. static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  418. {
  419. u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
  420. if (netif_msg_intr(gp))
  421. printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
  422. gp->dev->name, mac_cstat);
  423. /* This interrupt is just for pause frame and pause
  424. * tracking. It is useful for diagnostics and debug
  425. * but probably by default we will mask these events.
  426. */
  427. if (mac_cstat & MAC_CSTAT_PS)
  428. gp->pause_entered++;
  429. if (mac_cstat & MAC_CSTAT_PRCV)
  430. gp->pause_last_time_recvd = (mac_cstat >> 16);
  431. return 0;
  432. }
  433. static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  434. {
  435. u32 mif_status = readl(gp->regs + MIF_STATUS);
  436. u32 reg_val, changed_bits;
  437. reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
  438. changed_bits = (mif_status & MIF_STATUS_STAT);
  439. gem_handle_mif_event(gp, reg_val, changed_bits);
  440. return 0;
  441. }
  442. static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  443. {
  444. u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
  445. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  446. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  447. netdev_err(dev, "PCI error [%04x]", pci_estat);
  448. if (pci_estat & GREG_PCIESTAT_BADACK)
  449. pr_cont(" <No ACK64# during ABS64 cycle>");
  450. if (pci_estat & GREG_PCIESTAT_DTRTO)
  451. pr_cont(" <Delayed transaction timeout>");
  452. if (pci_estat & GREG_PCIESTAT_OTHER)
  453. pr_cont(" <other>");
  454. pr_cont("\n");
  455. } else {
  456. pci_estat |= GREG_PCIESTAT_OTHER;
  457. netdev_err(dev, "PCI error\n");
  458. }
  459. if (pci_estat & GREG_PCIESTAT_OTHER) {
  460. int pci_errs;
  461. /* Interrogate PCI config space for the
  462. * true cause.
  463. */
  464. pci_errs = pci_status_get_and_clear_errors(gp->pdev);
  465. netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
  466. if (pci_errs & PCI_STATUS_PARITY)
  467. netdev_err(dev, "PCI parity error detected\n");
  468. if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
  469. netdev_err(dev, "PCI target abort\n");
  470. if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
  471. netdev_err(dev, "PCI master acks target abort\n");
  472. if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
  473. netdev_err(dev, "PCI master abort\n");
  474. if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
  475. netdev_err(dev, "PCI system error SERR#\n");
  476. if (pci_errs & PCI_STATUS_DETECTED_PARITY)
  477. netdev_err(dev, "PCI parity error\n");
  478. }
  479. /* For all PCI errors, we should reset the chip. */
  480. return 1;
  481. }
  482. /* All non-normal interrupt conditions get serviced here.
  483. * Returns non-zero if we should just exit the interrupt
  484. * handler right now (ie. if we reset the card which invalidates
  485. * all of the other original irq status bits).
  486. */
  487. static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
  488. {
  489. if (gem_status & GREG_STAT_RXNOBUF) {
  490. /* Frame arrived, no free RX buffers available. */
  491. if (netif_msg_rx_err(gp))
  492. printk(KERN_DEBUG "%s: no buffer for rx frame\n",
  493. gp->dev->name);
  494. dev->stats.rx_dropped++;
  495. }
  496. if (gem_status & GREG_STAT_RXTAGERR) {
  497. /* corrupt RX tag framing */
  498. if (netif_msg_rx_err(gp))
  499. printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
  500. gp->dev->name);
  501. dev->stats.rx_errors++;
  502. return 1;
  503. }
  504. if (gem_status & GREG_STAT_PCS) {
  505. if (gem_pcs_interrupt(dev, gp, gem_status))
  506. return 1;
  507. }
  508. if (gem_status & GREG_STAT_TXMAC) {
  509. if (gem_txmac_interrupt(dev, gp, gem_status))
  510. return 1;
  511. }
  512. if (gem_status & GREG_STAT_RXMAC) {
  513. if (gem_rxmac_interrupt(dev, gp, gem_status))
  514. return 1;
  515. }
  516. if (gem_status & GREG_STAT_MAC) {
  517. if (gem_mac_interrupt(dev, gp, gem_status))
  518. return 1;
  519. }
  520. if (gem_status & GREG_STAT_MIF) {
  521. if (gem_mif_interrupt(dev, gp, gem_status))
  522. return 1;
  523. }
  524. if (gem_status & GREG_STAT_PCIERR) {
  525. if (gem_pci_interrupt(dev, gp, gem_status))
  526. return 1;
  527. }
  528. return 0;
  529. }
  530. static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
  531. {
  532. int entry, limit;
  533. entry = gp->tx_old;
  534. limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
  535. while (entry != limit) {
  536. struct sk_buff *skb;
  537. struct gem_txd *txd;
  538. dma_addr_t dma_addr;
  539. u32 dma_len;
  540. int frag;
  541. if (netif_msg_tx_done(gp))
  542. printk(KERN_DEBUG "%s: tx done, slot %d\n",
  543. gp->dev->name, entry);
  544. skb = gp->tx_skbs[entry];
  545. if (skb_shinfo(skb)->nr_frags) {
  546. int last = entry + skb_shinfo(skb)->nr_frags;
  547. int walk = entry;
  548. int incomplete = 0;
  549. last &= (TX_RING_SIZE - 1);
  550. for (;;) {
  551. walk = NEXT_TX(walk);
  552. if (walk == limit)
  553. incomplete = 1;
  554. if (walk == last)
  555. break;
  556. }
  557. if (incomplete)
  558. break;
  559. }
  560. gp->tx_skbs[entry] = NULL;
  561. dev->stats.tx_bytes += skb->len;
  562. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  563. txd = &gp->init_block->txd[entry];
  564. dma_addr = le64_to_cpu(txd->buffer);
  565. dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
  566. dma_unmap_page(&gp->pdev->dev, dma_addr, dma_len,
  567. DMA_TO_DEVICE);
  568. entry = NEXT_TX(entry);
  569. }
  570. dev->stats.tx_packets++;
  571. dev_consume_skb_any(skb);
  572. }
  573. gp->tx_old = entry;
  574. /* Need to make the tx_old update visible to gem_start_xmit()
  575. * before checking for netif_queue_stopped(). Without the
  576. * memory barrier, there is a small possibility that gem_start_xmit()
  577. * will miss it and cause the queue to be stopped forever.
  578. */
  579. smp_mb();
  580. if (unlikely(netif_queue_stopped(dev) &&
  581. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
  582. struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
  583. __netif_tx_lock(txq, smp_processor_id());
  584. if (netif_queue_stopped(dev) &&
  585. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  586. netif_wake_queue(dev);
  587. __netif_tx_unlock(txq);
  588. }
  589. }
  590. static __inline__ void gem_post_rxds(struct gem *gp, int limit)
  591. {
  592. int cluster_start, curr, count, kick;
  593. cluster_start = curr = (gp->rx_new & ~(4 - 1));
  594. count = 0;
  595. kick = -1;
  596. dma_wmb();
  597. while (curr != limit) {
  598. curr = NEXT_RX(curr);
  599. if (++count == 4) {
  600. struct gem_rxd *rxd =
  601. &gp->init_block->rxd[cluster_start];
  602. for (;;) {
  603. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  604. rxd++;
  605. cluster_start = NEXT_RX(cluster_start);
  606. if (cluster_start == curr)
  607. break;
  608. }
  609. kick = curr;
  610. count = 0;
  611. }
  612. }
  613. if (kick >= 0) {
  614. mb();
  615. writel(kick, gp->regs + RXDMA_KICK);
  616. }
  617. }
  618. #define ALIGNED_RX_SKB_ADDR(addr) \
  619. ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
  620. static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
  621. gfp_t gfp_flags)
  622. {
  623. struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
  624. if (likely(skb)) {
  625. unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
  626. skb_reserve(skb, offset);
  627. }
  628. return skb;
  629. }
  630. static int gem_rx(struct gem *gp, int work_to_do)
  631. {
  632. struct net_device *dev = gp->dev;
  633. int entry, drops, work_done = 0;
  634. u32 done;
  635. if (netif_msg_rx_status(gp))
  636. printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
  637. gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
  638. entry = gp->rx_new;
  639. drops = 0;
  640. done = readl(gp->regs + RXDMA_DONE);
  641. for (;;) {
  642. struct gem_rxd *rxd = &gp->init_block->rxd[entry];
  643. struct sk_buff *skb;
  644. u64 status = le64_to_cpu(rxd->status_word);
  645. dma_addr_t dma_addr;
  646. int len;
  647. if ((status & RXDCTRL_OWN) != 0)
  648. break;
  649. if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
  650. break;
  651. /* When writing back RX descriptor, GEM writes status
  652. * then buffer address, possibly in separate transactions.
  653. * If we don't wait for the chip to write both, we could
  654. * post a new buffer to this descriptor then have GEM spam
  655. * on the buffer address. We sync on the RX completion
  656. * register to prevent this from happening.
