tx_common.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /****************************************************************************
  3. * Driver for Solarflare network controllers and boards
  4. * Copyright 2018 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include "net_driver.h"
  11. #include "efx.h"
  12. #include "nic_common.h"
  13. #include "tx_common.h"
  14. static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
  15. {
  16. return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
  17. PAGE_SIZE >> EFX_TX_CB_ORDER);
  18. }
  19. int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
  20. {
  21. struct efx_nic *efx = tx_queue->efx;
  22. unsigned int entries;
  23. int rc;
  24. /* Create the smallest power-of-two aligned ring */
  25. entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
  26. EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
  27. tx_queue->ptr_mask = entries - 1;
  28. netif_dbg(efx, probe, efx->net_dev,
  29. "creating TX queue %d size %#x mask %#x\n",
  30. tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
  31. /* Allocate software ring */
  32. tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
  33. GFP_KERNEL);
  34. if (!tx_queue->buffer)
  35. return -ENOMEM;
  36. tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
  37. sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
  38. if (!tx_queue->cb_page) {
  39. rc = -ENOMEM;
  40. goto fail1;
  41. }
  42. /* Allocate hardware ring, determine TXQ type */
  43. rc = efx_nic_probe_tx(tx_queue);
  44. if (rc)
  45. goto fail2;
  46. tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
  47. return 0;
  48. fail2:
  49. kfree(tx_queue->cb_page);
  50. tx_queue->cb_page = NULL;
  51. fail1:
  52. kfree(tx_queue->buffer);
  53. tx_queue->buffer = NULL;
  54. return rc;
  55. }
  56. void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
  57. {
  58. struct efx_nic *efx = tx_queue->efx;
  59. netif_dbg(efx, drv, efx->net_dev,
  60. "initialising TX queue %d\n", tx_queue->queue);
  61. tx_queue->insert_count = 0;
  62. tx_queue->notify_count = 0;
  63. tx_queue->write_count = 0;
  64. tx_queue->packet_write_count = 0;
  65. tx_queue->old_write_count = 0;
  66. tx_queue->read_count = 0;
  67. tx_queue->old_read_count = 0;
  68. tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
  69. tx_queue->xmit_pending = false;
  70. tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
  71. tx_queue->channel == efx_ptp_channel(efx));
  72. tx_queue->completed_timestamp_major = 0;
  73. tx_queue->completed_timestamp_minor = 0;
  74. tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
  75. tx_queue->tso_version = 0;
  76. /* Set up TX descriptor ring */
  77. efx_nic_init_tx(tx_queue);
  78. tx_queue->initialised = true;
  79. }
  80. void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
  81. {
  82. struct efx_tx_buffer *buffer;
  83. netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
  84. "shutting down TX queue %d\n", tx_queue->queue);
  85. tx_queue->initialised = false;
  86. if (!tx_queue->buffer)
  87. return;
  88. /* Free any buffers left in the ring */
  89. while (tx_queue->read_count != tx_queue->write_count) {
  90. unsigned int pkts_compl = 0, bytes_compl = 0;
  91. unsigned int efv_pkts_compl = 0;
  92. buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
  93. efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
  94. &efv_pkts_compl);
  95. ++tx_queue->read_count;
  96. }
  97. tx_queue->xmit_pending = false;
  98. netdev_tx_reset_queue(tx_queue->core_txq);
  99. }
  100. void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
  101. {
  102. int i;
  103. if (!tx_queue->buffer)
  104. return;
  105. netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
  106. "destroying TX queue %d\n", tx_queue->queue);
  107. efx_nic_remove_tx(tx_queue);
  108. if (tx_queue->cb_page) {
  109. for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
  110. efx_nic_free_buffer(tx_queue->efx,
  111. &tx_queue->cb_page[i]);
  112. kfree(tx_queue->cb_page);
  113. tx_queue->cb_page = NULL;
  114. }
  115. kfree(tx_queue->buffer);
  116. tx_queue->buffer = NULL;
  117. tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
  118. }
  119. void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
  120. struct efx_tx_buffer *buffer,
  121. unsigned int *pkts_compl,
  122. unsigned int *bytes_compl,
  123. unsigned int *efv_pkts_compl)
  124. {
  125. if (buffer->unmap_len) {
  126. struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
  127. dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
  128. if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
  129. dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
  130. DMA_TO_DEVICE);
  131. else
  132. dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
  133. DMA_TO_DEVICE);
  134. buffer->unmap_len = 0;
  135. }
  136. if (buffer->flags & EFX_TX_BUF_SKB) {
  137. struct sk_buff *skb = (struct sk_buff *)buffer->skb;
  138. if (unlikely(buffer->flags & EFX_TX_BUF_EFV)) {
  139. EFX_WARN_ON_PARANOID(!efv_pkts_compl);
  140. (*efv_pkts_compl)++;
  141. } else {
  142. EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
  143. (*pkts_compl)++;
  144. (*bytes_compl) += skb->len;
  145. }
  146. if (tx_queue->timestamping &&
  147. (tx_queue->completed_timestamp_major ||
  148. tx_queue->completed_timestamp_minor)) {
  149. struct skb_shared_hwtstamps hwtstamp;
  150. hwtstamp.hwtstamp =
  151. efx_ptp_nic_to_kernel_time(tx_queue);
  152. skb_tstamp_tx(skb, &hwtstamp);
  153. tx_queue->completed_timestamp_major = 0;
  154. tx_queue->completed_timestamp_minor = 0;
  155. }
  156. dev_consume_skb_any((struct sk_buff *)buffer->skb);
  157. netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
  158. "TX queue %d transmission id %x complete\n",
  159. tx_queue->queue, tx_queue->read_count);
  160. } else if (buffer->flags & EFX_TX_BUF_XDP) {
  161. xdp_return_frame_rx_napi(buffer->xdpf);
  162. }
  163. buffer->len = 0;
  164. buffer->flags = 0;
  165. }
  166. /* Remove packets from the TX queue
  167. *
  168. * This removes packets from the TX queue, up to and including the
  169. * specified index.
