smsc9420.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /***************************************************************************
  3. *
  4. * Copyright (C) 2007,2008 SMSC
  5. *
  6. ***************************************************************************
  7. */
  8. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9. #include <linux/interrupt.h>
  10. #include <linux/kernel.h>
  11. #include <linux/netdevice.h>
  12. #include <linux/phy.h>
  13. #include <linux/pci.h>
  14. #include <linux/if_vlan.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/crc32.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "smsc9420.h"
  21. #define DRV_NAME "smsc9420"
  22. #define DRV_MDIONAME "smsc9420-mdio"
  23. #define DRV_DESCRIPTION "SMSC LAN9420 driver"
  24. #define DRV_VERSION "1.01"
  25. MODULE_LICENSE("GPL");
  26. MODULE_VERSION(DRV_VERSION);
  27. struct smsc9420_dma_desc {
  28. u32 status;
  29. u32 length;
  30. u32 buffer1;
  31. u32 buffer2;
  32. };
  33. struct smsc9420_ring_info {
  34. struct sk_buff *skb;
  35. dma_addr_t mapping;
  36. };
  37. struct smsc9420_pdata {
  38. void __iomem *ioaddr;
  39. struct pci_dev *pdev;
  40. struct net_device *dev;
  41. struct smsc9420_dma_desc *rx_ring;
  42. struct smsc9420_dma_desc *tx_ring;
  43. struct smsc9420_ring_info *tx_buffers;
  44. struct smsc9420_ring_info *rx_buffers;
  45. dma_addr_t rx_dma_addr;
  46. dma_addr_t tx_dma_addr;
  47. int tx_ring_head, tx_ring_tail;
  48. int rx_ring_head, rx_ring_tail;
  49. spinlock_t int_lock;
  50. spinlock_t phy_lock;
  51. struct napi_struct napi;
  52. bool software_irq_signal;
  53. bool rx_csum;
  54. u32 msg_enable;
  55. struct mii_bus *mii_bus;
  56. int last_duplex;
  57. int last_carrier;
  58. };
  59. static const struct pci_device_id smsc9420_id_table[] = {
  60. { PCI_VENDOR_ID_9420, PCI_DEVICE_ID_9420, PCI_ANY_ID, PCI_ANY_ID, },
  61. { 0, }
  62. };
  63. MODULE_DEVICE_TABLE(pci, smsc9420_id_table);
  64. #define SMSC_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  65. static uint smsc_debug;
  66. static uint debug = -1;
  67. module_param(debug, uint, 0);
  68. MODULE_PARM_DESC(debug, "debug level");
  69. static inline u32 smsc9420_reg_read(struct smsc9420_pdata *pd, u32 offset)
  70. {
  71. return ioread32(pd->ioaddr + offset);
  72. }
  73. static inline void
  74. smsc9420_reg_write(struct smsc9420_pdata *pd, u32 offset, u32 value)
  75. {
  76. iowrite32(value, pd->ioaddr + offset);
  77. }
  78. static inline void smsc9420_pci_flush_write(struct smsc9420_pdata *pd)
  79. {
  80. /* to ensure PCI write completion, we must perform a PCI read */
  81. smsc9420_reg_read(pd, ID_REV);
  82. }
  83. static int smsc9420_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
  84. {
  85. struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
  86. unsigned long flags;
  87. u32 addr;
  88. int i, reg = -EIO;
  89. spin_lock_irqsave(&pd->phy_lock, flags);
  90. /* confirm MII not busy */
  91. if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
  92. netif_warn(pd, drv, pd->dev, "MII is busy???\n");
  93. goto out;
  94. }
  95. /* set the address, index & direction (read from PHY) */
  96. addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
  97. MII_ACCESS_MII_READ_;
  98. smsc9420_reg_write(pd, MII_ACCESS, addr);
  99. /* wait for read to complete with 50us timeout */
  100. for (i = 0; i < 5; i++) {
  101. if (!(smsc9420_reg_read(pd, MII_ACCESS) &
  102. MII_ACCESS_MII_BUSY_)) {
  103. reg = (u16)smsc9420_reg_read(pd, MII_DATA);
  104. goto out;
  105. }
  106. udelay(10);
  107. }
  108. netif_warn(pd, drv, pd->dev, "MII busy timeout!\n");
  109. out:
  110. spin_unlock_irqrestore(&pd->phy_lock, flags);
  111. return reg;
  112. }
  113. static int smsc9420_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
  114. u16 val)
  115. {
  116. struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
  117. unsigned long flags;
  118. u32 addr;
  119. int i, reg = -EIO;
  120. spin_lock_irqsave(&pd->phy_lock, flags);
  121. /* confirm MII not busy */
  122. if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
  123. netif_warn(pd, drv, pd->dev, "MII is busy???\n");
  124. goto out;
  125. }
  126. /* put the data to write in the MAC */
  127. smsc9420_reg_write(pd, MII_DATA, (u32)val);
  128. /* set the address, index & direction (write to PHY) */
  129. addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
  130. MII_ACCESS_MII_WRITE_;
  131. smsc9420_reg_write(pd, MII_ACCESS, addr);
  132. /* wait for write to complete with 50us timeout */
  133. for (i = 0; i < 5; i++) {
  134. if (!(smsc9420_reg_read(pd, MII_ACCESS) &
  135. MII_ACCESS_MII_BUSY_)) {
  136. reg = 0;
  137. goto out;
  138. }
  139. udelay(10);
  140. }
  141. netif_warn(pd, drv, pd->dev, "MII busy timeout!\n");
  142. out:
  143. spin_unlock_irqrestore(&pd->phy_lock, flags);
  144. return reg;
  145. }
  146. /* Returns hash bit number for given MAC address
  147. * Example:
  148. * 01 00 5E 00 00 01 -> returns bit number 31 */
  149. static u32 smsc9420_hash(u8 addr[ETH_ALEN])
  150. {
  151. return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f;
  152. }
  153. static int smsc9420_eeprom_reload(struct smsc9420_pdata *pd)
  154. {
  155. int timeout = 100000;
  156. BUG_ON(!pd);
  157. if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
  158. netif_dbg(pd, drv, pd->dev, "%s: Eeprom busy\n", __func__);
  159. return -EIO;
  160. }
  161. smsc9420_reg_write(pd, E2P_CMD,
  162. (E2P_CMD_EPC_BUSY_ | E2P_CMD_EPC_CMD_RELOAD_));
  163. do {
  164. udelay(10);
  165. if (!(smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_))
  166. return 0;
  167. } while (timeout--);
  168. netif_warn(pd, drv, pd->dev, "%s: Eeprom timed out\n", __func__);
  169. return -EIO;
  170. }
  171. static void smsc9420_ethtool_get_drvinfo(struct net_device *netdev,
  172. struct ethtool_drvinfo *drvinfo)
  173. {
  174. struct smsc9420_pdata *pd = netdev_priv(netdev);
  175. strscpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver));
  176. strscpy(drvinfo->bus_info, pci_name(pd->pdev),
  177. sizeof(drvinfo->bus_info));
  178. strscpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
  179. }