  657. */
  658. if (entry == done) {
  659. done = readl(gp->regs + RXDMA_DONE);
  660. if (entry == done)
  661. break;
  662. }
  663. /* We can now account for the work we're about to do */
  664. work_done++;
  665. skb = gp->rx_skbs[entry];
  666. len = (status & RXDCTRL_BUFSZ) >> 16;
  667. if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
  668. dev->stats.rx_errors++;
  669. if (len < ETH_ZLEN)
  670. dev->stats.rx_length_errors++;
  671. if (len & RXDCTRL_BAD)
  672. dev->stats.rx_crc_errors++;
  673. /* We'll just return it to GEM. */
  674. drop_it:
  675. dev->stats.rx_dropped++;
  676. goto next;
  677. }
  678. dma_addr = le64_to_cpu(rxd->buffer);
  679. if (len > RX_COPY_THRESHOLD) {
  680. struct sk_buff *new_skb;
  681. new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  682. if (new_skb == NULL) {
  683. drops++;
  684. goto drop_it;
  685. }
  686. dma_unmap_page(&gp->pdev->dev, dma_addr,
  687. RX_BUF_ALLOC_SIZE(gp), DMA_FROM_DEVICE);
  688. gp->rx_skbs[entry] = new_skb;
  689. skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
  690. rxd->buffer = cpu_to_le64(dma_map_page(&gp->pdev->dev,
  691. virt_to_page(new_skb->data),
  692. offset_in_page(new_skb->data),
  693. RX_BUF_ALLOC_SIZE(gp),
  694. DMA_FROM_DEVICE));
  695. skb_reserve(new_skb, RX_OFFSET);
  696. /* Trim the original skb for the netif. */
  697. skb_trim(skb, len);
  698. } else {
  699. struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
  700. if (copy_skb == NULL) {
  701. drops++;
  702. goto drop_it;
  703. }
  704. skb_reserve(copy_skb, 2);
  705. skb_put(copy_skb, len);
  706. dma_sync_single_for_cpu(&gp->pdev->dev, dma_addr, len,
  707. DMA_FROM_DEVICE);
  708. skb_copy_from_linear_data(skb, copy_skb->data, len);
  709. dma_sync_single_for_device(&gp->pdev->dev, dma_addr,
  710. len, DMA_FROM_DEVICE);
  711. /* We'll reuse the original ring buffer. */
  712. skb = copy_skb;
  713. }
  714. if (likely(dev->features & NETIF_F_RXCSUM)) {
  715. __sum16 csum;
  716. csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
  717. skb->csum = csum_unfold(csum);
  718. skb->ip_summed = CHECKSUM_COMPLETE;
  719. }
  720. skb->protocol = eth_type_trans(skb, gp->dev);
  721. napi_gro_receive(&gp->napi, skb);
  722. dev->stats.rx_packets++;
  723. dev->stats.rx_bytes += len;
  724. next:
  725. entry = NEXT_RX(entry);
  726. }
  727. gem_post_rxds(gp, entry);
  728. gp->rx_new = entry;
  729. if (drops)
  730. netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
  731. return work_done;
  732. }
  733. static int gem_poll(struct napi_struct *napi, int budget)
  734. {
  735. struct gem *gp = container_of(napi, struct gem, napi);
  736. struct net_device *dev = gp->dev;
  737. int work_done;
  738. work_done = 0;
  739. do {
  740. /* Handle anomalies */
  741. if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
  742. struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
  743. int reset;
  744. /* We run the abnormal interrupt handling code with
  745. * the Tx lock. It only resets the Rx portion of the
  746. * chip, but we need to guard it against DMA being
  747. * restarted by the link poll timer
  748. */
  749. __netif_tx_lock(txq, smp_processor_id());
  750. reset = gem_abnormal_irq(dev, gp, gp->status);
  751. __netif_tx_unlock(txq);
  752. if (reset) {
  753. gem_schedule_reset(gp);
  754. napi_complete(napi);
  755. return work_done;
  756. }
  757. }
  758. /* Run TX completion thread */
  759. gem_tx(dev, gp, gp->status);
  760. /* Run RX thread. We don't use any locking here,
  761. * code willing to do bad things - like cleaning the
  762. * rx ring - must call napi_disable(), which
  763. * schedule_timeout()'s if polling is already disabled.
  764. */
  765. work_done += gem_rx(gp, budget - work_done);
  766. if (work_done >= budget)
  767. return work_done;
  768. gp->status = readl(gp->regs + GREG_STAT);
  769. } while (gp->status & GREG_STAT_NAPI);
  770. napi_complete_done(napi, work_done);
  771. gem_enable_ints(gp);
  772. return work_done;
  773. }
  774. static irqreturn_t gem_interrupt(int irq, void *dev_id)
  775. {
  776. struct net_device *dev = dev_id;
  777. struct gem *gp = netdev_priv(dev);
  778. if (napi_schedule_prep(&gp->napi)) {
  779. u32 gem_status = readl(gp->regs + GREG_STAT);
  780. if (unlikely(gem_status == 0)) {
  781. napi_enable(&gp->napi);
  782. return IRQ_NONE;
  783. }
  784. if (netif_msg_intr(gp))
  785. printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
  786. gp->dev->name, gem_status);
  787. gp->status = gem_status;
  788. gem_disable_ints(gp);
  789. __napi_schedule(&gp->napi);
  790. }
  791. /* If polling was disabled at the time we received that
  792. * interrupt, we may return IRQ_HANDLED here while we
  793. * should return IRQ_NONE. No big deal...
  794. */
  795. return IRQ_HANDLED;
  796. }
  797. #ifdef CONFIG_NET_POLL_CONTROLLER
  798. static void gem_poll_controller(struct net_device *dev)
  799. {
  800. struct gem *gp = netdev_priv(dev);
  801. disable_irq(gp->pdev->irq);
  802. gem_interrupt(gp->pdev->irq, dev);
  803. enable_irq(gp->pdev->irq);
  804. }
  805. #endif
  806. static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
  807. {
  808. struct gem *gp = netdev_priv(dev);
  809. netdev_err(dev, "transmit timed out, resetting\n");
  810. netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
  811. readl(gp->regs + TXDMA_CFG),
  812. readl(gp->regs + MAC_TXSTAT),
  813. readl(gp->regs + MAC_TXCFG));
  814. netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
  815. readl(gp->regs + RXDMA_CFG),
  816. readl(gp->regs + MAC_RXSTAT),
  817. readl(gp->regs + MAC_RXCFG));
  818. gem_schedule_reset(gp);
  819. }
  820. static __inline__ int gem_intme(int entry)
  821. {
  822. /* Algorithm: IRQ every 1/2 of descriptors. */
  823. if (!(entry & ((TX_RING_SIZE>>1)-1)))
  824. return 1;
  825. return 0;
  826. }
  827. static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
  828. struct net_device *dev)
  829. {
  830. struct gem *gp = netdev_priv(dev);
  831. int entry;
  832. u64 ctrl;
  833. ctrl = 0;
  834. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  835. const u64 csum_start_off = skb_checksum_start_offset(skb);
  836. const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
  837. ctrl = (TXDCTRL_CENAB |
  838. (csum_start_off << 15) |
  839. (csum_stuff_off << 21));
  840. }
  841. if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
  842. /* This is a hard error, log it. */
  843. if (!netif_queue_stopped(dev)) {
  844. netif_stop_queue(dev);
  845. netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
  846. }
  847. return NETDEV_TX_BUSY;
  848. }
  849. entry = gp->tx_new;
  850. gp->tx_skbs[entry] = skb;
  851. if (skb_shinfo(skb)->nr_frags == 0) {
  852. struct gem_txd *txd = &gp->init_block->txd[entry];
  853. dma_addr_t mapping;
  854. u32 len;
  855. len = skb->len;
  856. mapping = dma_map_page(&gp->pdev->dev,
  857. virt_to_page(skb->data),
  858. offset_in_page(skb->data),
  859. len, DMA_TO_DEVICE);
  860. ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
  861. if (gem_intme(entry))
  862. ctrl |= TXDCTRL_INTME;
  863. txd->buffer = cpu_to_le64(mapping);
  864. dma_wmb();
  865. txd->control_word = cpu_to_le64(ctrl);
  866. entry = NEXT_TX(entry);
  867. } else {
  868. struct gem_txd *txd;
  869. u32 first_len;
  870. u64 intme;
  871. dma_addr_t first_mapping;
  872. int frag, first_entry = entry;
  873. intme = 0;
  874. if (gem_intme(entry))
  875. intme |= TXDCTRL_INTME;
  876. /* We must give this initial chunk to the device last.
  877. * Otherwise we could race with the device.
  878. */
  879. first_len = skb_headlen(skb);
  880. first_mapping = dma_map_page(&gp->pdev->dev,
  881. virt_to_page(skb->data),
  882. offset_in_page(skb->data),
  883. first_len, DMA_TO_DEVICE);
  884. entry = NEXT_TX(entry);
  885. for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
  886. const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
  887. u32 len;
  888. dma_addr_t mapping;
  889. u64 this_ctrl;
  890. len = skb_frag_size(this_frag);
  891. mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
  892. 0, len, DMA_TO_DEVICE);
  893. this_ctrl = ctrl;
  894. if (frag == skb_shinfo(skb)->nr_frags - 1)
  895. this_ctrl |= TXDCTRL_EOF;
  896. txd = &gp->init_block->txd[entry];
  897. txd->buffer = cpu_to_le64(mapping);
  898. dma_wmb();
  899. txd->control_word = cpu_to_le64(this_ctrl | len);
  900. if (gem_intme(entry))
  901. intme |= TXDCTRL_INTME;
  902. entry = NEXT_TX(entry);
  903. }
  904. txd = &gp->init_block->txd[first_entry];
  905. txd->buffer = cpu_to_le64(first_mapping);
  906. dma_wmb();
  907. txd->control_word =
  908. cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
  909. }
  910. gp->tx_new = entry;
  911. if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
  912. netif_stop_queue(dev);
  913. /* netif_stop_queue() must be done before checking
  914. * tx index in TX_BUFFS_AVAIL() below, because
  915. * in gem_tx(), we update tx_old before checking for
  916. * netif_queue_stopped().
  917. */
  918. smp_mb();
  919. if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  920. netif_wake_queue(dev);
  921. }
  922. if (netif_msg_tx_queued(gp))
  923. printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
  924. dev->name, entry, skb->len);
  925. mb();
  926. writel(gp->tx_new, gp->regs + TXDMA_KICK);
  927. return NETDEV_TX_OK;
  928. }
  929. static void gem_pcs_reset(struct gem *gp)
  930. {
  931. int limit;
  932. u32 val;
  933. /* Reset PCS unit. */
  934. val = readl(gp->regs + PCS_MIICTRL);
  935. val |= PCS_MIICTRL_RST;
  936. writel(val, gp->regs + PCS_MIICTRL);
  937. limit = 32;
  938. while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
  939. udelay(100);
  940. if (limit-- <= 0)
  941. break;
  942. }
  943. if (limit < 0)
  944. netdev_warn(gp->dev, "PCS reset bit would not clear\n");
  945. }
  946. static void gem_pcs_reinit_adv(struct gem *gp)
  947. {
  948. u32 val;
  949. /* Make sure PCS is disabled while changing advertisement
  950. * configuration.
  951. */
  952. val = readl(gp->regs + PCS_CFG);
  953. val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
  954. writel(val, gp->regs + PCS_CFG);
  955. /* Advertise all capabilities except asymmetric
  956. * pause.
  957. */
  958. val = readl(gp->regs + PCS_MIIADV);
  959. val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
  960. PCS_MIIADV_SP | PCS_MIIADV_AP);
  961. writel(val, gp->regs + PCS_MIIADV);
  962. /* Enable and restart auto-negotiation, disable wrapback/loopback,
  963. * and re-enable PCS.
  964. */
  965. val = readl(gp->regs + PCS_MIICTRL);
  966. val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
  967. val &= ~PCS_MIICTRL_WB;
  968. writel(val, gp->regs + PCS_MIICTRL);
  969. val = readl(gp->regs + PCS_CFG);
  970. val |= PCS_CFG_ENABLE;
  971. writel(val, gp->regs + PCS_CFG);
  972. /* Make sure serialink loopback is off. The meaning
  973. * of this bit is logically inverted based upon whether
  974. * you are in Serialink or SERDES mode.