  170. */
  171. static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
  172. unsigned int index,
  173. unsigned int *pkts_compl,
  174. unsigned int *bytes_compl,
  175. unsigned int *efv_pkts_compl)
  176. {
  177. struct efx_nic *efx = tx_queue->efx;
  178. unsigned int stop_index, read_ptr;
  179. stop_index = (index + 1) & tx_queue->ptr_mask;
  180. read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
  181. while (read_ptr != stop_index) {
  182. struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
  183. if (!efx_tx_buffer_in_use(buffer)) {
  184. netif_err(efx, tx_err, efx->net_dev,
  185. "TX queue %d spurious TX completion id %d\n",
  186. tx_queue->queue, read_ptr);
  187. efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
  188. return;
  189. }
  190. efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl,
  191. efv_pkts_compl);
  192. ++tx_queue->read_count;
  193. read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
  194. }
  195. }
  196. void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
  197. {
  198. if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
  199. tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
  200. if (tx_queue->read_count == tx_queue->old_write_count) {
  201. /* Ensure that read_count is flushed. */
  202. smp_mb();
  203. tx_queue->empty_read_count =
  204. tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
  205. }
  206. }
  207. }
  208. int efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
  209. {
  210. unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
  211. unsigned int efv_pkts_compl = 0;
  212. struct efx_nic *efx = tx_queue->efx;
  213. EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
  214. efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl,
  215. &efv_pkts_compl);
  216. tx_queue->pkts_compl += pkts_compl;
  217. tx_queue->bytes_compl += bytes_compl;
  218. if (pkts_compl + efv_pkts_compl > 1)
  219. ++tx_queue->merge_events;
  220. /* See if we need to restart the netif queue. This memory
  221. * barrier ensures that we write read_count (inside
  222. * efx_dequeue_buffers()) before reading the queue status.
  223. */
  224. smp_mb();
  225. if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
  226. likely(efx->port_enabled) &&
  227. likely(netif_device_present(efx->net_dev))) {
  228. fill_level = efx_channel_tx_fill_level(tx_queue->channel);
  229. if (fill_level <= efx->txq_wake_thresh)
  230. netif_tx_wake_queue(tx_queue->core_txq);
  231. }
  232. efx_xmit_done_check_empty(tx_queue);
  233. return pkts_compl + efv_pkts_compl;
  234. }
  235. /* Remove buffers put into a tx_queue for the current packet.
  236. * None of the buffers must have an skb attached.
