nic.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /****************************************************************************
  3. * Driver for Solarflare network controllers and boards
  4. * Copyright 2005-2006 Fen Systems Ltd.
  5. * Copyright 2006-2013 Solarflare Communications Inc.
  6. */
  7. #include <linux/bitops.h>
  8. #include <linux/delay.h>
  9. #include <linux/interrupt.h>
  10. #include <linux/pci.h>
  11. #include <linux/module.h>
  12. #include <linux/seq_file.h>
  13. #include <linux/cpu_rmap.h>
  14. #include "net_driver.h"
  15. #include "bitfield.h"
  16. #include "efx.h"
  17. #include "nic.h"
  18. #include "ef10_regs.h"
  19. #include "farch_regs.h"
  20. #include "io.h"
  21. #include "workarounds.h"
  22. #include "mcdi_pcol.h"
  23. /**************************************************************************
  24. *
  25. * Generic buffer handling
  26. * These buffers are used for interrupt status, MAC stats, etc.
  27. *
  28. **************************************************************************/
  29. int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
  30. unsigned int len, gfp_t gfp_flags)
  31. {
  32. buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
  33. &buffer->dma_addr, gfp_flags);
  34. if (!buffer->addr)
  35. return -ENOMEM;
  36. buffer->len = len;
  37. return 0;
  38. }
  39. void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
  40. {
  41. if (buffer->addr) {
  42. dma_free_coherent(&efx->pci_dev->dev, buffer->len,
  43. buffer->addr, buffer->dma_addr);
  44. buffer->addr = NULL;
  45. }
  46. }
  47. /* Check whether an event is present in the eventq at the current
  48. * read pointer. Only useful for self-test.
  49. */
  50. bool efx_nic_event_present(struct efx_channel *channel)
  51. {
  52. return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
  53. }
  54. void efx_nic_event_test_start(struct efx_channel *channel)
  55. {
  56. channel->event_test_cpu = -1;
  57. smp_wmb();
  58. channel->efx->type->ev_test_generate(channel);
  59. }
  60. int efx_nic_irq_test_start(struct efx_nic *efx)
  61. {
  62. efx->last_irq_cpu = -1;
  63. smp_wmb();
  64. return efx->type->irq_test_generate(efx);
  65. }
  66. /* Hook interrupt handler(s)
  67. * Try MSI and then legacy interrupts.
  68. */
  69. int efx_nic_init_interrupt(struct efx_nic *efx)
  70. {
  71. struct efx_channel *channel;
  72. unsigned int n_irqs;
  73. int rc;
  74. if (!EFX_INT_MODE_USE_MSI(efx)) {
  75. rc = request_irq(efx->legacy_irq,
  76. efx->type->irq_handle_legacy, IRQF_SHARED,
  77. efx->name, efx);
  78. if (rc) {
  79. netif_err(efx, drv, efx->net_dev,
  80. "failed to hook legacy IRQ %d\n",
  81. efx->pci_dev->irq);
  82. goto fail1;
  83. }
  84. efx->irqs_hooked = true;
  85. return 0;
  86. }
  87. #ifdef CONFIG_RFS_ACCEL
  88. if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
  89. efx->net_dev->rx_cpu_rmap =
  90. alloc_irq_cpu_rmap(efx->n_rx_channels);
  91. if (!efx->net_dev->rx_cpu_rmap) {
  92. rc = -ENOMEM;
  93. goto fail1;
  94. }
  95. }
  96. #endif
  97. /* Hook MSI or MSI-X interrupt */
  98. n_irqs = 0;
  99. efx_for_each_channel(channel, efx) {
  100. rc = request_irq(channel->irq, efx->type->irq_handle_msi,
  101. IRQF_PROBE_SHARED, /* Not shared */
  102. efx->msi_context[channel->channel].name,
  103. &efx->msi_context[channel->channel]);
  104. if (rc) {
  105. netif_err(efx, drv, efx->net_dev,
  106. "failed to hook IRQ %d\n", channel->irq);
  107. goto fail2;
  108. }
  109. ++n_irqs;
  110. #ifdef CONFIG_RFS_ACCEL
  111. if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
  112. channel->channel < efx->n_rx_channels) {
  113. rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
  114. channel->irq);
  115. if (rc)
  116. goto fail2;
  117. }
  118. #endif