  975. */
  976. val = readl(gp->regs + PCS_SCTRL);
  977. if (gp->phy_type == phy_serialink)
  978. val &= ~PCS_SCTRL_LOOP;
  979. else
  980. val |= PCS_SCTRL_LOOP;
  981. writel(val, gp->regs + PCS_SCTRL);
  982. }
  983. #define STOP_TRIES 32
  984. static void gem_reset(struct gem *gp)
  985. {
  986. int limit;
  987. u32 val;
  988. /* Make sure we won't get any more interrupts */
  989. writel(0xffffffff, gp->regs + GREG_IMASK);
  990. /* Reset the chip */
  991. writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
  992. gp->regs + GREG_SWRST);
  993. limit = STOP_TRIES;
  994. do {
  995. udelay(20);
  996. val = readl(gp->regs + GREG_SWRST);
  997. if (limit-- <= 0)
  998. break;
  999. } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
  1000. if (limit < 0)
  1001. netdev_err(gp->dev, "SW reset is ghetto\n");
  1002. if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
  1003. gem_pcs_reinit_adv(gp);
  1004. }
  1005. static void gem_start_dma(struct gem *gp)
  1006. {
  1007. u32 val;
  1008. /* We are ready to rock, turn everything on. */
  1009. val = readl(gp->regs + TXDMA_CFG);
  1010. writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1011. val = readl(gp->regs + RXDMA_CFG);
  1012. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1013. val = readl(gp->regs + MAC_TXCFG);
  1014. writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1015. val = readl(gp->regs + MAC_RXCFG);
  1016. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1017. (void) readl(gp->regs + MAC_RXCFG);
  1018. udelay(100);
  1019. gem_enable_ints(gp);
  1020. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1021. }
  1022. /* DMA won't be actually stopped before about 4ms tho ...
  1023. */
  1024. static void gem_stop_dma(struct gem *gp)
  1025. {
  1026. u32 val;
  1027. /* We are done rocking, turn everything off. */
  1028. val = readl(gp->regs + TXDMA_CFG);
  1029. writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1030. val = readl(gp->regs + RXDMA_CFG);
  1031. writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1032. val = readl(gp->regs + MAC_TXCFG);
  1033. writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1034. val = readl(gp->regs + MAC_RXCFG);
  1035. writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1036. (void) readl(gp->regs + MAC_RXCFG);
  1037. /* Need to wait a bit ... done by the caller */
  1038. }
  1039. // XXX dbl check what that function should do when called on PCS PHY
  1040. static void gem_begin_auto_negotiation(struct gem *gp,
  1041. const struct ethtool_link_ksettings *ep)
  1042. {
  1043. u32 advertise, features;
  1044. int autoneg;
  1045. int speed;
  1046. int duplex;
  1047. u32 advertising;
  1048. if (ep)
  1049. ethtool_convert_link_mode_to_legacy_u32(
  1050. &advertising, ep->link_modes.advertising);
  1051. if (gp->phy_type != phy_mii_mdio0 &&
  1052. gp->phy_type != phy_mii_mdio1)
  1053. goto non_mii;
  1054. /* Setup advertise */
  1055. if (found_mii_phy(gp))
  1056. features = gp->phy_mii.def->features;
  1057. else
  1058. features = 0;
  1059. advertise = features & ADVERTISE_MASK;
  1060. if (gp->phy_mii.advertising != 0)
  1061. advertise &= gp->phy_mii.advertising;
  1062. autoneg = gp->want_autoneg;
  1063. speed = gp->phy_mii.speed;
  1064. duplex = gp->phy_mii.duplex;
  1065. /* Setup link parameters */
  1066. if (!ep)
  1067. goto start_aneg;
  1068. if (ep->base.autoneg == AUTONEG_ENABLE) {
  1069. advertise = advertising;
  1070. autoneg = 1;
  1071. } else {
  1072. autoneg = 0;
  1073. speed = ep->base.speed;
  1074. duplex = ep->base.duplex;
  1075. }
  1076. start_aneg:
  1077. /* Sanitize settings based on PHY capabilities */
  1078. if ((features & SUPPORTED_Autoneg) == 0)
  1079. autoneg = 0;
  1080. if (speed == SPEED_1000 &&
  1081. !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
  1082. speed = SPEED_100;
  1083. if (speed == SPEED_100 &&
  1084. !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
  1085. speed = SPEED_10;
  1086. if (duplex == DUPLEX_FULL &&
  1087. !(features & (SUPPORTED_1000baseT_Full |
  1088. SUPPORTED_100baseT_Full |
  1089. SUPPORTED_10baseT_Full)))
  1090. duplex = DUPLEX_HALF;
  1091. if (speed == 0)
  1092. speed = SPEED_10;
  1093. /* If we are asleep, we don't try to actually setup the PHY, we
  1094. * just store the settings
  1095. */
  1096. if (!netif_device_present(gp->dev)) {
  1097. gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
  1098. gp->phy_mii.speed = speed;
  1099. gp->phy_mii.duplex = duplex;
  1100. return;
  1101. }
  1102. /* Configure PHY & start aneg */
  1103. gp->want_autoneg = autoneg;
  1104. if (autoneg) {
  1105. if (found_mii_phy(gp))
  1106. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
  1107. gp->lstate = link_aneg;
  1108. } else {
  1109. if (found_mii_phy(gp))
  1110. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
  1111. gp->lstate = link_force_ok;
  1112. }
  1113. non_mii:
  1114. gp->timer_ticks = 0;
  1115. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1116. }
  1117. /* A link-up condition has occurred, initialize and enable the
  1118. * rest of the chip.
  1119. */
  1120. static int gem_set_link_modes(struct gem *gp)
  1121. {
  1122. struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
  1123. int full_duplex, speed, pause;
  1124. u32 val;
  1125. full_duplex = 0;
  1126. speed = SPEED_10;
  1127. pause = 0;
  1128. if (found_mii_phy(gp)) {
  1129. if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
  1130. return 1;
  1131. full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
  1132. speed = gp->phy_mii.speed;
  1133. pause = gp->phy_mii.pause;
  1134. } else if (gp->phy_type == phy_serialink ||
  1135. gp->phy_type == phy_serdes) {
  1136. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1137. if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
  1138. full_duplex = 1;
  1139. speed = SPEED_1000;
  1140. }
  1141. netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
  1142. speed, (full_duplex ? "full" : "half"));
  1143. /* We take the tx queue lock to avoid collisions between
  1144. * this code, the tx path and the NAPI-driven error path
  1145. */
  1146. __netif_tx_lock(txq, smp_processor_id());
  1147. val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
  1148. if (full_duplex) {
  1149. val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
  1150. } else {
  1151. /* MAC_TXCFG_NBO must be zero. */
  1152. }
  1153. writel(val, gp->regs + MAC_TXCFG);
  1154. val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
  1155. if (!full_duplex &&
  1156. (gp->phy_type == phy_mii_mdio0 ||
  1157. gp->phy_type == phy_mii_mdio1)) {
  1158. val |= MAC_XIFCFG_DISE;
  1159. } else if (full_duplex) {
  1160. val |= MAC_XIFCFG_FLED;
  1161. }
  1162. if (speed == SPEED_1000)
  1163. val |= (MAC_XIFCFG_GMII);
  1164. writel(val, gp->regs + MAC_XIFCFG);
  1165. /* If gigabit and half-duplex, enable carrier extension
  1166. * mode. Else, disable it.
  1167. */
  1168. if (speed == SPEED_1000 && !full_duplex) {
  1169. val = readl(gp->regs + MAC_TXCFG);
  1170. writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1171. val = readl(gp->regs + MAC_RXCFG);
  1172. writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1173. } else {
  1174. val = readl(gp->regs + MAC_TXCFG);
  1175. writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1176. val = readl(gp->regs + MAC_RXCFG);
  1177. writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1178. }
  1179. if (gp->phy_type == phy_serialink ||
  1180. gp->phy_type == phy_serdes) {
  1181. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1182. if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
  1183. pause = 1;
  1184. }
  1185. if (!full_duplex)
  1186. writel(512, gp->regs + MAC_STIME);
  1187. else
  1188. writel(64, gp->regs + MAC_STIME);
  1189. val = readl(gp->regs + MAC_MCCFG);
  1190. if (pause)
  1191. val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1192. else
  1193. val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1194. writel(val, gp->regs + MAC_MCCFG);
  1195. gem_start_dma(gp);
  1196. __netif_tx_unlock(txq);
  1197. if (netif_msg_link(gp)) {
  1198. if (pause) {
  1199. netdev_info(gp->dev,
  1200. "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
  1201. gp->rx_fifo_sz,
  1202. gp->rx_pause_off,
  1203. gp->rx_pause_on);
  1204. } else {
  1205. netdev_info(gp->dev, "Pause is disabled\n");
  1206. }
  1207. }
  1208. return 0;
  1209. }
  1210. static int gem_mdio_link_not_up(struct gem *gp)
  1211. {
  1212. switch (gp->lstate) {
  1213. case link_force_ret:
  1214. netif_info(gp, link, gp->dev,
  1215. "Autoneg failed again, keeping forced mode\n");
  1216. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
  1217. gp->last_forced_speed, DUPLEX_HALF);
  1218. gp->timer_ticks = 5;
  1219. gp->lstate = link_force_ok;
  1220. return 0;
  1221. case link_aneg:
  1222. /* We try forced modes after a failed aneg only on PHYs that don't
  1223. * have "magic_aneg" bit set, which means they internally do the
  1224. * while forced-mode thingy. On these, we just restart aneg
  1225. */
  1226. if (gp->phy_mii.def->magic_aneg)
  1227. return 1;
  1228. netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
  1229. /* Try forced modes. */
  1230. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
  1231. DUPLEX_HALF);
  1232. gp->timer_ticks = 5;
  1233. gp->lstate = link_force_try;
  1234. return 0;
  1235. case link_force_try:
  1236. /* Downgrade from 100 to 10 Mbps if necessary.
  1237. * If already at 10Mbps, warn user about the
  1238. * situation every 10 ticks.