  180. static u32 smsc9420_ethtool_get_msglevel(struct net_device *netdev)
  181. {
  182. struct smsc9420_pdata *pd = netdev_priv(netdev);
  183. return pd->msg_enable;
  184. }
  185. static void smsc9420_ethtool_set_msglevel(struct net_device *netdev, u32 data)
  186. {
  187. struct smsc9420_pdata *pd = netdev_priv(netdev);
  188. pd->msg_enable = data;
  189. }
  190. static int smsc9420_ethtool_getregslen(struct net_device *dev)
  191. {
  192. /* all smsc9420 registers plus all phy registers */
  193. return 0x100 + (32 * sizeof(u32));
  194. }
  195. static void
  196. smsc9420_ethtool_getregs(struct net_device *dev, struct ethtool_regs *regs,
  197. void *buf)
  198. {
  199. struct smsc9420_pdata *pd = netdev_priv(dev);
  200. struct phy_device *phy_dev = dev->phydev;
  201. unsigned int i, j = 0;
  202. u32 *data = buf;
  203. regs->version = smsc9420_reg_read(pd, ID_REV);
  204. for (i = 0; i < 0x100; i += (sizeof(u32)))
  205. data[j++] = smsc9420_reg_read(pd, i);
  206. // cannot read phy registers if the net device is down
  207. if (!phy_dev)
  208. return;
  209. for (i = 0; i <= 31; i++)
  210. data[j++] = smsc9420_mii_read(phy_dev->mdio.bus,
  211. phy_dev->mdio.addr, i);
  212. }
  213. static void smsc9420_eeprom_enable_access(struct smsc9420_pdata *pd)
  214. {
  215. unsigned int temp = smsc9420_reg_read(pd, GPIO_CFG);
  216. temp &= ~GPIO_CFG_EEPR_EN_;
  217. smsc9420_reg_write(pd, GPIO_CFG, temp);
  218. msleep(1);
  219. }
  220. static int smsc9420_eeprom_send_cmd(struct smsc9420_pdata *pd, u32 op)
  221. {
  222. int timeout = 100;
  223. u32 e2cmd;
  224. netif_dbg(pd, hw, pd->dev, "op 0x%08x\n", op);
  225. if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
  226. netif_warn(pd, hw, pd->dev, "Busy at start\n");
  227. return -EBUSY;
  228. }
  229. e2cmd = op | E2P_CMD_EPC_BUSY_;
  230. smsc9420_reg_write(pd, E2P_CMD, e2cmd);
  231. do {
  232. msleep(1);
  233. e2cmd = smsc9420_reg_read(pd, E2P_CMD);
  234. } while ((e2cmd & E2P_CMD_EPC_BUSY_) && (--timeout));
  235. if (!timeout) {
  236. netif_info(pd, hw, pd->dev, "TIMED OUT\n");
  237. return -EAGAIN;
  238. }
  239. if (e2cmd & E2P_CMD_EPC_TIMEOUT_) {
  240. netif_info(pd, hw, pd->dev,
  241. "Error occurred during eeprom operation\n");
  242. return -EINVAL;
  243. }
  244. return 0;
  245. }
  246. static int smsc9420_eeprom_read_location(struct smsc9420_pdata *pd,
  247. u8 address, u8 *data)
  248. {
  249. u32 op = E2P_CMD_EPC_CMD_READ_ | address;
  250. int ret;
  251. netif_dbg(pd, hw, pd->dev, "address 0x%x\n", address);
  252. ret = smsc9420_eeprom_send_cmd(pd, op);
  253. if (!ret)
  254. data[address] = smsc9420_reg_read(pd, E2P_DATA);
  255. return ret;
  256. }
  257. static int smsc9420_eeprom_write_location(struct smsc9420_pdata *pd,
  258. u8 address, u8 data)
  259. {
  260. u32 op = E2P_CMD_EPC_CMD_ERASE_ | address;
  261. int ret;
  262. netif_dbg(pd, hw, pd->dev, "address 0x%x, data 0x%x\n", address, data);
  263. ret = smsc9420_eeprom_send_cmd(pd, op);
  264. if (!ret) {
  265. op = E2P_CMD_EPC_CMD_WRITE_ | address;
  266. smsc9420_reg_write(pd, E2P_DATA, (u32)data);
  267. ret = smsc9420_eeprom_send_cmd(pd, op);
  268. }
  269. return ret;
  270. }
  271. static int smsc9420_ethtool_get_eeprom_len(struct net_device *dev)
  272. {
  273. return SMSC9420_EEPROM_SIZE;
  274. }
  275. static int smsc9420_ethtool_get_eeprom(struct net_device *dev,
  276. struct ethtool_eeprom *eeprom, u8 *data)
  277. {
  278. struct smsc9420_pdata *pd = netdev_priv(dev);
  279. u8 eeprom_data[SMSC9420_EEPROM_SIZE];
  280. int len, i;
  281. smsc9420_eeprom_enable_access(pd);
  282. len = min(eeprom->len, SMSC9420_EEPROM_SIZE);
  283. for (i = 0; i < len; i++) {
  284. int ret = smsc9420_eeprom_read_location(pd, i, eeprom_data);
  285. if (ret < 0) {
  286. eeprom->len = 0;
  287. return ret;
  288. }
  289. }
  290. memcpy(data, &eeprom_data[eeprom->offset], len);
  291. eeprom->magic = SMSC9420_EEPROM_MAGIC;
  292. eeprom->len = len;
  293. return 0;
  294. }
  295. static int smsc9420_ethtool_set_eeprom(struct net_device *dev,
  296. struct ethtool_eeprom *eeprom, u8 *data)
  297. {
  298. struct smsc9420_pdata *pd = netdev_priv(dev);
  299. int ret;
  300. if (eeprom->magic != SMSC9420_EEPROM_MAGIC)
  301. return -EINVAL;
  302. smsc9420_eeprom_enable_access(pd);
  303. smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWEN_);
  304. ret = smsc9420_eeprom_write_location(pd, eeprom->offset, *data);
  305. smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWDS_);
  306. /* Single byte write, according to man page */
  307. eeprom->len = 1;
  308. return ret;
  309. }
  310. static const struct ethtool_ops smsc9420_ethtool_ops = {
  311. .get_drvinfo = smsc9420_ethtool_get_drvinfo,
  312. .get_msglevel = smsc9420_ethtool_get_msglevel,
  313. .set_msglevel = smsc9420_ethtool_set_msglevel,
  314. .nway_reset = phy_ethtool_nway_reset,
  315. .get_link = ethtool_op_get_link,
  316. .get_eeprom_len = smsc9420_ethtool_get_eeprom_len,
  317. .get_eeprom = smsc9420_ethtool_get_eeprom,
  318. .set_eeprom = smsc9420_ethtool_set_eeprom,
  319. .get_regs_len = smsc9420_ethtool_getregslen,
  320. .get_regs = smsc9420_ethtool_getregs,
  321. .get_ts_info = ethtool_op_get_ts_info,
  322. .get_link_ksettings = phy_ethtool_get_link_ksettings,
  323. .set_link_ksettings = phy_ethtool_set_link_ksettings,
  324. };
  325. /* Sets the device MAC address to dev_addr */
  326. static void smsc9420_set_mac_address(struct net_device *dev)
  327. {
  328. struct smsc9420_pdata *pd = netdev_priv(dev);
  329. const u8 *dev_addr = dev->dev_addr;
  330. u32 mac_high16 = (dev_addr[5] << 8) | dev_addr[4];
  331. u32 mac_low32 = (dev_addr[3] << 24) | (dev_addr[2] << 16) |
  332. (dev_addr[1] << 8) | dev_addr[0];
  333. smsc9420_reg_write(pd, ADDRH, mac_high16);
  334. smsc9420_reg_write(pd, ADDRL, mac_low32);
  335. }
  336. static void smsc9420_check_mac_address(struct net_device *dev)
  337. {
  338. struct smsc9420_pdata *pd = netdev_priv(dev);
  339. u8 addr[ETH_ALEN];
  340. /* Check if mac address has been specified when bringing interface up */
  341. if (is_valid_ether_addr(dev->dev_addr)) {
  342. smsc9420_set_mac_address(dev);
  343. netif_dbg(pd, probe, pd->dev,
  344. "MAC Address is specified by configuration\n");