  119. }
  120. efx->irqs_hooked = true;
  121. return 0;
  122. fail2:
  123. #ifdef CONFIG_RFS_ACCEL
  124. free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
  125. efx->net_dev->rx_cpu_rmap = NULL;
  126. #endif
  127. efx_for_each_channel(channel, efx) {
  128. if (n_irqs-- == 0)
  129. break;
  130. free_irq(channel->irq, &efx->msi_context[channel->channel]);
  131. }
  132. fail1:
  133. return rc;
  134. }
  135. void efx_nic_fini_interrupt(struct efx_nic *efx)
  136. {
  137. struct efx_channel *channel;
  138. #ifdef CONFIG_RFS_ACCEL
  139. free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
  140. efx->net_dev->rx_cpu_rmap = NULL;
  141. #endif
  142. if (!efx->irqs_hooked)
  143. return;
  144. if (EFX_INT_MODE_USE_MSI(efx)) {
  145. /* Disable MSI/MSI-X interrupts */
  146. efx_for_each_channel(channel, efx)
  147. free_irq(channel->irq,
  148. &efx->msi_context[channel->channel]);
  149. } else {
  150. /* Disable legacy interrupt */
  151. free_irq(efx->legacy_irq, efx);
  152. }
  153. efx->irqs_hooked = false;
  154. }
  155. /* Register dump */
  156. #define REGISTER_REVISION_FA 1
  157. #define REGISTER_REVISION_FB 2
  158. #define REGISTER_REVISION_FC 3
  159. #define REGISTER_REVISION_FZ 3 /* last Falcon arch revision */
  160. #define REGISTER_REVISION_ED 4
  161. #define REGISTER_REVISION_EZ 4 /* latest EF10 revision */
  162. struct efx_nic_reg {
  163. u32 offset:24;
  164. u32 min_revision:3, max_revision:3;
  165. };
  166. #define REGISTER(name, arch, min_rev, max_rev) { \
  167. arch ## R_ ## min_rev ## max_rev ## _ ## name, \
  168. REGISTER_REVISION_ ## arch ## min_rev, \
  169. REGISTER_REVISION_ ## arch ## max_rev \
  170. }
  171. #define REGISTER_AA(name) REGISTER(name, F, A, A)
  172. #define REGISTER_AB(name) REGISTER(name, F, A, B)
  173. #define REGISTER_AZ(name) REGISTER(name, F, A, Z)
  174. #define REGISTER_BB(name) REGISTER(name, F, B, B)
  175. #define REGISTER_BZ(name) REGISTER(name, F, B, Z)
  176. #define REGISTER_CZ(name) REGISTER(name, F, C, Z)
  177. #define REGISTER_DZ(name) REGISTER(name, E, D, Z)
  178. static const struct efx_nic_reg efx_nic_regs[] = {
  179. REGISTER_AZ(ADR_REGION),
  180. REGISTER_AZ(INT_EN_KER),
  181. REGISTER_BZ(INT_EN_CHAR),
  182. REGISTER_AZ(INT_ADR_KER),
  183. REGISTER_BZ(INT_ADR_CHAR),
  184. /* INT_ACK_KER is WO */
  185. /* INT_ISR0 is RC */
  186. REGISTER_AZ(HW_INIT),
  187. REGISTER_CZ(USR_EV_CFG),
  188. REGISTER_AB(EE_SPI_HCMD),
  189. REGISTER_AB(EE_SPI_HADR),
  190. REGISTER_AB(EE_SPI_HDATA),
  191. REGISTER_AB(EE_BASE_PAGE),
  192. REGISTER_AB(EE_VPD_CFG0),
  193. /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
  194. /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
  195. /* PCIE_CORE_INDIRECT is indirect */
  196. REGISTER_AB(NIC_STAT),
  197. REGISTER_AB(GPIO_CTL),
  198. REGISTER_AB(GLB_CTL),
  199. /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
  200. REGISTER_BZ(DP_CTRL),
  201. REGISTER_AZ(MEM_STAT),
  202. REGISTER_AZ(CS_DEBUG),
  203. REGISTER_AZ(ALTERA_BUILD),
  204. REGISTER_AZ(CSR_SPARE),
  205. REGISTER_AB(PCIE_SD_CTL0123),
  206. REGISTER_AB(PCIE_SD_CTL45),
  207. REGISTER_AB(PCIE_PCS_CTL_STAT),
  208. /* DEBUG_DATA_OUT is not used */
  209. /* DRV_EV is WO */
  210. REGISTER_AZ(EVQ_CTL),
  211. REGISTER_AZ(EVQ_CNT1),
  212. REGISTER_AZ(EVQ_CNT2),
  213. REGISTER_AZ(BUF_TBL_CFG),
  214. REGISTER_AZ(SRM_RX_DC_CFG),
  215. REGISTER_AZ(SRM_TX_DC_CFG),
  216. REGISTER_AZ(SRM_CFG),
  217. /* BUF_TBL_UPD is WO */
  218. REGISTER_AZ(SRM_UPD_EVQ),
  219. REGISTER_AZ(SRAM_PARITY),
  220. REGISTER_AZ(RX_CFG),
  221. REGISTER_BZ(RX_FILTER_CTL),
  222. /* RX_FLUSH_DESCQ is WO */
  223. REGISTER_AZ(RX_DC_CFG),
  224. REGISTER_AZ(RX_DC_PF_WM),
  225. REGISTER_BZ(RX_RSS_TKEY),
  226. /* RX_NODESC_DROP is RC */
  227. REGISTER_AA(RX_SELF_RST),