  1239. */
  1240. if (gp->phy_mii.speed == SPEED_100) {
  1241. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
  1242. DUPLEX_HALF);
  1243. gp->timer_ticks = 5;
  1244. netif_info(gp, link, gp->dev,
  1245. "switching to forced 10bt\n");
  1246. return 0;
  1247. } else
  1248. return 1;
  1249. default:
  1250. return 0;
  1251. }
  1252. }
  1253. static void gem_link_timer(struct timer_list *t)
  1254. {
  1255. struct gem *gp = from_timer(gp, t, link_timer);
  1256. struct net_device *dev = gp->dev;
  1257. int restart_aneg = 0;
  1258. /* There's no point doing anything if we're going to be reset */
  1259. if (gp->reset_task_pending)
  1260. return;
  1261. if (gp->phy_type == phy_serialink ||
  1262. gp->phy_type == phy_serdes) {
  1263. u32 val = readl(gp->regs + PCS_MIISTAT);
  1264. if (!(val & PCS_MIISTAT_LS))
  1265. val = readl(gp->regs + PCS_MIISTAT);
  1266. if ((val & PCS_MIISTAT_LS) != 0) {
  1267. if (gp->lstate == link_up)
  1268. goto restart;
  1269. gp->lstate = link_up;
  1270. netif_carrier_on(dev);
  1271. (void)gem_set_link_modes(gp);
  1272. }
  1273. goto restart;
  1274. }
  1275. if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
  1276. /* Ok, here we got a link. If we had it due to a forced
  1277. * fallback, and we were configured for autoneg, we do
  1278. * retry a short autoneg pass. If you know your hub is
  1279. * broken, use ethtool ;)
  1280. */
  1281. if (gp->lstate == link_force_try && gp->want_autoneg) {
  1282. gp->lstate = link_force_ret;
  1283. gp->last_forced_speed = gp->phy_mii.speed;
  1284. gp->timer_ticks = 5;
  1285. if (netif_msg_link(gp))
  1286. netdev_info(dev,
  1287. "Got link after fallback, retrying autoneg once...\n");
  1288. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
  1289. } else if (gp->lstate != link_up) {
  1290. gp->lstate = link_up;
  1291. netif_carrier_on(dev);
  1292. if (gem_set_link_modes(gp))
  1293. restart_aneg = 1;
  1294. }
  1295. } else {
  1296. /* If the link was previously up, we restart the
  1297. * whole process
  1298. */
  1299. if (gp->lstate == link_up) {
  1300. gp->lstate = link_down;
  1301. netif_info(gp, link, dev, "Link down\n");
  1302. netif_carrier_off(dev);
  1303. gem_schedule_reset(gp);
  1304. /* The reset task will restart the timer */
  1305. return;
  1306. } else if (++gp->timer_ticks > 10) {
  1307. if (found_mii_phy(gp))
  1308. restart_aneg = gem_mdio_link_not_up(gp);
  1309. else
  1310. restart_aneg = 1;
  1311. }
  1312. }
  1313. if (restart_aneg) {
  1314. gem_begin_auto_negotiation(gp, NULL);
  1315. return;
  1316. }
  1317. restart:
  1318. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1319. }
  1320. static void gem_clean_rings(struct gem *gp)
  1321. {
  1322. struct gem_init_block *gb = gp->init_block;
  1323. struct sk_buff *skb;
  1324. int i;
  1325. dma_addr_t dma_addr;
  1326. for (i = 0; i < RX_RING_SIZE; i++) {
  1327. struct gem_rxd *rxd;
  1328. rxd = &gb->rxd[i];
  1329. if (gp->rx_skbs[i] != NULL) {
  1330. skb = gp->rx_skbs[i];
  1331. dma_addr = le64_to_cpu(rxd->buffer);
  1332. dma_unmap_page(&gp->pdev->dev, dma_addr,
  1333. RX_BUF_ALLOC_SIZE(gp),
  1334. DMA_FROM_DEVICE);
  1335. dev_kfree_skb_any(skb);
  1336. gp->rx_skbs[i] = NULL;
  1337. }
  1338. rxd->status_word = 0;
  1339. dma_wmb();
  1340. rxd->buffer = 0;
  1341. }
  1342. for (i = 0; i < TX_RING_SIZE; i++) {
  1343. if (gp->tx_skbs[i] != NULL) {
  1344. struct gem_txd *txd;
  1345. int frag;
  1346. skb = gp->tx_skbs[i];
  1347. gp->tx_skbs[i] = NULL;
  1348. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1349. int ent = i & (TX_RING_SIZE - 1);
  1350. txd = &gb->txd[ent];
  1351. dma_addr = le64_to_cpu(txd->buffer);
  1352. dma_unmap_page(&gp->pdev->dev, dma_addr,
  1353. le64_to_cpu(txd->control_word) &
  1354. TXDCTRL_BUFSZ, DMA_TO_DEVICE);
  1355. if (frag != skb_shinfo(skb)->nr_frags)
  1356. i++;
  1357. }
  1358. dev_kfree_skb_any(skb);
  1359. }
  1360. }
  1361. }
  1362. static void gem_init_rings(struct gem *gp)
  1363. {
  1364. struct gem_init_block *gb = gp->init_block;
  1365. struct net_device *dev = gp->dev;
  1366. int i;
  1367. dma_addr_t dma_addr;
  1368. gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
  1369. gem_clean_rings(gp);
  1370. gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
  1371. (unsigned)VLAN_ETH_FRAME_LEN);
  1372. for (i = 0; i < RX_RING_SIZE; i++) {
  1373. struct sk_buff *skb;
  1374. struct gem_rxd *rxd = &gb->rxd[i];
  1375. skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
  1376. if (!skb) {
  1377. rxd->buffer = 0;
  1378. rxd->status_word = 0;
  1379. continue;
  1380. }
  1381. gp->rx_skbs[i] = skb;
  1382. skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
  1383. dma_addr = dma_map_page(&gp->pdev->dev,
  1384. virt_to_page(skb->data),
  1385. offset_in_page(skb->data),
  1386. RX_BUF_ALLOC_SIZE(gp),
  1387. DMA_FROM_DEVICE);
  1388. rxd->buffer = cpu_to_le64(dma_addr);
  1389. dma_wmb();
  1390. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  1391. skb_reserve(skb, RX_OFFSET);
  1392. }
  1393. for (i = 0; i < TX_RING_SIZE; i++) {
  1394. struct gem_txd *txd = &gb->txd[i];
  1395. txd->control_word = 0;
  1396. dma_wmb();
  1397. txd->buffer = 0;
  1398. }
  1399. wmb();
  1400. }
  1401. /* Init PHY interface and start link poll state machine */
  1402. static void gem_init_phy(struct gem *gp)
  1403. {
  1404. u32 mifcfg;
  1405. /* Revert MIF CFG setting done on stop_phy */
  1406. mifcfg = readl(gp->regs + MIF_CFG);
  1407. mifcfg &= ~MIF_CFG_BBMODE;
  1408. writel(mifcfg, gp->regs + MIF_CFG);
  1409. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1410. int i;
  1411. /* Those delays sucks, the HW seems to love them though, I'll
  1412. * seriously consider breaking some locks here to be able
  1413. * to schedule instead
  1414. */
  1415. for (i = 0; i < 3; i++) {
  1416. #ifdef CONFIG_PPC_PMAC
  1417. pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
  1418. msleep(20);
  1419. #endif
  1420. /* Some PHYs used by apple have problem getting back to us,
  1421. * we do an additional reset here
  1422. */
  1423. sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
  1424. msleep(20);
  1425. if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
  1426. break;
  1427. if (i == 2)
  1428. netdev_warn(gp->dev, "GMAC PHY not responding !\n");
  1429. }
  1430. }
  1431. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  1432. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1433. u32 val;
  1434. /* Init datapath mode register. */
  1435. if (gp->phy_type == phy_mii_mdio0 ||
  1436. gp->phy_type == phy_mii_mdio1) {
  1437. val = PCS_DMODE_MGM;
  1438. } else if (gp->phy_type == phy_serialink) {
  1439. val = PCS_DMODE_SM | PCS_DMODE_GMOE;
  1440. } else {
  1441. val = PCS_DMODE_ESM;
  1442. }
  1443. writel(val, gp->regs + PCS_DMODE);
  1444. }
  1445. if (gp->phy_type == phy_mii_mdio0 ||
  1446. gp->phy_type == phy_mii_mdio1) {
  1447. /* Reset and detect MII PHY */
  1448. sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
  1449. /* Init PHY */
  1450. if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
  1451. gp->phy_mii.def->ops->init(&gp->phy_mii);
  1452. } else {
  1453. gem_pcs_reset(gp);
  1454. gem_pcs_reinit_adv(gp);
  1455. }
  1456. /* Default aneg parameters */
  1457. gp->timer_ticks = 0;
  1458. gp->lstate = link_down;
  1459. netif_carrier_off(gp->dev);
  1460. /* Print things out */
  1461. if (gp->phy_type == phy_mii_mdio0 ||
  1462. gp->phy_type == phy_mii_mdio1)
  1463. netdev_info(gp->dev, "Found %s PHY\n",
  1464. gp->phy_mii.def ? gp->phy_mii.def->name : "no");
  1465. gem_begin_auto_negotiation(gp, NULL);
  1466. }
  1467. static void gem_init_dma(struct gem *gp)
  1468. {
  1469. u64 desc_dma = (u64) gp->gblock_dvma;
  1470. u32 val;
  1471. val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
  1472. writel(val, gp->regs + TXDMA_CFG);
  1473. writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
  1474. writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
  1475. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  1476. writel(0, gp->regs + TXDMA_KICK);
  1477. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  1478. (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
  1479. writel(val, gp->regs + RXDMA_CFG);
  1480. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  1481. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  1482. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1483. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  1484. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  1485. writel(val, gp->regs + RXDMA_PTHRESH);
  1486. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  1487. writel(((5 & RXDMA_BLANK_IPKTS) |
  1488. ((8 << 12) & RXDMA_BLANK_ITIME)),
  1489. gp->regs + RXDMA_BLANK);
  1490. else
  1491. writel(((5 & RXDMA_BLANK_IPKTS) |
  1492. ((4 << 12) & RXDMA_BLANK_ITIME)),
  1493. gp->regs + RXDMA_BLANK);
  1494. }
  1495. static u32 gem_setup_multicast(struct gem *gp)
  1496. {
  1497. u32 rxcfg = 0;
  1498. int i;
  1499. if ((gp->dev->flags & IFF_ALLMULTI) ||
  1500. (netdev_mc_count(gp->dev) > 256)) {
  1501. for (i=0; i<16; i++)
  1502. writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
  1503. rxcfg |= MAC_RXCFG_HFE;
  1504. } else if (gp->dev->flags & IFF_PROMISC) {
  1505. rxcfg |= MAC_RXCFG_PROM;
  1506. } else {
  1507. u16 hash_table[16];
  1508. u32 crc;
  1509. struct netdev_hw_addr *ha;
  1510. int i;
  1511. memset(hash_table, 0, sizeof(hash_table));
  1512. netdev_for_each_mc_addr(ha, gp->dev) {
  1513. crc = ether_crc_le(6, ha->addr);
  1514. crc >>= 24;
  1515. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  1516. }
  1517. for (i=0; i<16; i++)
  1518. writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
  1519. rxcfg |= MAC_RXCFG_HFE;
  1520. }
  1521. return rxcfg;
  1522. }
  1523. static void gem_init_mac(struct gem *gp)
  1524. {
  1525. const unsigned char *e = &gp->dev->dev_addr[0];
  1526. writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
  1527. writel(0x00, gp->regs + MAC_IPG0);
  1528. writel(0x08, gp->regs + MAC_IPG1);
  1529. writel(0x04, gp->regs + MAC_IPG2);
  1530. writel(0x40, gp->regs + MAC_STIME);
  1531. writel(0x40, gp->regs + MAC_MINFSZ);
  1532. /* Ethernet payload + header + FCS + optional VLAN tag. */
  1533. writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
  1534. writel(0x07, gp->regs + MAC_PASIZE);
  1535. writel(0x04, gp->regs + MAC_JAMSIZE);
  1536. writel(0x10, gp->regs + MAC_ATTLIM);
  1537. writel(0x8808, gp->regs + MAC_MCTYPE);
  1538. writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
  1539. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  1540. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  1541. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  1542. writel(0, gp->regs + MAC_ADDR3);
  1543. writel(0, gp->regs + MAC_ADDR4);
  1544. writel(0, gp->regs + MAC_ADDR5);
  1545. writel(0x0001, gp->regs + MAC_ADDR6);
  1546. writel(0xc200, gp->regs + MAC_ADDR7);
  1547. writel(0x0180, gp->regs + MAC_ADDR8);
  1548. writel(0, gp->regs + MAC_AFILT0);
  1549. writel(0, gp->regs + MAC_AFILT1);
  1550. writel(0, gp->regs + MAC_AFILT2);
  1551. writel(0, gp->regs + MAC_AF21MSK);
  1552. writel(0, gp->regs + MAC_AF0MSK);
  1553. gp->mac_rx_cfg = gem_setup_multicast(gp);
  1554. #ifdef STRIP_FCS
  1555. gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
  1556. #endif
  1557. writel(0, gp->regs + MAC_NCOLL);
  1558. writel(0, gp->regs + MAC_FASUCC);
  1559. writel(0, gp->regs + MAC_ECOLL);
  1560. writel(0, gp->regs + MAC_LCOLL);
  1561. writel(0, gp->regs + MAC_DTIMER);
  1562. writel(0, gp->regs + MAC_PATMPS);
  1563. writel(0, gp->regs + MAC_RFCTR);
  1564. writel(0, gp->regs + MAC_LERR);
  1565. writel(0, gp->regs + MAC_AERR);
  1566. writel(0, gp->regs + MAC_FCSERR);
  1567. writel(0, gp->regs + MAC_RXCVERR);
  1568. /* Clear RX/TX/MAC/XIF config, we will set these up and enable
  1569. * them once a link is established.