  345. } else {
  346. /* Try reading mac address from device. if EEPROM is present
  347. * it will already have been set */
  348. u32 mac_high16 = smsc9420_reg_read(pd, ADDRH);
  349. u32 mac_low32 = smsc9420_reg_read(pd, ADDRL);
  350. addr[0] = (u8)(mac_low32);
  351. addr[1] = (u8)(mac_low32 >> 8);
  352. addr[2] = (u8)(mac_low32 >> 16);
  353. addr[3] = (u8)(mac_low32 >> 24);
  354. addr[4] = (u8)(mac_high16);
  355. addr[5] = (u8)(mac_high16 >> 8);
  356. if (is_valid_ether_addr(addr)) {
  357. /* eeprom values are valid so use them */
  358. eth_hw_addr_set(dev, addr);
  359. netif_dbg(pd, probe, pd->dev,
  360. "Mac Address is read from EEPROM\n");
  361. } else {
  362. /* eeprom values are invalid, generate random MAC */
  363. eth_hw_addr_random(dev);
  364. smsc9420_set_mac_address(dev);
  365. netif_dbg(pd, probe, pd->dev,
  366. "MAC Address is set to random\n");
  367. }
  368. }
  369. }
  370. static void smsc9420_stop_tx(struct smsc9420_pdata *pd)
  371. {
  372. u32 dmac_control, mac_cr, dma_intr_ena;
  373. int timeout = 1000;
  374. /* disable TX DMAC */
  375. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  376. dmac_control &= (~DMAC_CONTROL_ST_);
  377. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  378. /* Wait max 10ms for transmit process to stop */
  379. while (--timeout) {
  380. if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_TS_)
  381. break;
  382. udelay(10);
  383. }
  384. if (!timeout)
  385. netif_warn(pd, ifdown, pd->dev, "TX DMAC failed to stop\n");
  386. /* ACK Tx DMAC stop bit */
  387. smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_TXPS_);
  388. /* mask TX DMAC interrupts */
  389. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  390. dma_intr_ena &= ~(DMAC_INTR_ENA_TX_);
  391. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  392. smsc9420_pci_flush_write(pd);
  393. /* stop MAC TX */
  394. mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_TXEN_);
  395. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  396. smsc9420_pci_flush_write(pd);
  397. }
  398. static void smsc9420_free_tx_ring(struct smsc9420_pdata *pd)
  399. {
  400. int i;
  401. BUG_ON(!pd->tx_ring);
  402. if (!pd->tx_buffers)
  403. return;
  404. for (i = 0; i < TX_RING_SIZE; i++) {
  405. struct sk_buff *skb = pd->tx_buffers[i].skb;
  406. if (skb) {
  407. BUG_ON(!pd->tx_buffers[i].mapping);
  408. dma_unmap_single(&pd->pdev->dev,
  409. pd->tx_buffers[i].mapping, skb->len,
  410. DMA_TO_DEVICE);
  411. dev_kfree_skb_any(skb);
  412. }
  413. pd->tx_ring[i].status = 0;
  414. pd->tx_ring[i].length = 0;
  415. pd->tx_ring[i].buffer1 = 0;
  416. pd->tx_ring[i].buffer2 = 0;
  417. }
  418. wmb();
  419. kfree(pd->tx_buffers);
  420. pd->tx_buffers = NULL;
  421. pd->tx_ring_head = 0;
  422. pd->tx_ring_tail = 0;
  423. }
  424. static void smsc9420_free_rx_ring(struct smsc9420_pdata *pd)
  425. {
  426. int i;
  427. BUG_ON(!pd->rx_ring);
  428. if (!pd->rx_buffers)
  429. return;
  430. for (i = 0; i < RX_RING_SIZE; i++) {
  431. if (pd->rx_buffers[i].skb)
  432. dev_kfree_skb_any(pd->rx_buffers[i].skb);
  433. if (pd->rx_buffers[i].mapping)
  434. dma_unmap_single(&pd->pdev->dev,
  435. pd->rx_buffers[i].mapping,
  436. PKT_BUF_SZ, DMA_FROM_DEVICE);
  437. pd->rx_ring[i].status = 0;
  438. pd->rx_ring[i].length = 0;
  439. pd->rx_ring[i].buffer1 = 0;
  440. pd->rx_ring[i].buffer2 = 0;
  441. }
  442. wmb();
  443. kfree(pd->rx_buffers);
  444. pd->rx_buffers = NULL;
  445. pd->rx_ring_head = 0;
  446. pd->rx_ring_tail = 0;
  447. }
  448. static void smsc9420_stop_rx(struct smsc9420_pdata *pd)
  449. {
  450. int timeout = 1000;
  451. u32 mac_cr, dmac_control, dma_intr_ena;
  452. /* mask RX DMAC interrupts */
  453. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  454. dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
  455. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  456. smsc9420_pci_flush_write(pd);
  457. /* stop RX MAC prior to stoping DMA */
  458. mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_RXEN_);
  459. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  460. smsc9420_pci_flush_write(pd);
  461. /* stop RX DMAC */
  462. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  463. dmac_control &= (~DMAC_CONTROL_SR_);
  464. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  465. smsc9420_pci_flush_write(pd);
  466. /* wait up to 10ms for receive to stop */
  467. while (--timeout) {
  468. if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_RS_)
  469. break;
  470. udelay(10);
  471. }
  472. if (!timeout)
  473. netif_warn(pd, ifdown, pd->dev,
  474. "RX DMAC did not stop! timeout\n");
  475. /* ACK the Rx DMAC stop bit */
  476. smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_RXPS_);
  477. }
  478. static irqreturn_t smsc9420_isr(int irq, void *dev_id)
  479. {
  480. struct smsc9420_pdata *pd = dev_id;
  481. u32 int_cfg, int_sts, int_ctl;
  482. irqreturn_t ret = IRQ_NONE;
  483. ulong flags;
  484. BUG_ON(!pd);
  485. BUG_ON(!pd->ioaddr);
  486. int_cfg = smsc9420_reg_read(pd, INT_CFG);
  487. /* check if it's our interrupt */
  488. if ((int_cfg & (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_)) !=
  489. (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_))
  490. return IRQ_NONE;
  491. int_sts = smsc9420_reg_read(pd, INT_STAT);
  492. if (likely(INT_STAT_DMAC_INT_ & int_sts)) {
  493. u32 status = smsc9420_reg_read(pd, DMAC_STATUS);
  494. u32 ints_to_clear = 0;
  495. if (status & DMAC_STS_TX_) {
  496. ints_to_clear |= (DMAC_STS_TX_ | DMAC_STS_NIS_);
  497. netif_wake_queue(pd->dev);
  498. }
  499. if (status & DMAC_STS_RX_) {
  500. /* mask RX DMAC interrupts */
  501. u32 dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  502. dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
  503. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  504. smsc9420_pci_flush_write(pd);
  505. ints_to_clear |= (DMAC_STS_RX_ | DMAC_STS_NIS_);
  506. napi_schedule(&pd->napi);
  507. }
  508. if (ints_to_clear)
  509. smsc9420_reg_write(pd, DMAC_STATUS, ints_to_clear);
  510. ret = IRQ_HANDLED;
  511. }
  512. if (unlikely(INT_STAT_SW_INT_ & int_sts)) {
  513. /* mask software interrupt */