  228. /* RX_DEBUG, RX_PUSH_DROP are not used */
  229. REGISTER_CZ(RX_RSS_IPV6_REG1),
  230. REGISTER_CZ(RX_RSS_IPV6_REG2),
  231. REGISTER_CZ(RX_RSS_IPV6_REG3),
  232. /* TX_FLUSH_DESCQ is WO */
  233. REGISTER_AZ(TX_DC_CFG),
  234. REGISTER_AA(TX_CHKSM_CFG),
  235. REGISTER_AZ(TX_CFG),
  236. /* TX_PUSH_DROP is not used */
  237. REGISTER_AZ(TX_RESERVED),
  238. REGISTER_BZ(TX_PACE),
  239. /* TX_PACE_DROP_QID is RC */
  240. REGISTER_BB(TX_VLAN),
  241. REGISTER_BZ(TX_IPFIL_PORTEN),
  242. REGISTER_AB(MD_TXD),
  243. REGISTER_AB(MD_RXD),
  244. REGISTER_AB(MD_CS),
  245. REGISTER_AB(MD_PHY_ADR),
  246. REGISTER_AB(MD_ID),
  247. /* MD_STAT is RC */
  248. REGISTER_AB(MAC_STAT_DMA),
  249. REGISTER_AB(MAC_CTRL),
  250. REGISTER_BB(GEN_MODE),
  251. REGISTER_AB(MAC_MC_HASH_REG0),
  252. REGISTER_AB(MAC_MC_HASH_REG1),
  253. REGISTER_AB(GM_CFG1),
  254. REGISTER_AB(GM_CFG2),
  255. /* GM_IPG and GM_HD are not used */
  256. REGISTER_AB(GM_MAX_FLEN),
  257. /* GM_TEST is not used */
  258. REGISTER_AB(GM_ADR1),
  259. REGISTER_AB(GM_ADR2),
  260. REGISTER_AB(GMF_CFG0),
  261. REGISTER_AB(GMF_CFG1),
  262. REGISTER_AB(GMF_CFG2),
  263. REGISTER_AB(GMF_CFG3),
  264. REGISTER_AB(GMF_CFG4),
  265. REGISTER_AB(GMF_CFG5),
  266. REGISTER_BB(TX_SRC_MAC_CTL),
  267. REGISTER_AB(XM_ADR_LO),
  268. REGISTER_AB(XM_ADR_HI),
  269. REGISTER_AB(XM_GLB_CFG),
  270. REGISTER_AB(XM_TX_CFG),
  271. REGISTER_AB(XM_RX_CFG),
  272. REGISTER_AB(XM_MGT_INT_MASK),
  273. REGISTER_AB(XM_FC),
  274. REGISTER_AB(XM_PAUSE_TIME),
  275. REGISTER_AB(XM_TX_PARAM),
  276. REGISTER_AB(XM_RX_PARAM),
  277. /* XM_MGT_INT_MSK (note no 'A') is RC */
  278. REGISTER_AB(XX_PWR_RST),
  279. REGISTER_AB(XX_SD_CTL),
  280. REGISTER_AB(XX_TXDRV_CTL),
  281. /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
  282. /* XX_CORE_STAT is partly RC */
  283. REGISTER_DZ(BIU_HW_REV_ID),
  284. REGISTER_DZ(MC_DB_LWRD),
  285. REGISTER_DZ(MC_DB_HWRD),
  286. };
  287. struct efx_nic_reg_table {
  288. u32 offset:24;
  289. u32 min_revision:3, max_revision:3;
  290. u32 step:6, rows:21;
  291. };
  292. #define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
  293. offset, \
  294. REGISTER_REVISION_ ## arch ## min_rev, \
  295. REGISTER_REVISION_ ## arch ## max_rev, \
  296. step, rows \
  297. }
  298. #define REGISTER_TABLE(name, arch, min_rev, max_rev) \
  299. REGISTER_TABLE_DIMENSIONS( \
  300. name, arch ## R_ ## min_rev ## max_rev ## _ ## name, \
  301. arch, min_rev, max_rev, \
  302. arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
  303. arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
  304. #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, F, A, A)
  305. #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, F, A, Z)
  306. #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, F, B, B)
  307. #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, F, B, Z)
  308. #define REGISTER_TABLE_BB_CZ(name) \
  309. REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, B, B, \
  310. FR_BZ_ ## name ## _STEP, \
  311. FR_BB_ ## name ## _ROWS), \
  312. REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, C, Z, \
  313. FR_BZ_ ## name ## _STEP, \
  314. FR_CZ_ ## name ## _ROWS)
  315. #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, F, C, Z)
  316. #define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)
  317. static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
  318. /* DRIVER is not used */
  319. /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
  320. REGISTER_TABLE_BB(TX_IPFIL_TBL),
  321. REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
  322. REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
  323. REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
  324. REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