  1570. */
  1571. writel(0, gp->regs + MAC_TXCFG);
  1572. writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
  1573. writel(0, gp->regs + MAC_MCCFG);
  1574. writel(0, gp->regs + MAC_XIFCFG);
  1575. /* Setup MAC interrupts. We want to get all of the interesting
  1576. * counter expiration events, but we do not want to hear about
  1577. * normal rx/tx as the DMA engine tells us that.
  1578. */
  1579. writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
  1580. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  1581. /* Don't enable even the PAUSE interrupts for now, we
  1582. * make no use of those events other than to record them.
  1583. */
  1584. writel(0xffffffff, gp->regs + MAC_MCMASK);
  1585. /* Don't enable GEM's WOL in normal operations
  1586. */
  1587. if (gp->has_wol)
  1588. writel(0, gp->regs + WOL_WAKECSR);
  1589. }
  1590. static void gem_init_pause_thresholds(struct gem *gp)
  1591. {
  1592. u32 cfg;
  1593. /* Calculate pause thresholds. Setting the OFF threshold to the
  1594. * full RX fifo size effectively disables PAUSE generation which
  1595. * is what we do for 10/100 only GEMs which have FIFOs too small
  1596. * to make real gains from PAUSE.
  1597. */
  1598. if (gp->rx_fifo_sz <= (2 * 1024)) {
  1599. gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
  1600. } else {
  1601. int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
  1602. int off = (gp->rx_fifo_sz - (max_frame * 2));
  1603. int on = off - max_frame;
  1604. gp->rx_pause_off = off;
  1605. gp->rx_pause_on = on;
  1606. }
  1607. /* Configure the chip "burst" DMA mode & enable some
  1608. * HW bug fixes on Apple version
  1609. */
  1610. cfg = 0;
  1611. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
  1612. cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
  1613. #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
  1614. cfg |= GREG_CFG_IBURST;
  1615. #endif
  1616. cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
  1617. cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
  1618. writel(cfg, gp->regs + GREG_CFG);
  1619. /* If Infinite Burst didn't stick, then use different
  1620. * thresholds (and Apple bug fixes don't exist)
  1621. */
  1622. if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
  1623. cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
  1624. cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
  1625. writel(cfg, gp->regs + GREG_CFG);
  1626. }
  1627. }
  1628. static int gem_check_invariants(struct gem *gp)
  1629. {
  1630. struct pci_dev *pdev = gp->pdev;
  1631. u32 mif_cfg;
  1632. /* On Apple's sungem, we can't rely on registers as the chip
  1633. * was been powered down by the firmware. The PHY is looked
  1634. * up later on.
  1635. */
  1636. if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1637. gp->phy_type = phy_mii_mdio0;
  1638. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1639. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1640. gp->swrst_base = 0;
  1641. mif_cfg = readl(gp->regs + MIF_CFG);
  1642. mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
  1643. mif_cfg |= MIF_CFG_MDI0;
  1644. writel(mif_cfg, gp->regs + MIF_CFG);
  1645. writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
  1646. writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
  1647. /* We hard-code the PHY address so we can properly bring it out of
  1648. * reset later on, we can't really probe it at this point, though
  1649. * that isn't an issue.
  1650. */
  1651. if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
  1652. gp->mii_phy_addr = 1;
  1653. else
  1654. gp->mii_phy_addr = 0;
  1655. return 0;
  1656. }
  1657. mif_cfg = readl(gp->regs + MIF_CFG);
  1658. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  1659. pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
  1660. /* One of the MII PHYs _must_ be present
  1661. * as this chip has no gigabit PHY.
  1662. */
  1663. if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
  1664. pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
  1665. mif_cfg);
  1666. return -1;
  1667. }
  1668. }
  1669. /* Determine initial PHY interface type guess. MDIO1 is the
  1670. * external PHY and thus takes precedence over MDIO0.
  1671. */
  1672. if (mif_cfg & MIF_CFG_MDI1) {
  1673. gp->phy_type = phy_mii_mdio1;
  1674. mif_cfg |= MIF_CFG_PSELECT;
  1675. writel(mif_cfg, gp->regs + MIF_CFG);
  1676. } else if (mif_cfg & MIF_CFG_MDI0) {
  1677. gp->phy_type = phy_mii_mdio0;
  1678. mif_cfg &= ~MIF_CFG_PSELECT;
  1679. writel(mif_cfg, gp->regs + MIF_CFG);
  1680. } else {
  1681. #ifdef CONFIG_SPARC
  1682. const char *p;
  1683. p = of_get_property(gp->of_node, "shared-pins", NULL);
  1684. if (p && !strcmp(p, "serdes"))
  1685. gp->phy_type = phy_serdes;
  1686. else
  1687. #endif
  1688. gp->phy_type = phy_serialink;
  1689. }
  1690. if (gp->phy_type == phy_mii_mdio1 ||
  1691. gp->phy_type == phy_mii_mdio0) {
  1692. int i;
  1693. for (i = 0; i < 32; i++) {
  1694. gp->mii_phy_addr = i;
  1695. if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
  1696. break;
  1697. }
  1698. if (i == 32) {
  1699. if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
  1700. pr_err("RIO MII phy will not respond\n");
  1701. return -1;
  1702. }
  1703. gp->phy_type = phy_serdes;
  1704. }
  1705. }
  1706. /* Fetch the FIFO configurations now too. */
  1707. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1708. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1709. if (pdev->vendor == PCI_VENDOR_ID_SUN) {
  1710. if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1711. if (gp->tx_fifo_sz != (9 * 1024) ||
  1712. gp->rx_fifo_sz != (20 * 1024)) {
  1713. pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1714. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1715. return -1;
  1716. }
  1717. gp->swrst_base = 0;
  1718. } else {
  1719. if (gp->tx_fifo_sz != (2 * 1024) ||
  1720. gp->rx_fifo_sz != (2 * 1024)) {
  1721. pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1722. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1723. return -1;
  1724. }
  1725. gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
  1726. }
  1727. }
  1728. return 0;
  1729. }
  1730. static void gem_reinit_chip(struct gem *gp)
  1731. {
  1732. /* Reset the chip */
  1733. gem_reset(gp);
  1734. /* Make sure ints are disabled */
  1735. gem_disable_ints(gp);
  1736. /* Allocate & setup ring buffers */
  1737. gem_init_rings(gp);
  1738. /* Configure pause thresholds */
  1739. gem_init_pause_thresholds(gp);
  1740. /* Init DMA & MAC engines */
  1741. gem_init_dma(gp);
  1742. gem_init_mac(gp);
  1743. }
  1744. static void gem_stop_phy(struct gem *gp, int wol)
  1745. {
  1746. u32 mifcfg;
  1747. /* Let the chip settle down a bit, it seems that helps
  1748. * for sleep mode on some models
  1749. */
  1750. msleep(10);
  1751. /* Make sure we aren't polling PHY status change. We
  1752. * don't currently use that feature though
  1753. */
  1754. mifcfg = readl(gp->regs + MIF_CFG);
  1755. mifcfg &= ~MIF_CFG_POLL;
  1756. writel(mifcfg, gp->regs + MIF_CFG);
  1757. if (wol && gp->has_wol) {
  1758. const unsigned char *e = &gp->dev->dev_addr[0];
  1759. u32 csr;
  1760. /* Setup wake-on-lan for MAGIC packet */
  1761. writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
  1762. gp->regs + MAC_RXCFG);
  1763. writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
  1764. writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
  1765. writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
  1766. writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
  1767. csr = WOL_WAKECSR_ENABLE;
  1768. if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
  1769. csr |= WOL_WAKECSR_MII;
  1770. writel(csr, gp->regs + WOL_WAKECSR);
  1771. } else {
  1772. writel(0, gp->regs + MAC_RXCFG);
  1773. (void)readl(gp->regs + MAC_RXCFG);
  1774. /* Machine sleep will die in strange ways if we
  1775. * dont wait a bit here, looks like the chip takes
  1776. * some time to really shut down
  1777. */
  1778. msleep(10);
  1779. }
  1780. writel(0, gp->regs + MAC_TXCFG);
  1781. writel(0, gp->regs + MAC_XIFCFG);
  1782. writel(0, gp->regs + TXDMA_CFG);
  1783. writel(0, gp->regs + RXDMA_CFG);
  1784. if (!wol) {
  1785. gem_reset(gp);
  1786. writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
  1787. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  1788. if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
  1789. gp->phy_mii.def->ops->suspend(&gp->phy_mii);
  1790. /* According to Apple, we must set the MDIO pins to this begnign
  1791. * state or we may 1) eat more current, 2) damage some PHYs
  1792. */
  1793. writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
  1794. writel(0, gp->regs + MIF_BBCLK);
  1795. writel(0, gp->regs + MIF_BBDATA);
  1796. writel(0, gp->regs + MIF_BBOENAB);
  1797. writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
  1798. (void) readl(gp->regs + MAC_XIFCFG);
  1799. }
  1800. }
  1801. static int gem_do_start(struct net_device *dev)
  1802. {
  1803. struct gem *gp = netdev_priv(dev);
  1804. int rc;
  1805. pci_set_master(gp->pdev);
  1806. /* Init & setup chip hardware */
  1807. gem_reinit_chip(gp);
  1808. /* An interrupt might come in handy */
  1809. rc = request_irq(gp->pdev->irq, gem_interrupt,
  1810. IRQF_SHARED, dev->name, (void *)dev);
  1811. if (rc) {
  1812. netdev_err(dev, "failed to request irq !\n");
  1813. gem_reset(gp);
  1814. gem_clean_rings(gp);
  1815. gem_put_cell(gp);
  1816. return rc;
  1817. }
  1818. /* Mark us as attached again if we come from resume(), this has
  1819. * no effect if we weren't detached and needs to be done now.