  514. spin_lock_irqsave(&pd->int_lock, flags);
  515. int_ctl = smsc9420_reg_read(pd, INT_CTL);
  516. int_ctl &= (~INT_CTL_SW_INT_EN_);
  517. smsc9420_reg_write(pd, INT_CTL, int_ctl);
  518. spin_unlock_irqrestore(&pd->int_lock, flags);
  519. smsc9420_reg_write(pd, INT_STAT, INT_STAT_SW_INT_);
  520. pd->software_irq_signal = true;
  521. smp_wmb();
  522. ret = IRQ_HANDLED;
  523. }
  524. /* to ensure PCI write completion, we must perform a PCI read */
  525. smsc9420_pci_flush_write(pd);
  526. return ret;
  527. }
  528. #ifdef CONFIG_NET_POLL_CONTROLLER
  529. static void smsc9420_poll_controller(struct net_device *dev)
  530. {
  531. struct smsc9420_pdata *pd = netdev_priv(dev);
  532. const int irq = pd->pdev->irq;
  533. disable_irq(irq);
  534. smsc9420_isr(0, dev);
  535. enable_irq(irq);
  536. }
  537. #endif /* CONFIG_NET_POLL_CONTROLLER */
  538. static void smsc9420_dmac_soft_reset(struct smsc9420_pdata *pd)
  539. {
  540. smsc9420_reg_write(pd, BUS_MODE, BUS_MODE_SWR_);
  541. smsc9420_reg_read(pd, BUS_MODE);
  542. udelay(2);
  543. if (smsc9420_reg_read(pd, BUS_MODE) & BUS_MODE_SWR_)
  544. netif_warn(pd, drv, pd->dev, "Software reset not cleared\n");
  545. }
  546. static int smsc9420_stop(struct net_device *dev)
  547. {
  548. struct smsc9420_pdata *pd = netdev_priv(dev);
  549. u32 int_cfg;
  550. ulong flags;
  551. BUG_ON(!pd);
  552. BUG_ON(!dev->phydev);
  553. /* disable master interrupt */
  554. spin_lock_irqsave(&pd->int_lock, flags);
  555. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  556. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  557. spin_unlock_irqrestore(&pd->int_lock, flags);
  558. netif_tx_disable(dev);
  559. napi_disable(&pd->napi);
  560. smsc9420_stop_tx(pd);
  561. smsc9420_free_tx_ring(pd);
  562. smsc9420_stop_rx(pd);
  563. smsc9420_free_rx_ring(pd);
  564. free_irq(pd->pdev->irq, pd);
  565. smsc9420_dmac_soft_reset(pd);
  566. phy_stop(dev->phydev);
  567. phy_disconnect(dev->phydev);
  568. mdiobus_unregister(pd->mii_bus);
  569. mdiobus_free(pd->mii_bus);
  570. return 0;
  571. }
  572. static void smsc9420_rx_count_stats(struct net_device *dev, u32 desc_status)
  573. {
  574. if (unlikely(desc_status & RDES0_ERROR_SUMMARY_)) {
  575. dev->stats.rx_errors++;
  576. if (desc_status & RDES0_DESCRIPTOR_ERROR_)
  577. dev->stats.rx_over_errors++;
  578. else if (desc_status & (RDES0_FRAME_TOO_LONG_ |
  579. RDES0_RUNT_FRAME_ | RDES0_COLLISION_SEEN_))
  580. dev->stats.rx_frame_errors++;
  581. else if (desc_status & RDES0_CRC_ERROR_)
  582. dev->stats.rx_crc_errors++;
  583. }
  584. if (unlikely(desc_status & RDES0_LENGTH_ERROR_))
  585. dev->stats.rx_length_errors++;
  586. if (unlikely(!((desc_status & RDES0_LAST_DESCRIPTOR_) &&
  587. (desc_status & RDES0_FIRST_DESCRIPTOR_))))
  588. dev->stats.rx_length_errors++;
  589. if (desc_status & RDES0_MULTICAST_FRAME_)
  590. dev->stats.multicast++;
  591. }
  592. static void smsc9420_rx_handoff(struct smsc9420_pdata *pd, const int index,
  593. const u32 status)
  594. {
  595. struct net_device *dev = pd->dev;
  596. struct sk_buff *skb;
  597. u16 packet_length = (status & RDES0_FRAME_LENGTH_MASK_)
  598. >> RDES0_FRAME_LENGTH_SHFT_;
  599. /* remove crc from packet lendth */
  600. packet_length -= 4;
  601. if (pd->rx_csum)
  602. packet_length -= 2;
  603. dev->stats.rx_packets++;
  604. dev->stats.rx_bytes += packet_length;
  605. dma_unmap_single(&pd->pdev->dev, pd->rx_buffers[index].mapping,
  606. PKT_BUF_SZ, DMA_FROM_DEVICE);
  607. pd->rx_buffers[index].mapping = 0;
  608. skb = pd->rx_buffers[index].skb;
  609. pd->rx_buffers[index].skb = NULL;
  610. if (pd->rx_csum) {
  611. u16 hw_csum = get_unaligned_le16(skb_tail_pointer(skb) +
  612. NET_IP_ALIGN + packet_length + 4);
  613. put_unaligned_le16(hw_csum, &skb->csum);
  614. skb->ip_summed = CHECKSUM_COMPLETE;
  615. }
  616. skb_reserve(skb, NET_IP_ALIGN);
  617. skb_put(skb, packet_length);
  618. skb->protocol = eth_type_trans(skb, dev);
  619. netif_receive_skb(skb);
  620. }
  621. static int smsc9420_alloc_rx_buffer(struct smsc9420_pdata *pd, int index)
  622. {
  623. struct sk_buff *skb = netdev_alloc_skb(pd->dev, PKT_BUF_SZ);
  624. dma_addr_t mapping;
  625. BUG_ON(pd->rx_buffers[index].skb);
  626. BUG_ON(pd->rx_buffers[index].mapping);
  627. if (unlikely(!skb))
  628. return -ENOMEM;
  629. mapping = dma_map_single(&pd->pdev->dev, skb_tail_pointer(skb),
  630. PKT_BUF_SZ, DMA_FROM_DEVICE);
  631. if (dma_mapping_error(&pd->pdev->dev, mapping)) {
  632. dev_kfree_skb_any(skb);
  633. netif_warn(pd, rx_err, pd->dev, "dma_map_single failed!\n");
  634. return -ENOMEM;
  635. }
  636. pd->rx_buffers[index].skb = skb;
  637. pd->rx_buffers[index].mapping = mapping;
  638. pd->rx_ring[index].buffer1 = mapping + NET_IP_ALIGN;
  639. pd->rx_ring[index].status = RDES0_OWN_;
  640. wmb();
  641. return 0;
  642. }
  643. static void smsc9420_alloc_new_rx_buffers(struct smsc9420_pdata *pd)
  644. {
  645. while (pd->rx_ring_tail != pd->rx_ring_head) {
  646. if (smsc9420_alloc_rx_buffer(pd, pd->rx_ring_tail))
  647. break;
  648. pd->rx_ring_tail = (pd->rx_ring_tail + 1) % RX_RING_SIZE;
  649. }
  650. }
  651. static int smsc9420_rx_poll(struct napi_struct *napi, int budget)
  652. {
  653. struct smsc9420_pdata *pd =
  654. container_of(napi, struct smsc9420_pdata, napi);
  655. struct net_device *dev = pd->dev;
  656. u32 drop_frame_cnt, dma_intr_ena, status;
  657. int work_done;
  658. for (work_done = 0; work_done < budget; work_done++) {
  659. rmb();
  660. status = pd->rx_ring[pd->rx_ring_head].status;
  661. /* stop if DMAC owns this dma descriptor */
  662. if (status & RDES0_OWN_)
  663. break;
  664. smsc9420_rx_count_stats(dev, status);
  665. smsc9420_rx_handoff(pd, pd->rx_ring_head, status);
  666. pd->rx_ring_head = (pd->rx_ring_head + 1) % RX_RING_SIZE;
  667. smsc9420_alloc_new_rx_buffers(pd);
  668. }
  669. drop_frame_cnt = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
  670. dev->stats.rx_dropped +=
  671. (drop_frame_cnt & 0xFFFF) + ((drop_frame_cnt >> 17) & 0x3FF);
  672. /* Kick RXDMA */
  673. smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
  674. smsc9420_pci_flush_write(pd);
  675. if (work_done < budget) {