  325. REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
  326. REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
  327. REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
  328. /* We can't reasonably read all of the buffer table (up to 8MB!).
  329. * However this driver will only use a few entries. Reading
  330. * 1K entries allows for some expansion of queue count and
  331. * size before we need to change the version. */
  332. REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
  333. F, A, A, 8, 1024),
  334. REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
  335. F, B, Z, 8, 1024),
  336. REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
  337. REGISTER_TABLE_BB_CZ(TIMER_TBL),
  338. REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
  339. REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
  340. /* TX_FILTER_TBL0 is huge and not used by this driver */
  341. REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
  342. REGISTER_TABLE_CZ(MC_TREG_SMEM),
  343. /* MSIX_PBA_TABLE is not mapped */
  344. /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
  345. REGISTER_TABLE_BZ(RX_FILTER_TBL0),
  346. REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
  347. };
  348. size_t efx_nic_get_regs_len(struct efx_nic *efx)
  349. {
  350. const struct efx_nic_reg *reg;
  351. const struct efx_nic_reg_table *table;
  352. size_t len = 0;
  353. for (reg = efx_nic_regs;
  354. reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
  355. reg++)
  356. if (efx->type->revision >= reg->min_revision &&
  357. efx->type->revision <= reg->max_revision)
  358. len += sizeof(efx_oword_t);
  359. for (table = efx_nic_reg_tables;
  360. table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
  361. table++)
  362. if (efx->type->revision >= table->min_revision &&
  363. efx->type->revision <= table->max_revision)
  364. len += table->rows * min_t(size_t, table->step, 16);
  365. return len;
  366. }
  367. void efx_nic_get_regs(struct efx_nic *efx, void *buf)
  368. {
  369. const struct efx_nic_reg *reg;
  370. const struct efx_nic_reg_table *table;
  371. for (reg = efx_nic_regs;
  372. reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
  373. reg++) {
  374. if (efx->type->revision >= reg->min_revision &&
  375. efx->type->revision <= reg->max_revision) {
  376. efx_reado(efx, (efx_oword_t *)buf, reg->offset);
  377. buf += sizeof(efx_oword_t);
  378. }
  379. }
  380. for (table = efx_nic_reg_tables;
  381. table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
  382. table++) {
  383. size_t size, i;
  384. if (!(efx->type->revision >= table->min_revision &&
  385. efx->type->revision <= table->max_revision))
  386. continue;
  387. size = min_t(size_t, table->step, 16);
  388. for (i = 0; i < table->rows; i++) {
  389. switch (table->step) {
  390. case 4: /* 32-bit SRAM */
  391. efx_readd(efx, buf, table->offset + 4 * i);
  392. break;
  393. case 8: /* 64-bit SRAM */
  394. efx_sram_readq(efx,
  395. efx->membase + table->offset,
  396. buf, i);
  397. break;
  398. case 16: /* 128-bit-readable register */
  399. efx_reado_table(efx, buf, table->offset, i);
  400. break;
  401. case 32: /* 128-bit register, interleaved */
  402. efx_reado_table(efx, buf, table->offset, 2 * i);
  403. break;
  404. default:
  405. WARN_ON(1);
  406. return;
  407. }
  408. buf += size;
  409. }
  410. }
  411. }
  412. /**
  413. * efx_nic_describe_stats - Describe supported statistics for ethtool
  414. * @desc: Array of &struct efx_hw_stat_desc describing the statistics
  415. * @count: Length of the @desc array
  416. * @mask: Bitmask of which elements of @desc are enabled
  417. * @names: Buffer to copy names to, or %NULL. The names are copied
  418. * starting at intervals of %ETH_GSTRING_LEN bytes.