  1820. */
  1821. netif_device_attach(dev);
  1822. /* Restart NAPI & queues */
  1823. gem_netif_start(gp);
  1824. /* Detect & init PHY, start autoneg etc... this will
  1825. * eventually result in starting DMA operations when
  1826. * the link is up
  1827. */
  1828. gem_init_phy(gp);
  1829. return 0;
  1830. }
  1831. static void gem_do_stop(struct net_device *dev, int wol)
  1832. {
  1833. struct gem *gp = netdev_priv(dev);
  1834. /* Stop NAPI and stop tx queue */
  1835. gem_netif_stop(gp);
  1836. /* Make sure ints are disabled. We don't care about
  1837. * synchronizing as NAPI is disabled, thus a stray
  1838. * interrupt will do nothing bad (our irq handler
  1839. * just schedules NAPI)
  1840. */
  1841. gem_disable_ints(gp);
  1842. /* Stop the link timer */
  1843. del_timer_sync(&gp->link_timer);
  1844. /* We cannot cancel the reset task while holding the
  1845. * rtnl lock, we'd get an A->B / B->A deadlock stituation
  1846. * if we did. This is not an issue however as the reset
  1847. * task is synchronized vs. us (rtnl_lock) and will do
  1848. * nothing if the device is down or suspended. We do
  1849. * still clear reset_task_pending to avoid a spurrious
  1850. * reset later on in case we do resume before it gets
  1851. * scheduled.
  1852. */
  1853. gp->reset_task_pending = 0;
  1854. /* If we are going to sleep with WOL */
  1855. gem_stop_dma(gp);
  1856. msleep(10);
  1857. if (!wol)
  1858. gem_reset(gp);
  1859. msleep(10);
  1860. /* Get rid of rings */
  1861. gem_clean_rings(gp);
  1862. /* No irq needed anymore */
  1863. free_irq(gp->pdev->irq, (void *) dev);
  1864. /* Shut the PHY down eventually and setup WOL */
  1865. gem_stop_phy(gp, wol);
  1866. }
  1867. static void gem_reset_task(struct work_struct *work)
  1868. {
  1869. struct gem *gp = container_of(work, struct gem, reset_task);
  1870. /* Lock out the network stack (essentially shield ourselves
  1871. * against a racing open, close, control call, or suspend
  1872. */
  1873. rtnl_lock();
  1874. /* Skip the reset task if suspended or closed, or if it's
  1875. * been cancelled by gem_do_stop (see comment there)
  1876. */
  1877. if (!netif_device_present(gp->dev) ||
  1878. !netif_running(gp->dev) ||
  1879. !gp->reset_task_pending) {
  1880. rtnl_unlock();
  1881. return;
  1882. }
  1883. /* Stop the link timer */
  1884. del_timer_sync(&gp->link_timer);
  1885. /* Stop NAPI and tx */
  1886. gem_netif_stop(gp);
  1887. /* Reset the chip & rings */
  1888. gem_reinit_chip(gp);
  1889. if (gp->lstate == link_up)
  1890. gem_set_link_modes(gp);
  1891. /* Restart NAPI and Tx */
  1892. gem_netif_start(gp);
  1893. /* We are back ! */
  1894. gp->reset_task_pending = 0;
  1895. /* If the link is not up, restart autoneg, else restart the
  1896. * polling timer
  1897. */
  1898. if (gp->lstate != link_up)
  1899. gem_begin_auto_negotiation(gp, NULL);
  1900. else
  1901. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1902. rtnl_unlock();
  1903. }
  1904. static int gem_open(struct net_device *dev)
  1905. {
  1906. struct gem *gp = netdev_priv(dev);
  1907. int rc;
  1908. /* We allow open while suspended, we just do nothing,
  1909. * the chip will be initialized in resume()
  1910. */
  1911. if (netif_device_present(dev)) {
  1912. /* Enable the cell */
  1913. gem_get_cell(gp);
  1914. /* Make sure PCI access and bus master are enabled */
  1915. rc = pci_enable_device(gp->pdev);
  1916. if (rc) {
  1917. netdev_err(dev, "Failed to enable chip on PCI bus !\n");
  1918. /* Put cell and forget it for now, it will be considered
  1919. *as still asleep, a new sleep cycle may bring it back
  1920. */
  1921. gem_put_cell(gp);
  1922. return -ENXIO;
  1923. }
  1924. return gem_do_start(dev);
  1925. }
  1926. return 0;
  1927. }
  1928. static int gem_close(struct net_device *dev)
  1929. {
  1930. struct gem *gp = netdev_priv(dev);
  1931. if (netif_device_present(dev)) {
  1932. gem_do_stop(dev, 0);
  1933. /* Make sure bus master is disabled */
  1934. pci_disable_device(gp->pdev);
  1935. /* Cell not needed neither if no WOL */
  1936. if (!gp->asleep_wol)
  1937. gem_put_cell(gp);
  1938. }
  1939. return 0;
  1940. }
  1941. static int __maybe_unused gem_suspend(struct device *dev_d)
  1942. {
  1943. struct net_device *dev = dev_get_drvdata(dev_d);
  1944. struct gem *gp = netdev_priv(dev);
  1945. /* Lock the network stack first to avoid racing with open/close,
  1946. * reset task and setting calls
  1947. */
  1948. rtnl_lock();
  1949. /* Not running, mark ourselves non-present, no need for
  1950. * a lock here
  1951. */
  1952. if (!netif_running(dev)) {
  1953. netif_device_detach(dev);
  1954. rtnl_unlock();
  1955. return 0;
  1956. }
  1957. netdev_info(dev, "suspending, WakeOnLan %s\n",
  1958. (gp->wake_on_lan && netif_running(dev)) ?
  1959. "enabled" : "disabled");
  1960. /* Tell the network stack we're gone. gem_do_stop() below will
  1961. * synchronize with TX, stop NAPI etc...
  1962. */
  1963. netif_device_detach(dev);
  1964. /* Switch off chip, remember WOL setting */
  1965. gp->asleep_wol = !!gp->wake_on_lan;
  1966. gem_do_stop(dev, gp->asleep_wol);
  1967. /* Cell not needed neither if no WOL */
  1968. if (!gp->asleep_wol)
  1969. gem_put_cell(gp);
  1970. /* Unlock the network stack */
  1971. rtnl_unlock();
  1972. return 0;
  1973. }
  1974. static int __maybe_unused gem_resume(struct device *dev_d)
  1975. {
  1976. struct net_device *dev = dev_get_drvdata(dev_d);
  1977. struct gem *gp = netdev_priv(dev);
  1978. /* See locking comment in gem_suspend */
  1979. rtnl_lock();
  1980. /* Not running, mark ourselves present, no need for
  1981. * a lock here
  1982. */
  1983. if (!netif_running(dev)) {
  1984. netif_device_attach(dev);
  1985. rtnl_unlock();
  1986. return 0;
  1987. }
  1988. /* Enable the cell */
  1989. gem_get_cell(gp);
  1990. /* Restart chip. If that fails there isn't much we can do, we
  1991. * leave things stopped.
  1992. */
  1993. gem_do_start(dev);
  1994. /* If we had WOL enabled, the cell clock was never turned off during
  1995. * sleep, so we end up beeing unbalanced. Fix that here
  1996. */
  1997. if (gp->asleep_wol)
  1998. gem_put_cell(gp);
  1999. /* Unlock the network stack */
  2000. rtnl_unlock();
  2001. return 0;
  2002. }
  2003. static struct net_device_stats *gem_get_stats(struct net_device *dev)
  2004. {
  2005. struct gem *gp = netdev_priv(dev);
  2006. /* I have seen this being called while the PM was in progress,
  2007. * so we shield against this. Let's also not poke at registers
  2008. * while the reset task is going on.