  676. napi_complete_done(&pd->napi, work_done);
  677. /* re-enable RX DMA interrupts */
  678. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  679. dma_intr_ena |= (DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
  680. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  681. smsc9420_pci_flush_write(pd);
  682. }
  683. return work_done;
  684. }
  685. static void
  686. smsc9420_tx_update_stats(struct net_device *dev, u32 status, u32 length)
  687. {
  688. if (unlikely(status & TDES0_ERROR_SUMMARY_)) {
  689. dev->stats.tx_errors++;
  690. if (status & (TDES0_EXCESSIVE_DEFERRAL_ |
  691. TDES0_EXCESSIVE_COLLISIONS_))
  692. dev->stats.tx_aborted_errors++;
  693. if (status & (TDES0_LOSS_OF_CARRIER_ | TDES0_NO_CARRIER_))
  694. dev->stats.tx_carrier_errors++;
  695. } else {
  696. dev->stats.tx_packets++;
  697. dev->stats.tx_bytes += (length & 0x7FF);
  698. }
  699. if (unlikely(status & TDES0_EXCESSIVE_COLLISIONS_)) {
  700. dev->stats.collisions += 16;
  701. } else {
  702. dev->stats.collisions +=
  703. (status & TDES0_COLLISION_COUNT_MASK_) >>
  704. TDES0_COLLISION_COUNT_SHFT_;
  705. }
  706. if (unlikely(status & TDES0_HEARTBEAT_FAIL_))
  707. dev->stats.tx_heartbeat_errors++;
  708. }
  709. /* Check for completed dma transfers, update stats and free skbs */
  710. static void smsc9420_complete_tx(struct net_device *dev)
  711. {
  712. struct smsc9420_pdata *pd = netdev_priv(dev);
  713. while (pd->tx_ring_tail != pd->tx_ring_head) {
  714. int index = pd->tx_ring_tail;
  715. u32 status, length;
  716. rmb();
  717. status = pd->tx_ring[index].status;
  718. length = pd->tx_ring[index].length;
  719. /* Check if DMA still owns this descriptor */
  720. if (unlikely(TDES0_OWN_ & status))
  721. break;
  722. smsc9420_tx_update_stats(dev, status, length);
  723. BUG_ON(!pd->tx_buffers[index].skb);
  724. BUG_ON(!pd->tx_buffers[index].mapping);
  725. dma_unmap_single(&pd->pdev->dev,
  726. pd->tx_buffers[index].mapping,
  727. pd->tx_buffers[index].skb->len,
  728. DMA_TO_DEVICE);
  729. pd->tx_buffers[index].mapping = 0;
  730. dev_kfree_skb_any(pd->tx_buffers[index].skb);
  731. pd->tx_buffers[index].skb = NULL;
  732. pd->tx_ring[index].buffer1 = 0;
  733. wmb();
  734. pd->tx_ring_tail = (pd->tx_ring_tail + 1) % TX_RING_SIZE;
  735. }
  736. }
  737. static netdev_tx_t smsc9420_hard_start_xmit(struct sk_buff *skb,
  738. struct net_device *dev)
  739. {
  740. struct smsc9420_pdata *pd = netdev_priv(dev);
  741. dma_addr_t mapping;
  742. int index = pd->tx_ring_head;
  743. u32 tmp_desc1;
  744. bool about_to_take_last_desc =
  745. (((pd->tx_ring_head + 2) % TX_RING_SIZE) == pd->tx_ring_tail);
  746. smsc9420_complete_tx(dev);
  747. rmb();
  748. BUG_ON(pd->tx_ring[index].status & TDES0_OWN_);
  749. BUG_ON(pd->tx_buffers[index].skb);
  750. BUG_ON(pd->tx_buffers[index].mapping);
  751. mapping = dma_map_single(&pd->pdev->dev, skb->data, skb->len,
  752. DMA_TO_DEVICE);
  753. if (dma_mapping_error(&pd->pdev->dev, mapping)) {
  754. netif_warn(pd, tx_err, pd->dev,
  755. "dma_map_single failed, dropping packet\n");
  756. return NETDEV_TX_BUSY;
  757. }
  758. pd->tx_buffers[index].skb = skb;
  759. pd->tx_buffers[index].mapping = mapping;
  760. tmp_desc1 = (TDES1_LS_ | ((u32)skb->len & 0x7FF));
  761. if (unlikely(about_to_take_last_desc)) {
  762. tmp_desc1 |= TDES1_IC_;
  763. netif_stop_queue(pd->dev);
  764. }
  765. /* check if we are at the last descriptor and need to set EOR */
  766. if (unlikely(index == (TX_RING_SIZE - 1)))
  767. tmp_desc1 |= TDES1_TER_;
  768. pd->tx_ring[index].buffer1 = mapping;
  769. pd->tx_ring[index].length = tmp_desc1;
  770. wmb();
  771. /* increment head */
  772. pd->tx_ring_head = (pd->tx_ring_head + 1) % TX_RING_SIZE;
  773. /* assign ownership to DMAC */
  774. pd->tx_ring[index].status = TDES0_OWN_;
  775. wmb();
  776. skb_tx_timestamp(skb);
  777. /* kick the DMA */
  778. smsc9420_reg_write(pd, TX_POLL_DEMAND, 1);
  779. smsc9420_pci_flush_write(pd);
  780. return NETDEV_TX_OK;
  781. }
  782. static struct net_device_stats *smsc9420_get_stats(struct net_device *dev)
  783. {
  784. struct smsc9420_pdata *pd = netdev_priv(dev);
  785. u32 counter = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
  786. dev->stats.rx_dropped +=
  787. (counter & 0x0000FFFF) + ((counter >> 17) & 0x000003FF);
  788. return &dev->stats;
  789. }
  790. static void smsc9420_set_multicast_list(struct net_device *dev)
  791. {
  792. struct smsc9420_pdata *pd = netdev_priv(dev);
  793. u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
  794. if (dev->flags & IFF_PROMISC) {
  795. netif_dbg(pd, hw, pd->dev, "Promiscuous Mode Enabled\n");
  796. mac_cr |= MAC_CR_PRMS_;
  797. mac_cr &= (~MAC_CR_MCPAS_);
  798. mac_cr &= (~MAC_CR_HPFILT_);
  799. } else if (dev->flags & IFF_ALLMULTI) {
  800. netif_dbg(pd, hw, pd->dev, "Receive all Multicast Enabled\n");
  801. mac_cr &= (~MAC_CR_PRMS_);
  802. mac_cr |= MAC_CR_MCPAS_;
  803. mac_cr &= (~MAC_CR_HPFILT_);
  804. } else if (!netdev_mc_empty(dev)) {
  805. struct netdev_hw_addr *ha;
  806. u32 hash_lo = 0, hash_hi = 0;
  807. netif_dbg(pd, hw, pd->dev, "Multicast filter enabled\n");
  808. netdev_for_each_mc_addr(ha, dev) {
  809. u32 bit_num = smsc9420_hash(ha->addr);
  810. u32 mask = 1 << (bit_num & 0x1F);
  811. if (bit_num & 0x20)
  812. hash_hi |= mask;
  813. else
  814. hash_lo |= mask;
  815. }
  816. smsc9420_reg_write(pd, HASHH, hash_hi);
  817. smsc9420_reg_write(pd, HASHL, hash_lo);
  818. mac_cr &= (~MAC_CR_PRMS_);
  819. mac_cr &= (~MAC_CR_MCPAS_);
  820. mac_cr |= MAC_CR_HPFILT_;
  821. } else {
  822. netif_dbg(pd, hw, pd->dev, "Receive own packets only\n");
  823. smsc9420_reg_write(pd, HASHH, 0);
  824. smsc9420_reg_write(pd, HASHL, 0);
  825. mac_cr &= (~MAC_CR_PRMS_);
  826. mac_cr &= (~MAC_CR_MCPAS_);
  827. mac_cr &= (~MAC_CR_HPFILT_);
  828. }
  829. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  830. smsc9420_pci_flush_write(pd);
  831. }
  832. static void smsc9420_phy_update_flowcontrol(struct smsc9420_pdata *pd)
  833. {
  834. struct net_device *dev = pd->dev;
  835. struct phy_device *phy_dev = dev->phydev;
  836. u32 flow;
  837. if (phy_dev->duplex == DUPLEX_FULL) {
  838. u16 lcladv = phy_read(phy_dev, MII_ADVERTISE);