  237. */
  238. void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
  239. unsigned int insert_count)
  240. {
  241. unsigned int efv_pkts_compl = 0;
  242. struct efx_tx_buffer *buffer;
  243. unsigned int bytes_compl = 0;
  244. unsigned int pkts_compl = 0;
  245. /* Work backwards until we hit the original insert pointer value */
  246. while (tx_queue->insert_count != insert_count) {
  247. --tx_queue->insert_count;
  248. buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
  249. efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
  250. &efv_pkts_compl);
  251. }
  252. }
  253. struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
  254. dma_addr_t dma_addr, size_t len)
  255. {
  256. const struct efx_nic_type *nic_type = tx_queue->efx->type;
  257. struct efx_tx_buffer *buffer;
  258. unsigned int dma_len;
  259. /* Map the fragment taking account of NIC-dependent DMA limits. */
  260. do {
  261. buffer = efx_tx_queue_get_insert_buffer(tx_queue);
  262. if (nic_type->tx_limit_len)
  263. dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
  264. else
  265. dma_len = len;
  266. buffer->len = dma_len;
  267. buffer->dma_addr = dma_addr;
  268. buffer->flags = EFX_TX_BUF_CONT;
  269. len -= dma_len;
  270. dma_addr += dma_len;
  271. ++tx_queue->insert_count;
  272. } while (len);
  273. return buffer;
  274. }
  275. int efx_tx_tso_header_length(struct sk_buff *skb)
  276. {
  277. size_t header_len;
  278. if (skb->encapsulation)
  279. header_len = skb_inner_transport_header(skb) -
  280. skb->data +
  281. (inner_tcp_hdr(skb)->doff << 2u);
  282. else
  283. header_len = skb_transport_header(skb) - skb->data +
  284. (tcp_hdr(skb)->doff << 2u);
  285. return header_len;
  286. }
  287. /* Map all data from an SKB for DMA and create descriptors on the queue. */
  288. int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
  289. unsigned int segment_count)
  290. {
  291. struct efx_nic *efx = tx_queue->efx;
  292. struct device *dma_dev = &efx->pci_dev->dev;
  293. unsigned int frag_index, nr_frags;
  294. dma_addr_t dma_addr, unmap_addr;
  295. unsigned short dma_flags;
  296. size_t len, unmap_len;
  297. nr_frags = skb_shinfo(skb)->nr_frags;
  298. frag_index = 0;
  299. /* Map header data. */
  300. len = skb_headlen(skb);
  301. dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
  302. dma_flags = EFX_TX_BUF_MAP_SINGLE;
  303. unmap_len = len;
  304. unmap_addr = dma_addr;
  305. if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
  306. return -EIO;
  307. if (segment_count) {
  308. /* For TSO we need to put the header in to a separate
  309. * descriptor. Map this separately if necessary.
  310. */
  311. size_t header_len = efx_tx_tso_header_length(skb);
  312. if (header_len != len) {
  313. tx_queue->tso_long_headers++;
  314. efx_tx_map_chunk(tx_queue, dma_addr, header_len);
  315. len -= header_len;
  316. dma_addr += header_len;
  317. }
  318. }
  319. /* Add descriptors for each fragment. */
  320. do {
  321. struct efx_tx_buffer *buffer;
  322. skb_frag_t *fragment;
  323. buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
  324. /* The final descriptor for a fragment is responsible for
  325. * unmapping the whole fragment.
  326. */
  327. buffer->flags = EFX_TX_BUF_CONT | dma_flags;
  328. buffer->unmap_len = unmap_len;
  329. buffer->dma_offset = buffer->dma_addr - unmap_addr;
  330. if (frag_index >= nr_frags) {
  331. /* Store SKB details with the final buffer for
  332. * the completion.
  333. */
  334. buffer->skb = skb;
  335. buffer->flags = EFX_TX_BUF_SKB | dma_flags;
  336. return 0;
  337. }
  338. /* Move on to the next fragment. */
  339. fragment = &skb_shinfo(skb)->frags[frag_index++];
  340. len = skb_frag_size(fragment);
  341. dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
  342. DMA_TO_DEVICE);
  343. dma_flags = 0;
  344. unmap_len = len;
  345. unmap_addr = dma_addr;
  346. if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
  347. return -EIO;
  348. } while (1);
  349. }
  350. unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
  351. {
  352. /* Header and payload descriptor for each output segment, plus
  353. * one for every input fragment boundary within a segment
  354. */
  355. unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
  356. /* Possibly one more per segment for option descriptors */
  357. if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
  358. max_descs += EFX_TSO_MAX_SEGS;
  359. /* Possibly more for PCIe page boundaries within input fragments */
  360. if (PAGE_SIZE > EFX_PAGE_SIZE)
  361. max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
  362. DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE,
  363. EFX_PAGE_SIZE));
  364. return max_descs;
  365. }
  366. /*
  367. * Fallback to software TSO.
  368. *
  369. * This is used if we are unable to send a GSO packet through hardware TSO.
  370. * This should only ever happen due to per-queue restrictions - unsupported
  371. * packets should first be filtered by the feature flags.
  372. *
  373. * Returns 0 on success, error code otherwise.
  374. */
  375. int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
  376. {
  377. struct sk_buff *segments, *next;
  378. segments = skb_gso_segment(skb, 0);
  379. if (IS_ERR(segments))
  380. return PTR_ERR(segments);
  381. dev_consume_skb_any(skb);
  382. skb_list_walk_safe(segments, skb, next) {
  383. skb_mark_not_on_list(skb);
  384. efx_enqueue_skb(tx_queue, skb);
  385. }
  386. return 0;
  387. }