  2009. *
  2010. * TODO: Move stats collection elsewhere (link timer ?) and
  2011. * make this a nop to avoid all those synchro issues
  2012. */
  2013. if (!netif_device_present(dev) || !netif_running(dev))
  2014. goto bail;
  2015. /* Better safe than sorry... */
  2016. if (WARN_ON(!gp->cell_enabled))
  2017. goto bail;
  2018. dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
  2019. writel(0, gp->regs + MAC_FCSERR);
  2020. dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
  2021. writel(0, gp->regs + MAC_AERR);
  2022. dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
  2023. writel(0, gp->regs + MAC_LERR);
  2024. dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
  2025. dev->stats.collisions +=
  2026. (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
  2027. writel(0, gp->regs + MAC_ECOLL);
  2028. writel(0, gp->regs + MAC_LCOLL);
  2029. bail:
  2030. return &dev->stats;
  2031. }
  2032. static int gem_set_mac_address(struct net_device *dev, void *addr)
  2033. {
  2034. struct sockaddr *macaddr = (struct sockaddr *) addr;
  2035. const unsigned char *e = &dev->dev_addr[0];
  2036. struct gem *gp = netdev_priv(dev);
  2037. if (!is_valid_ether_addr(macaddr->sa_data))
  2038. return -EADDRNOTAVAIL;
  2039. eth_hw_addr_set(dev, macaddr->sa_data);
  2040. /* We'll just catch it later when the device is up'd or resumed */
  2041. if (!netif_running(dev) || !netif_device_present(dev))
  2042. return 0;
  2043. /* Better safe than sorry... */
  2044. if (WARN_ON(!gp->cell_enabled))
  2045. return 0;
  2046. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  2047. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  2048. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  2049. return 0;
  2050. }
  2051. static void gem_set_multicast(struct net_device *dev)
  2052. {
  2053. struct gem *gp = netdev_priv(dev);
  2054. u32 rxcfg, rxcfg_new;
  2055. int limit = 10000;
  2056. if (!netif_running(dev) || !netif_device_present(dev))
  2057. return;
  2058. /* Better safe than sorry... */
  2059. if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
  2060. return;
  2061. rxcfg = readl(gp->regs + MAC_RXCFG);
  2062. rxcfg_new = gem_setup_multicast(gp);
  2063. #ifdef STRIP_FCS
  2064. rxcfg_new |= MAC_RXCFG_SFCS;
  2065. #endif
  2066. gp->mac_rx_cfg = rxcfg_new;
  2067. writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  2068. while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
  2069. if (!limit--)
  2070. break;
  2071. udelay(10);
  2072. }
  2073. rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
  2074. rxcfg |= rxcfg_new;
  2075. writel(rxcfg, gp->regs + MAC_RXCFG);
  2076. }
  2077. /* Jumbo-grams don't seem to work :-( */
  2078. #define GEM_MIN_MTU ETH_MIN_MTU
  2079. #if 1
  2080. #define GEM_MAX_MTU ETH_DATA_LEN
  2081. #else
  2082. #define GEM_MAX_MTU 9000
  2083. #endif
  2084. static int gem_change_mtu(struct net_device *dev, int new_mtu)
  2085. {
  2086. struct gem *gp = netdev_priv(dev);
  2087. dev->mtu = new_mtu;
  2088. /* We'll just catch it later when the device is up'd or resumed */
  2089. if (!netif_running(dev) || !netif_device_present(dev))
  2090. return 0;
  2091. /* Better safe than sorry... */
  2092. if (WARN_ON(!gp->cell_enabled))
  2093. return 0;
  2094. gem_netif_stop(gp);
  2095. gem_reinit_chip(gp);
  2096. if (gp->lstate == link_up)
  2097. gem_set_link_modes(gp);
  2098. gem_netif_start(gp);
  2099. return 0;
  2100. }
  2101. static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2102. {
  2103. struct gem *gp = netdev_priv(dev);
  2104. strscpy(info->driver, DRV_NAME, sizeof(info->driver));
  2105. strscpy(info->version, DRV_VERSION, sizeof(info->version));
  2106. strscpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
  2107. }
  2108. static int gem_get_link_ksettings(struct net_device *dev,
  2109. struct ethtool_link_ksettings *cmd)
  2110. {
  2111. struct gem *gp = netdev_priv(dev);
  2112. u32 supported, advertising;
  2113. if (gp->phy_type == phy_mii_mdio0 ||
  2114. gp->phy_type == phy_mii_mdio1) {
  2115. if (gp->phy_mii.def)
  2116. supported = gp->phy_mii.def->features;
  2117. else
  2118. supported = (SUPPORTED_10baseT_Half |
  2119. SUPPORTED_10baseT_Full);
  2120. /* XXX hardcoded stuff for now */
  2121. cmd->base.port = PORT_MII;
  2122. cmd->base.phy_address = 0; /* XXX fixed PHYAD */
  2123. /* Return current PHY settings */
  2124. cmd->base.autoneg = gp->want_autoneg;
  2125. cmd->base.speed = gp->phy_mii.speed;
  2126. cmd->base.duplex = gp->phy_mii.duplex;
  2127. advertising = gp->phy_mii.advertising;
  2128. /* If we started with a forced mode, we don't have a default
  2129. * advertise set, we need to return something sensible so
  2130. * userland can re-enable autoneg properly.
  2131. */
  2132. if (advertising == 0)
  2133. advertising = supported;
  2134. } else { // XXX PCS ?
  2135. supported =
  2136. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2137. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2138. SUPPORTED_Autoneg);
  2139. advertising = supported;
  2140. cmd->base.speed = 0;
  2141. cmd->base.duplex = 0;
  2142. cmd->base.port = 0;
  2143. cmd->base.phy_address = 0;
  2144. cmd->base.autoneg = 0;
  2145. /* serdes means usually a Fibre connector, with most fixed */
  2146. if (gp->phy_type == phy_serdes) {
  2147. cmd->base.port = PORT_FIBRE;
  2148. supported = (SUPPORTED_1000baseT_Half |
  2149. SUPPORTED_1000baseT_Full |
  2150. SUPPORTED_FIBRE | SUPPORTED_Autoneg |
  2151. SUPPORTED_Pause | SUPPORTED_Asym_Pause);
  2152. advertising = supported;
  2153. if (gp->lstate == link_up)
  2154. cmd->base.speed = SPEED_1000;
  2155. cmd->base.duplex = DUPLEX_FULL;
  2156. cmd->base.autoneg = 1;
  2157. }
  2158. }
  2159. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  2160. supported);
  2161. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  2162. advertising);
  2163. return 0;
  2164. }
  2165. static int gem_set_link_ksettings(struct net_device *dev,
  2166. const struct ethtool_link_ksettings *cmd)
  2167. {
  2168. struct gem *gp = netdev_priv(dev);
  2169. u32 speed = cmd->base.speed;
  2170. u32 advertising;
  2171. ethtool_convert_link_mode_to_legacy_u32(&advertising,
  2172. cmd->link_modes.advertising);
  2173. /* Verify the settings we care about. */
  2174. if (cmd->base.autoneg != AUTONEG_ENABLE &&
  2175. cmd->base.autoneg != AUTONEG_DISABLE)
  2176. return -EINVAL;
  2177. if (cmd->base.autoneg == AUTONEG_ENABLE &&
  2178. advertising == 0)
  2179. return -EINVAL;
  2180. if (cmd->base.autoneg == AUTONEG_DISABLE &&
  2181. ((speed != SPEED_1000 &&
  2182. speed != SPEED_100 &&
  2183. speed != SPEED_10) ||
  2184. (cmd->base.duplex != DUPLEX_HALF &&
  2185. cmd->base.duplex != DUPLEX_FULL)))
  2186. return -EINVAL;
  2187. /* Apply settings and restart link process. */
  2188. if (netif_device_present(gp->dev)) {
  2189. del_timer_sync(&gp->link_timer);
  2190. gem_begin_auto_negotiation(gp, cmd);
  2191. }
  2192. return 0;
  2193. }
  2194. static int gem_nway_reset(struct net_device *dev)
  2195. {
  2196. struct gem *gp = netdev_priv(dev);
  2197. if (!gp->want_autoneg)
  2198. return -EINVAL;
  2199. /* Restart link process */
  2200. if (netif_device_present(gp->dev)) {
  2201. del_timer_sync(&gp->link_timer);
  2202. gem_begin_auto_negotiation(gp, NULL);
  2203. }
  2204. return 0;
  2205. }
  2206. static u32 gem_get_msglevel(struct net_device *dev)
  2207. {
  2208. struct gem *gp = netdev_priv(dev);
  2209. return gp->msg_enable;
  2210. }
  2211. static void gem_set_msglevel(struct net_device *dev, u32 value)
  2212. {
  2213. struct gem *gp = netdev_priv(dev);
  2214. gp->msg_enable = value;
  2215. }
  2216. /* Add more when I understand how to program the chip */
  2217. /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
  2218. #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
  2219. static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2220. {
  2221. struct gem *gp = netdev_priv(dev);
  2222. /* Add more when I understand how to program the chip */
  2223. if (gp->has_wol) {
  2224. wol->supported = WOL_SUPPORTED_MASK;
  2225. wol->wolopts = gp->wake_on_lan;
  2226. } else {
  2227. wol->supported = 0;
  2228. wol->wolopts = 0;
  2229. }
  2230. }
  2231. static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2232. {
  2233. struct gem *gp = netdev_priv(dev);
  2234. if (!gp->has_wol)
  2235. return -EOPNOTSUPP;
  2236. gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
  2237. return 0;
  2238. }
  2239. static const struct ethtool_ops gem_ethtool_ops = {
  2240. .get_drvinfo = gem_get_drvinfo,
  2241. .get_link = ethtool_op_get_link,
  2242. .nway_reset = gem_nway_reset,
  2243. .get_msglevel = gem_get_msglevel,
  2244. .set_msglevel = gem_set_msglevel,
  2245. .get_wol = gem_get_wol,
  2246. .set_wol = gem_set_wol,
  2247. .get_link_ksettings = gem_get_link_ksettings,
  2248. .set_link_ksettings = gem_set_link_ksettings,
  2249. };
  2250. static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2251. {
  2252. struct gem *gp = netdev_priv(dev);
  2253. struct mii_ioctl_data *data = if_mii(ifr);
  2254. int rc = -EOPNOTSUPP;
  2255. /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
  2256. * netif_device_present() is true and holds rtnl_lock for us
  2257. * so we have nothing to worry about
  2258. */
  2259. switch (cmd) {
  2260. case SIOCGMIIPHY: /* Get address of MII PHY in use. */
  2261. data->phy_id = gp->mii_phy_addr;
  2262. fallthrough;
  2263. case SIOCGMIIREG: /* Read MII PHY register. */
  2264. data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