  839. u16 rmtadv = phy_read(phy_dev, MII_LPA);
  840. u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
  841. if (cap & FLOW_CTRL_RX)
  842. flow = 0xFFFF0002;
  843. else
  844. flow = 0;
  845. netif_info(pd, link, pd->dev, "rx pause %s, tx pause %s\n",
  846. cap & FLOW_CTRL_RX ? "enabled" : "disabled",
  847. cap & FLOW_CTRL_TX ? "enabled" : "disabled");
  848. } else {
  849. netif_info(pd, link, pd->dev, "half duplex\n");
  850. flow = 0;
  851. }
  852. smsc9420_reg_write(pd, FLOW, flow);
  853. }
  854. /* Update link mode if anything has changed. Called periodically when the
  855. * PHY is in polling mode, even if nothing has changed. */
  856. static void smsc9420_phy_adjust_link(struct net_device *dev)
  857. {
  858. struct smsc9420_pdata *pd = netdev_priv(dev);
  859. struct phy_device *phy_dev = dev->phydev;
  860. int carrier;
  861. if (phy_dev->duplex != pd->last_duplex) {
  862. u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
  863. if (phy_dev->duplex) {
  864. netif_dbg(pd, link, pd->dev, "full duplex mode\n");
  865. mac_cr |= MAC_CR_FDPX_;
  866. } else {
  867. netif_dbg(pd, link, pd->dev, "half duplex mode\n");
  868. mac_cr &= ~MAC_CR_FDPX_;
  869. }
  870. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  871. smsc9420_phy_update_flowcontrol(pd);
  872. pd->last_duplex = phy_dev->duplex;
  873. }
  874. carrier = netif_carrier_ok(dev);
  875. if (carrier != pd->last_carrier) {
  876. if (carrier)
  877. netif_dbg(pd, link, pd->dev, "carrier OK\n");
  878. else
  879. netif_dbg(pd, link, pd->dev, "no carrier\n");
  880. pd->last_carrier = carrier;
  881. }
  882. }
  883. static int smsc9420_mii_probe(struct net_device *dev)
  884. {
  885. struct smsc9420_pdata *pd = netdev_priv(dev);
  886. struct phy_device *phydev = NULL;
  887. BUG_ON(dev->phydev);
  888. /* Device only supports internal PHY at address 1 */
  889. phydev = mdiobus_get_phy(pd->mii_bus, 1);
  890. if (!phydev) {
  891. netdev_err(dev, "no PHY found at address 1\n");
  892. return -ENODEV;
  893. }
  894. phydev = phy_connect(dev, phydev_name(phydev),
  895. smsc9420_phy_adjust_link, PHY_INTERFACE_MODE_MII);
  896. if (IS_ERR(phydev)) {
  897. netdev_err(dev, "Could not attach to PHY\n");
  898. return PTR_ERR(phydev);
  899. }
  900. phy_set_max_speed(phydev, SPEED_100);
  901. /* mask with MAC supported features */
  902. phy_support_asym_pause(phydev);
  903. phy_attached_info(phydev);
  904. pd->last_duplex = -1;
  905. pd->last_carrier = -1;
  906. return 0;
  907. }
  908. static int smsc9420_mii_init(struct net_device *dev)
  909. {
  910. struct smsc9420_pdata *pd = netdev_priv(dev);
  911. int err = -ENXIO;
  912. pd->mii_bus = mdiobus_alloc();
  913. if (!pd->mii_bus) {
  914. err = -ENOMEM;
  915. goto err_out_1;
  916. }
  917. pd->mii_bus->name = DRV_MDIONAME;
  918. snprintf(pd->mii_bus->id, MII_BUS_ID_SIZE, "%x",
  919. (pd->pdev->bus->number << 8) | pd->pdev->devfn);
  920. pd->mii_bus->priv = pd;
  921. pd->mii_bus->read = smsc9420_mii_read;
  922. pd->mii_bus->write = smsc9420_mii_write;
  923. /* Mask all PHYs except ID 1 (internal) */
  924. pd->mii_bus->phy_mask = ~(1 << 1);
  925. if (mdiobus_register(pd->mii_bus)) {
  926. netif_warn(pd, probe, pd->dev, "Error registering mii bus\n");
  927. goto err_out_free_bus_2;
  928. }
  929. if (smsc9420_mii_probe(dev) < 0) {
  930. netif_warn(pd, probe, pd->dev, "Error probing mii bus\n");
  931. goto err_out_unregister_bus_3;
  932. }
  933. return 0;
  934. err_out_unregister_bus_3:
  935. mdiobus_unregister(pd->mii_bus);
  936. err_out_free_bus_2:
  937. mdiobus_free(pd->mii_bus);
  938. err_out_1:
  939. return err;
  940. }
  941. static int smsc9420_alloc_tx_ring(struct smsc9420_pdata *pd)
  942. {
  943. int i;
  944. BUG_ON(!pd->tx_ring);
  945. pd->tx_buffers = kmalloc_array(TX_RING_SIZE,
  946. sizeof(struct smsc9420_ring_info),
  947. GFP_KERNEL);
  948. if (!pd->tx_buffers)
  949. return -ENOMEM;
  950. /* Initialize the TX Ring */
  951. for (i = 0; i < TX_RING_SIZE; i++) {
  952. pd->tx_buffers[i].skb = NULL;
  953. pd->tx_buffers[i].mapping = 0;
  954. pd->tx_ring[i].status = 0;
  955. pd->tx_ring[i].length = 0;
  956. pd->tx_ring[i].buffer1 = 0;
  957. pd->tx_ring[i].buffer2 = 0;
  958. }
  959. pd->tx_ring[TX_RING_SIZE - 1].length = TDES1_TER_;
  960. wmb();
  961. pd->tx_ring_head = 0;
  962. pd->tx_ring_tail = 0;
  963. smsc9420_reg_write(pd, TX_BASE_ADDR, pd->tx_dma_addr);
  964. smsc9420_pci_flush_write(pd);
  965. return 0;
  966. }
  967. static int smsc9420_alloc_rx_ring(struct smsc9420_pdata *pd)
  968. {
  969. int i;
  970. BUG_ON(!pd->rx_ring);
  971. pd->rx_buffers = kmalloc_array(RX_RING_SIZE,
  972. sizeof(struct smsc9420_ring_info),
  973. GFP_KERNEL);
  974. if (pd->rx_buffers == NULL)
  975. goto out;
  976. /* initialize the rx ring */
  977. for (i = 0; i < RX_RING_SIZE; i++) {
  978. pd->rx_ring[i].status = 0;
  979. pd->rx_ring[i].length = PKT_BUF_SZ;
  980. pd->rx_ring[i].buffer2 = 0;
  981. pd->rx_buffers[i].skb = NULL;
  982. pd->rx_buffers[i].mapping = 0;
  983. }
  984. pd->rx_ring[RX_RING_SIZE - 1].length = (PKT_BUF_SZ | RDES1_RER_);
  985. /* now allocate the entire ring of skbs */
  986. for (i = 0; i < RX_RING_SIZE; i++) {
  987. if (smsc9420_alloc_rx_buffer(pd, i)) {
  988. netif_warn(pd, ifup, pd->dev,
  989. "failed to allocate rx skb %d\n", i);
  990. goto out_free_rx_skbs;
  991. }
  992. }
  993. pd->rx_ring_head = 0;
  994. pd->rx_ring_tail = 0;
  995. smsc9420_reg_write(pd, VLAN1, ETH_P_8021Q);
  996. netif_dbg(pd, ifup, pd->dev, "VLAN1 = 0x%08x\n",
  997. smsc9420_reg_read(pd, VLAN1));
  998. if (pd->rx_csum) {
  999. /* Enable RX COE */
  1000. u32 coe = smsc9420_reg_read(pd, COE_CR) | RX_COE_EN;
  1001. smsc9420_reg_write(pd, COE_CR, coe);
  1002. netif_dbg(pd, ifup, pd->dev, "COE_CR = 0x%08x\n", coe);
  1003. }
  1004. smsc9420_reg_write(pd, RX_BASE_ADDR, pd->rx_dma_addr);
  1005. smsc9420_pci_flush_write(pd);
  1006. return 0;
  1007. out_free_rx_skbs:
  1008. smsc9420_free_rx_ring(pd);
  1009. out:
  1010. return -ENOMEM;
  1011. }
  1012. static int smsc9420_open(struct net_device *dev)
  1013. {
  1014. struct smsc9420_pdata *pd = netdev_priv(dev);
  1015. u32 bus_mode, mac_cr, dmac_control, int_cfg, dma_intr_ena, int_ctl;