  419. *
  420. * Returns the number of visible statistics, i.e. the number of set
  421. * bits in the first @count bits of @mask for which a name is defined.
  422. */
  423. size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
  424. const unsigned long *mask, u8 *names)
  425. {
  426. size_t visible = 0;
  427. size_t index;
  428. for_each_set_bit(index, mask, count) {
  429. if (desc[index].name) {
  430. if (names) {
  431. strscpy(names, desc[index].name,
  432. ETH_GSTRING_LEN);
  433. names += ETH_GSTRING_LEN;
  434. }
  435. ++visible;
  436. }
  437. }
  438. return visible;
  439. }
  440. /**
  441. * efx_nic_copy_stats - Copy stats from the DMA buffer in to an
  442. * intermediate buffer. This is used to get a consistent
  443. * set of stats while the DMA buffer can be written at any time
  444. * by the NIC.
  445. * @efx: The associated NIC.
  446. * @dest: Destination buffer. Must be the same size as the DMA buffer.
  447. */
  448. int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest)
  449. {
  450. __le64 *dma_stats = efx->stats_buffer.addr;
  451. __le64 generation_start, generation_end;
  452. int rc = 0, retry;
  453. if (!dest)
  454. return 0;
  455. if (!dma_stats)
  456. goto return_zeroes;
  457. /* If we're unlucky enough to read statistics during the DMA, wait
  458. * up to 10ms for it to finish (typically takes <500us)
  459. */
  460. for (retry = 0; retry < 100; ++retry) {
  461. generation_end = dma_stats[efx->num_mac_stats - 1];
  462. if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
  463. goto return_zeroes;
  464. rmb();
  465. memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64));
  466. rmb();
  467. generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
  468. if (generation_end == generation_start)
  469. return 0; /* return good data */
  470. udelay(100);
  471. }
  472. rc = -EIO;
  473. return_zeroes:
  474. memset(dest, 0, efx->num_mac_stats * sizeof(u64));
  475. return rc;
  476. }
  477. /**
  478. * efx_nic_update_stats - Convert statistics DMA buffer to array of u64
  479. * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
  480. * layout. DMA widths of 0, 16, 32 and 64 are supported; where
  481. * the width is specified as 0 the corresponding element of
  482. * @stats is not updated.
  483. * @count: Length of the @desc array
  484. * @mask: Bitmask of which elements of @desc are enabled
  485. * @stats: Buffer to update with the converted statistics. The length
  486. * of this array must be at least @count.
  487. * @dma_buf: DMA buffer containing hardware statistics
  488. * @accumulate: If set, the converted values will be added rather than
  489. * directly stored to the corresponding elements of @stats
  490. */
  491. void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
  492. const unsigned long *mask,
  493. u64 *stats, const void *dma_buf, bool accumulate)
  494. {
  495. size_t index;
  496. for_each_set_bit(index, mask, count) {
  497. if (desc[index].dma_width) {
  498. const void *addr = dma_buf + desc[index].offset;
  499. u64 val;
  500. switch (desc[index].dma_width) {
  501. case 16:
  502. val = le16_to_cpup((__le16 *)addr);
  503. break;
  504. case 32:
  505. val = le32_to_cpup((__le32 *)addr);
  506. break;
  507. case 64:
  508. val = le64_to_cpup((__le64 *)addr);
  509. break;
  510. default:
  511. WARN_ON(1);
  512. val = 0;
  513. break;
  514. }
  515. if (accumulate)
  516. stats[index] += val;
  517. else
  518. stats[index] = val;
  519. }
  520. }
  521. }
  522. void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
  523. {
  524. /* if down, or this is the first update after coming up */
  525. if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
  526. efx->rx_nodesc_drops_while_down +=
  527. *rx_nodesc_drops - efx->rx_nodesc_drops_total;
  528. efx->rx_nodesc_drops_total = *rx_nodesc_drops;
  529. efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
  530. *rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
  531. }