  2265. data->reg_num & 0x1f);
  2266. rc = 0;
  2267. break;
  2268. case SIOCSMIIREG: /* Write MII PHY register. */
  2269. __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
  2270. data->val_in);
  2271. rc = 0;
  2272. break;
  2273. }
  2274. return rc;
  2275. }
  2276. #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
  2277. /* Fetch MAC address from vital product data of PCI ROM. */
  2278. static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
  2279. {
  2280. int this_offset;
  2281. for (this_offset = 0x20; this_offset < len; this_offset++) {
  2282. void __iomem *p = rom_base + this_offset;
  2283. int i;
  2284. if (readb(p + 0) != 0x90 ||
  2285. readb(p + 1) != 0x00 ||
  2286. readb(p + 2) != 0x09 ||
  2287. readb(p + 3) != 0x4e ||
  2288. readb(p + 4) != 0x41 ||
  2289. readb(p + 5) != 0x06)
  2290. continue;
  2291. this_offset += 6;
  2292. p += 6;
  2293. for (i = 0; i < 6; i++)
  2294. dev_addr[i] = readb(p + i);
  2295. return 1;
  2296. }
  2297. return 0;
  2298. }
  2299. static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
  2300. {
  2301. size_t size;
  2302. void __iomem *p = pci_map_rom(pdev, &size);
  2303. if (p) {
  2304. int found;
  2305. found = readb(p) == 0x55 &&
  2306. readb(p + 1) == 0xaa &&
  2307. find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
  2308. pci_unmap_rom(pdev, p);
  2309. if (found)
  2310. return;
  2311. }
  2312. /* Sun MAC prefix then 3 random bytes. */
  2313. dev_addr[0] = 0x08;
  2314. dev_addr[1] = 0x00;
  2315. dev_addr[2] = 0x20;
  2316. get_random_bytes(dev_addr + 3, 3);
  2317. }
  2318. #endif /* not Sparc and not PPC */
  2319. static int gem_get_device_address(struct gem *gp)
  2320. {
  2321. #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
  2322. struct net_device *dev = gp->dev;
  2323. const unsigned char *addr;
  2324. addr = of_get_property(gp->of_node, "local-mac-address", NULL);
  2325. if (addr == NULL) {
  2326. #ifdef CONFIG_SPARC
  2327. addr = idprom->id_ethaddr;
  2328. #else
  2329. printk("\n");
  2330. pr_err("%s: can't get mac-address\n", dev->name);
  2331. return -1;
  2332. #endif
  2333. }
  2334. eth_hw_addr_set(dev, addr);
  2335. #else
  2336. u8 addr[ETH_ALEN];
  2337. get_gem_mac_nonobp(gp->pdev, addr);
  2338. eth_hw_addr_set(gp->dev, addr);
  2339. #endif
  2340. return 0;
  2341. }
  2342. static void gem_remove_one(struct pci_dev *pdev)
  2343. {
  2344. struct net_device *dev = pci_get_drvdata(pdev);
  2345. if (dev) {
  2346. struct gem *gp = netdev_priv(dev);
  2347. unregister_netdev(dev);
  2348. /* Ensure reset task is truly gone */
  2349. cancel_work_sync(&gp->reset_task);
  2350. /* Free resources */
  2351. dma_free_coherent(&pdev->dev, sizeof(struct gem_init_block),
  2352. gp->init_block, gp->gblock_dvma);
  2353. iounmap(gp->regs);
  2354. pci_release_regions(pdev);
  2355. free_netdev(dev);
  2356. }
  2357. }
  2358. static const struct net_device_ops gem_netdev_ops = {
  2359. .ndo_open = gem_open,
  2360. .ndo_stop = gem_close,
  2361. .ndo_start_xmit = gem_start_xmit,
  2362. .ndo_get_stats = gem_get_stats,
  2363. .ndo_set_rx_mode = gem_set_multicast,
  2364. .ndo_eth_ioctl = gem_ioctl,
  2365. .ndo_tx_timeout = gem_tx_timeout,
  2366. .ndo_change_mtu = gem_change_mtu,
  2367. .ndo_validate_addr = eth_validate_addr,
  2368. .ndo_set_mac_address = gem_set_mac_address,
  2369. #ifdef CONFIG_NET_POLL_CONTROLLER
  2370. .ndo_poll_controller = gem_poll_controller,
  2371. #endif
  2372. };
  2373. static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  2374. {
  2375. unsigned long gemreg_base, gemreg_len;
  2376. struct net_device *dev;
  2377. struct gem *gp;
  2378. int err, pci_using_dac;
  2379. printk_once(KERN_INFO "%s", version);
  2380. /* Apple gmac note: during probe, the chip is powered up by
  2381. * the arch code to allow the code below to work (and to let
  2382. * the chip be probed on the config space. It won't stay powered
  2383. * up until the interface is brought up however, so we can't rely
  2384. * on register configuration done at this point.
  2385. */
  2386. err = pci_enable_device(pdev);
  2387. if (err) {
  2388. pr_err("Cannot enable MMIO operation, aborting\n");
  2389. return err;
  2390. }
  2391. pci_set_master(pdev);
  2392. /* Configure DMA attributes. */
  2393. /* All of the GEM documentation states that 64-bit DMA addressing
  2394. * is fully supported and should work just fine. However the
  2395. * front end for RIO based GEMs is different and only supports
  2396. * 32-bit addressing.
  2397. *
  2398. * For now we assume the various PPC GEMs are 32-bit only as well.
  2399. */
  2400. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  2401. pdev->device == PCI_DEVICE_ID_SUN_GEM &&
  2402. !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
  2403. pci_using_dac = 1;
  2404. } else {
  2405. err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
  2406. if (err) {
  2407. pr_err("No usable DMA configuration, aborting\n");
  2408. goto err_disable_device;
  2409. }
  2410. pci_using_dac = 0;
  2411. }
  2412. gemreg_base = pci_resource_start(pdev, 0);
  2413. gemreg_len = pci_resource_len(pdev, 0);
  2414. if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
  2415. pr_err("Cannot find proper PCI device base address, aborting\n");
  2416. err = -ENODEV;
  2417. goto err_disable_device;
  2418. }
  2419. dev = alloc_etherdev(sizeof(*gp));
  2420. if (!dev) {
  2421. err = -ENOMEM;
  2422. goto err_disable_device;
  2423. }
  2424. SET_NETDEV_DEV(dev, &pdev->dev);
  2425. gp = netdev_priv(dev);
  2426. err = pci_request_regions(pdev, DRV_NAME);
  2427. if (err) {
  2428. pr_err("Cannot obtain PCI resources, aborting\n");
  2429. goto err_out_free_netdev;
  2430. }
  2431. gp->pdev = pdev;
  2432. gp->dev = dev;
  2433. gp->msg_enable = DEFAULT_MSG;
  2434. timer_setup(&gp->link_timer, gem_link_timer, 0);
  2435. INIT_WORK(&gp->reset_task, gem_reset_task);
  2436. gp->lstate = link_down;
  2437. gp->timer_ticks = 0;
  2438. netif_carrier_off(dev);
  2439. gp->regs = ioremap(gemreg_base, gemreg_len);
  2440. if (!gp->regs) {
  2441. pr_err("Cannot map device registers, aborting\n");
  2442. err = -EIO;
  2443. goto err_out_free_res;
  2444. }
  2445. /* On Apple, we want a reference to the Open Firmware device-tree
  2446. * node. We use it for clock control.
  2447. */
  2448. #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
  2449. gp->of_node = pci_device_to_OF_node(pdev);
  2450. #endif
  2451. /* Only Apple version supports WOL afaik */
  2452. if (pdev->vendor == PCI_VENDOR_ID_APPLE)
  2453. gp->has_wol = 1;
  2454. /* Make sure cell is enabled */
  2455. gem_get_cell(gp);
  2456. /* Make sure everything is stopped and in init state */
  2457. gem_reset(gp);
  2458. /* Fill up the mii_phy structure (even if we won't use it) */
  2459. gp->phy_mii.dev = dev;
  2460. gp->phy_mii.mdio_read = _sungem_phy_read;
  2461. gp->phy_mii.mdio_write = _sungem_phy_write;
  2462. #ifdef CONFIG_PPC_PMAC
  2463. gp->phy_mii.platform_data = gp->of_node;
  2464. #endif
  2465. /* By default, we start with autoneg */
  2466. gp->want_autoneg = 1;
  2467. /* Check fifo sizes, PHY type, etc... */
  2468. if (gem_check_invariants(gp)) {
  2469. err = -ENODEV;
  2470. goto err_out_iounmap;
  2471. }
  2472. /* It is guaranteed that the returned buffer will be at least
  2473. * PAGE_SIZE aligned.
  2474. */
  2475. gp->init_block = dma_alloc_coherent(&pdev->dev, sizeof(struct gem_init_block),
  2476. &gp->gblock_dvma, GFP_KERNEL);
  2477. if (!gp->init_block) {
  2478. pr_err("Cannot allocate init block, aborting\n");
  2479. err = -ENOMEM;
  2480. goto err_out_iounmap;
  2481. }
  2482. err = gem_get_device_address(gp);
  2483. if (err)
  2484. goto err_out_free_consistent;
  2485. dev->netdev_ops = &gem_netdev_ops;
  2486. netif_napi_add(dev, &gp->napi, gem_poll);
  2487. dev->ethtool_ops = &gem_ethtool_ops;
  2488. dev->watchdog_timeo = 5 * HZ;
  2489. dev->dma = 0;
  2490. /* Set that now, in case PM kicks in now */
  2491. pci_set_drvdata(pdev, dev);
  2492. /* We can do scatter/gather and HW checksum */
  2493. dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
  2494. dev->features = dev->hw_features;
  2495. if (pci_using_dac)
  2496. dev->features |= NETIF_F_HIGHDMA;
  2497. /* MTU range: 68 - 1500 (Jumbo mode is broken) */
  2498. dev->min_mtu = GEM_MIN_MTU;
  2499. dev->max_mtu = GEM_MAX_MTU;
  2500. /* Register with kernel */
  2501. if (register_netdev(dev)) {
  2502. pr_err("Cannot register net device, aborting\n");
  2503. err = -ENOMEM;
  2504. goto err_out_free_consistent;
  2505. }
  2506. /* Undo the get_cell with appropriate locking (we could use
  2507. * ndo_init/uninit but that would be even more clumsy imho)
  2508. */
  2509. rtnl_lock();
  2510. gem_put_cell(gp);
  2511. rtnl_unlock();
  2512. netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
  2513. dev->dev_addr);
  2514. return 0;
  2515. err_out_free_consistent:
  2516. gem_remove_one(pdev);
  2517. err_out_iounmap:
  2518. gem_put_cell(gp);
  2519. iounmap(gp->regs);
  2520. err_out_free_res:
  2521. pci_release_regions(pdev);
  2522. err_out_free_netdev:
  2523. free_netdev(dev);
  2524. err_disable_device:
  2525. pci_disable_device(pdev);
  2526. return err;
  2527. }
  2528. static SIMPLE_DEV_PM_OPS(gem_pm_ops, gem_suspend, gem_resume);
  2529. static struct pci_driver gem_driver = {
  2530. .name = GEM_MODULE_NAME,
  2531. .id_table = gem_pci_tbl,
  2532. .probe = gem_init_one,
  2533. .remove = gem_remove_one,
  2534. .driver.pm = &gem_pm_ops,
  2535. };
  2536. module_pci_driver(gem_driver);