  1016. const int irq = pd->pdev->irq;
  1017. unsigned long flags;
  1018. int result = 0, timeout;
  1019. if (!is_valid_ether_addr(dev->dev_addr)) {
  1020. netif_warn(pd, ifup, pd->dev,
  1021. "dev_addr is not a valid MAC address\n");
  1022. result = -EADDRNOTAVAIL;
  1023. goto out_0;
  1024. }
  1025. netif_carrier_off(dev);
  1026. /* disable, mask and acknowledge all interrupts */
  1027. spin_lock_irqsave(&pd->int_lock, flags);
  1028. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1029. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1030. smsc9420_reg_write(pd, INT_CTL, 0);
  1031. spin_unlock_irqrestore(&pd->int_lock, flags);
  1032. smsc9420_reg_write(pd, DMAC_INTR_ENA, 0);
  1033. smsc9420_reg_write(pd, INT_STAT, 0xFFFFFFFF);
  1034. smsc9420_pci_flush_write(pd);
  1035. result = request_irq(irq, smsc9420_isr, IRQF_SHARED, DRV_NAME, pd);
  1036. if (result) {
  1037. netif_warn(pd, ifup, pd->dev, "Unable to use IRQ = %d\n", irq);
  1038. result = -ENODEV;
  1039. goto out_0;
  1040. }
  1041. smsc9420_dmac_soft_reset(pd);
  1042. /* make sure MAC_CR is sane */
  1043. smsc9420_reg_write(pd, MAC_CR, 0);
  1044. smsc9420_set_mac_address(dev);
  1045. /* Configure GPIO pins to drive LEDs */
  1046. smsc9420_reg_write(pd, GPIO_CFG,
  1047. (GPIO_CFG_LED_3_ | GPIO_CFG_LED_2_ | GPIO_CFG_LED_1_));
  1048. bus_mode = BUS_MODE_DMA_BURST_LENGTH_16;
  1049. #ifdef __BIG_ENDIAN
  1050. bus_mode |= BUS_MODE_DBO_;
  1051. #endif
  1052. smsc9420_reg_write(pd, BUS_MODE, bus_mode);
  1053. smsc9420_pci_flush_write(pd);
  1054. /* set bus master bridge arbitration priority for Rx and TX DMA */
  1055. smsc9420_reg_write(pd, BUS_CFG, BUS_CFG_RXTXWEIGHT_4_1);
  1056. smsc9420_reg_write(pd, DMAC_CONTROL,
  1057. (DMAC_CONTROL_SF_ | DMAC_CONTROL_OSF_));
  1058. smsc9420_pci_flush_write(pd);
  1059. /* test the IRQ connection to the ISR */
  1060. netif_dbg(pd, ifup, pd->dev, "Testing ISR using IRQ %d\n", irq);
  1061. pd->software_irq_signal = false;
  1062. spin_lock_irqsave(&pd->int_lock, flags);
  1063. /* configure interrupt deassertion timer and enable interrupts */
  1064. int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
  1065. int_cfg &= ~(INT_CFG_INT_DEAS_MASK);
  1066. int_cfg |= (INT_DEAS_TIME & INT_CFG_INT_DEAS_MASK);
  1067. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1068. /* unmask software interrupt */
  1069. int_ctl = smsc9420_reg_read(pd, INT_CTL) | INT_CTL_SW_INT_EN_;
  1070. smsc9420_reg_write(pd, INT_CTL, int_ctl);
  1071. spin_unlock_irqrestore(&pd->int_lock, flags);
  1072. smsc9420_pci_flush_write(pd);
  1073. timeout = 1000;
  1074. while (timeout--) {
  1075. if (pd->software_irq_signal)
  1076. break;
  1077. msleep(1);
  1078. }
  1079. /* disable interrupts */
  1080. spin_lock_irqsave(&pd->int_lock, flags);
  1081. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1082. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1083. spin_unlock_irqrestore(&pd->int_lock, flags);
  1084. if (!pd->software_irq_signal) {
  1085. netif_warn(pd, ifup, pd->dev, "ISR failed signaling test\n");
  1086. result = -ENODEV;
  1087. goto out_free_irq_1;
  1088. }
  1089. netif_dbg(pd, ifup, pd->dev, "ISR passed test using IRQ %d\n", irq);
  1090. result = smsc9420_alloc_tx_ring(pd);
  1091. if (result) {
  1092. netif_warn(pd, ifup, pd->dev,
  1093. "Failed to Initialize tx dma ring\n");
  1094. result = -ENOMEM;
  1095. goto out_free_irq_1;
  1096. }
  1097. result = smsc9420_alloc_rx_ring(pd);
  1098. if (result) {
  1099. netif_warn(pd, ifup, pd->dev,
  1100. "Failed to Initialize rx dma ring\n");
  1101. result = -ENOMEM;
  1102. goto out_free_tx_ring_2;
  1103. }
  1104. result = smsc9420_mii_init(dev);
  1105. if (result) {
  1106. netif_warn(pd, ifup, pd->dev, "Failed to initialize Phy\n");
  1107. result = -ENODEV;
  1108. goto out_free_rx_ring_3;
  1109. }
  1110. /* Bring the PHY up */
  1111. phy_start(dev->phydev);
  1112. napi_enable(&pd->napi);
  1113. /* start tx and rx */
  1114. mac_cr = smsc9420_reg_read(pd, MAC_CR) | MAC_CR_TXEN_ | MAC_CR_RXEN_;
  1115. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  1116. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  1117. dmac_control |= DMAC_CONTROL_ST_ | DMAC_CONTROL_SR_;
  1118. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  1119. smsc9420_pci_flush_write(pd);
  1120. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  1121. dma_intr_ena |=
  1122. (DMAC_INTR_ENA_TX_ | DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
  1123. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  1124. smsc9420_pci_flush_write(pd);
  1125. netif_wake_queue(dev);
  1126. smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
  1127. /* enable interrupts */
  1128. spin_lock_irqsave(&pd->int_lock, flags);
  1129. int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
  1130. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1131. spin_unlock_irqrestore(&pd->int_lock, flags);
  1132. return 0;
  1133. out_free_rx_ring_3:
  1134. smsc9420_free_rx_ring(pd);
  1135. out_free_tx_ring_2:
  1136. smsc9420_free_tx_ring(pd);
  1137. out_free_irq_1:
  1138. free_irq(irq, pd);
  1139. out_0:
  1140. return result;
  1141. }
  1142. static int __maybe_unused smsc9420_suspend(struct device *dev_d)
  1143. {
  1144. struct net_device *dev = dev_get_drvdata(dev_d);
  1145. struct smsc9420_pdata *pd = netdev_priv(dev);
  1146. u32 int_cfg;
  1147. ulong flags;
  1148. /* disable interrupts */
  1149. spin_lock_irqsave(&pd->int_lock, flags);
  1150. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1151. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1152. spin_unlock_irqrestore(&pd->int_lock, flags);
  1153. if (netif_running(dev)) {
  1154. netif_tx_disable(dev);
  1155. smsc9420_stop_tx(pd);
  1156. smsc9420_free_tx_ring(pd);
  1157. napi_disable(&pd->napi);
  1158. smsc9420_stop_rx(pd);
  1159. smsc9420_free_rx_ring(pd);
  1160. free_irq(pd->pdev->irq, pd);
  1161. netif_device_detach(dev);
  1162. }
  1163. device_wakeup_disable(dev_d);
  1164. return 0;
  1165. }
  1166. static int __maybe_unused smsc9420_resume(struct device *dev_d)
  1167. {
  1168. struct net_device *dev = dev_get_drvdata(dev_d);
  1169. int err;
  1170. pci_set_master(to_pci_dev(dev_d));
  1171. device_wakeup_disable(dev_d);
  1172. err = 0;
  1173. if (netif_running(dev)) {
  1174. /* FIXME: gross. It looks like ancient PM relic.*/
  1175. err = smsc9420_open(dev);
  1176. netif_device_attach(dev);
  1177. }
  1178. return err;
  1179. }
  1180. static const struct net_device_ops smsc9420_netdev_ops = {
  1181. .ndo_open = smsc9420_open,
  1182. .ndo_stop = smsc9420_stop,
  1183. .ndo_start_xmit = smsc9420_hard_start_xmit,
  1184. .ndo_get_stats = smsc9420_get_stats,
  1185. .ndo_set_rx_mode = smsc9420_set_multicast_list,
  1186. .ndo_eth_ioctl = phy_do_ioctl_running,
  1187. .ndo_validate_addr = eth_validate_addr,
  1188. .ndo_set_mac_address = eth_mac_addr,
  1189. #ifdef CONFIG_NET_POLL_CONTROLLER
  1190. .ndo_poll_controller = smsc9420_poll_controller,
  1191. #endif /* CONFIG_NET_POLL_CONTROLLER */
  1192. };
  1193. static int
  1194. smsc9420_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1195. {
  1196. struct net_device *dev;
  1197. struct smsc9420_pdata *pd;
  1198. void __iomem *virt_addr;
  1199. int result = 0;
  1200. u32 id_rev;
  1201. pr_info("%s version %s\n", DRV_DESCRIPTION, DRV_VERSION);
  1202. /* First do the PCI initialisation */
  1203. result = pci_enable_device(pdev);
  1204. if (unlikely(result)) {
  1205. pr_err("Cannot enable smsc9420\n");
  1206. goto out_0;
  1207. }
  1208. pci_set_master(pdev);
  1209. dev = alloc_etherdev(sizeof(*pd));
  1210. if (!dev)
  1211. goto out_disable_pci_device_1;
  1212. SET_NETDEV_DEV(dev, &pdev->dev);
  1213. if (!(pci_resource_flags(pdev, SMSC_BAR) & IORESOURCE_MEM)) {
  1214. netdev_err(dev, "Cannot find PCI device base address\n");
  1215. goto out_free_netdev_2;
  1216. }
  1217. if ((pci_request_regions(pdev, DRV_NAME))) {
  1218. netdev_err(dev, "Cannot obtain PCI resources, aborting\n");
  1219. goto out_free_netdev_2;
  1220. }
  1221. if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
  1222. netdev_err(dev, "No usable DMA configuration, aborting\n");
  1223. goto out_free_regions_3;
  1224. }
  1225. virt_addr = ioremap(pci_resource_start(pdev, SMSC_BAR),
  1226. pci_resource_len(pdev, SMSC_BAR));
  1227. if (!virt_addr) {
  1228. netdev_err(dev, "Cannot map device registers, aborting\n");
  1229. goto out_free_regions_3;
  1230. }
  1231. /* registers are double mapped with 0 offset for LE and 0x200 for BE */
  1232. virt_addr += LAN9420_CPSR_ENDIAN_OFFSET;
  1233. pd = netdev_priv(dev);
  1234. /* pci descriptors are created in the PCI consistent area */
  1235. pd->rx_ring = dma_alloc_coherent(&pdev->dev,
  1236. sizeof(struct smsc9420_dma_desc) * (RX_RING_SIZE + TX_RING_SIZE),
  1237. &pd->rx_dma_addr, GFP_KERNEL);
  1238. if (!pd->rx_ring)
  1239. goto out_free_io_4;
  1240. /* descriptors are aligned due to the nature of dma_alloc_coherent */
  1241. pd->tx_ring = (pd->rx_ring + RX_RING_SIZE);
  1242. pd->tx_dma_addr = pd->rx_dma_addr +
  1243. sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE;
  1244. pd->pdev = pdev;
  1245. pd->dev = dev;
  1246. pd->ioaddr = virt_addr;
  1247. pd->msg_enable = smsc_debug;
  1248. pd->rx_csum = true;
  1249. netif_dbg(pd, probe, pd->dev, "lan_base=0x%08lx\n", (ulong)virt_addr);
  1250. id_rev = smsc9420_reg_read(pd, ID_REV);
  1251. switch (id_rev & 0xFFFF0000) {
  1252. case 0x94200000:
  1253. netif_info(pd, probe, pd->dev,
  1254. "LAN9420 identified, ID_REV=0x%08X\n", id_rev);
  1255. break;
  1256. default:
  1257. netif_warn(pd, probe, pd->dev, "LAN9420 NOT identified\n");
  1258. netif_warn(pd, probe, pd->dev, "ID_REV=0x%08X\n", id_rev);
  1259. goto out_free_dmadesc_5;
  1260. }
  1261. smsc9420_dmac_soft_reset(pd);
  1262. smsc9420_eeprom_reload(pd);
  1263. smsc9420_check_mac_address(dev);
  1264. dev->netdev_ops = &smsc9420_netdev_ops;
  1265. dev->ethtool_ops = &smsc9420_ethtool_ops;
  1266. netif_napi_add(dev, &pd->napi, smsc9420_rx_poll);
  1267. result = register_netdev(dev);
  1268. if (result) {
  1269. netif_warn(pd, probe, pd->dev, "error %i registering device\n",
  1270. result);
  1271. goto out_free_dmadesc_5;
  1272. }
  1273. pci_set_drvdata(pdev, dev);
  1274. spin_lock_init(&pd->int_lock);
  1275. spin_lock_init(&pd->phy_lock);
  1276. dev_info(&dev->dev, "MAC Address: %pM\n", dev->dev_addr);
  1277. return 0;
  1278. out_free_dmadesc_5:
  1279. dma_free_coherent(&pdev->dev,
  1280. sizeof(struct smsc9420_dma_desc) * (RX_RING_SIZE + TX_RING_SIZE),
  1281. pd->rx_ring, pd->rx_dma_addr);
  1282. out_free_io_4:
  1283. iounmap(virt_addr - LAN9420_CPSR_ENDIAN_OFFSET);
  1284. out_free_regions_3:
  1285. pci_release_regions(pdev);
  1286. out_free_netdev_2:
  1287. free_netdev(dev);
  1288. out_disable_pci_device_1:
  1289. pci_disable_device(pdev);
  1290. out_0:
  1291. return -ENODEV;
  1292. }
  1293. static void smsc9420_remove(struct pci_dev *pdev)
  1294. {
  1295. struct net_device *dev;
  1296. struct smsc9420_pdata *pd;
  1297. dev = pci_get_drvdata(pdev);
  1298. if (!dev)
  1299. return;
  1300. pd = netdev_priv(dev);
  1301. unregister_netdev(dev);
  1302. /* tx_buffers and rx_buffers are freed in stop */
  1303. BUG_ON(pd->tx_buffers);
  1304. BUG_ON(pd->rx_buffers);
  1305. BUG_ON(!pd->tx_ring);
  1306. BUG_ON(!pd->rx_ring);
  1307. dma_free_coherent(&pdev->dev,
  1308. sizeof(struct smsc9420_dma_desc) * (RX_RING_SIZE + TX_RING_SIZE),
  1309. pd->rx_ring, pd->rx_dma_addr);
  1310. iounmap(pd->ioaddr - LAN9420_CPSR_ENDIAN_OFFSET);
  1311. pci_release_regions(pdev);
  1312. free_netdev(dev);
  1313. pci_disable_device(pdev);
  1314. }
  1315. static SIMPLE_DEV_PM_OPS(smsc9420_pm_ops, smsc9420_suspend, smsc9420_resume);
  1316. static struct pci_driver smsc9420_driver = {
  1317. .name = DRV_NAME,
  1318. .id_table = smsc9420_id_table,
  1319. .probe = smsc9420_probe,
  1320. .remove = smsc9420_remove,
  1321. .driver.pm = &smsc9420_pm_ops,
  1322. };
  1323. static int __init smsc9420_init_module(void)
  1324. {
  1325. smsc_debug = netif_msg_init(debug, SMSC_MSG_DEFAULT);
  1326. return pci_register_driver(&smsc9420_driver);
  1327. }
  1328. static void __exit smsc9420_exit_module(void)
  1329. {
  1330. pci_unregister_driver(&smsc9420_driver);
  1331. }
  1332. module_init(smsc9420_init_module);
  1333. module_exit(smsc9420_exit_module);