tx.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /****************************************************************************
  3. * Driver for Solarflare network controllers and boards
  4. * Copyright 2005-2006 Fen Systems Ltd.
  5. * Copyright 2005-2013 Solarflare Communications Inc.
  6. */
  7. #include <linux/pci.h>
  8. #include <linux/tcp.h>
  9. #include <linux/ip.h>
  10. #include <linux/in.h>
  11. #include <linux/ipv6.h>
  12. #include <linux/slab.h>
  13. #include <net/ipv6.h>
  14. #include <linux/if_ether.h>
  15. #include <linux/highmem.h>
  16. #include <linux/cache.h>
  17. #include "net_driver.h"
  18. #include "efx.h"
  19. #include "io.h"
  20. #include "nic.h"
  21. #include "tx.h"
  22. #include "workarounds.h"
  23. static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue,
  24. struct ef4_tx_buffer *buffer)
  25. {
  26. unsigned int index = ef4_tx_queue_get_insert_index(tx_queue);
  27. struct ef4_buffer *page_buf =
  28. &tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)];
  29. unsigned int offset =
  30. ((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
  31. if (unlikely(!page_buf->addr) &&
  32. ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
  33. GFP_ATOMIC))
  34. return NULL;
  35. buffer->dma_addr = page_buf->dma_addr + offset;
  36. buffer->unmap_len = 0;
  37. return (u8 *)page_buf->addr + offset;
  38. }
  39. u8 *ef4_tx_get_copy_buffer_limited(struct ef4_tx_queue *tx_queue,
  40. struct ef4_tx_buffer *buffer, size_t len)
  41. {
  42. if (len > EF4_TX_CB_SIZE)
  43. return NULL;
  44. return ef4_tx_get_copy_buffer(tx_queue, buffer);
  45. }
  46. static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue,
  47. struct ef4_tx_buffer *buffer,
  48. unsigned int *pkts_compl,
  49. unsigned int *bytes_compl)
  50. {
  51. if (buffer->unmap_len) {
  52. struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
  53. dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
  54. if (buffer->flags & EF4_TX_BUF_MAP_SINGLE)
  55. dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
  56. DMA_TO_DEVICE);
  57. else
  58. dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
  59. DMA_TO_DEVICE);
  60. buffer->unmap_len = 0;
  61. }
  62. if (buffer->flags & EF4_TX_BUF_SKB) {
  63. (*pkts_compl)++;
  64. (*bytes_compl) += buffer->skb->len;
  65. dev_consume_skb_any((struct sk_buff *)buffer->skb);
  66. netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
  67. "TX queue %d transmission id %x complete\n",
  68. tx_queue->queue, tx_queue->read_count);
  69. }
  70. buffer->len = 0;
  71. buffer->flags = 0;
  72. }
  73. unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx)
  74. {
  75. /* This is probably too much since we don't have any TSO support;
  76. * it's a left-over from when we had Software TSO. But it's safer
  77. * to leave it as-is than try to determine a new bound.
  78. */
  79. /* Header and payload descriptor for each output segment, plus
  80. * one for every input fragment boundary within a segment
  81. */
  82. unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
  83. /* Possibly one more per segment for the alignment workaround,
  84. * or for option descriptors
  85. */
  86. if (EF4_WORKAROUND_5391(efx))
  87. max_descs += EF4_TSO_MAX_SEGS;
  88. /* Possibly more for PCIe page boundaries within input fragments */
  89. if (PAGE_SIZE > EF4_PAGE_SIZE)
  90. max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
  91. DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE,
  92. EF4_PAGE_SIZE));
  93. return max_descs;
  94. }
  95. static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1)
  96. {
  97. /* We need to consider both queues that the net core sees as one */
  98. struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1);
  99. struct ef4_nic *efx = txq1->efx;
  100. unsigned int fill_level;
  101. fill_level = max(txq1->insert_count - txq1->old_read_count,
  102. txq2->insert_count - txq2->old_read_count);
  103. if (likely(fill_level < efx->txq_stop_thresh))
  104. return;
  105. /* We used the stale old_read_count above, which gives us a
  106. * pessimistic estimate of the fill level (which may even
  107. * validly be >= efx->txq_entries). Now try again using
  108. * read_count (more likely to be a cache miss).
  109. *
  110. * If we read read_count and then conditionally stop the
  111. * queue, it is possible for the completion path to race with
  112. * us and complete all outstanding descriptors in the middle,
  113. * after which there will be no more completions to wake it.
  114. * Therefore we stop the queue first, then read read_count
  115. * (with a memory barrier to ensure the ordering), then
  116. * restart the queue if the fill level turns out to be low
  117. * enough.
  118. */
  119. netif_tx_stop_queue(txq1->core_txq);
  120. smp_mb();
  121. txq1->old_read_count = READ_ONCE(txq1->read_count);
  122. txq2->old_read_count = READ_ONCE(txq2->read_count);
  123. fill_level = max(txq1->insert_count - txq1->old_read_count,
  124. txq2->insert_count - txq2->old_read_count);
  125. EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
  126. if (likely(fill_level < efx->txq_stop_thresh)) {
  127. smp_mb();
  128. if (likely(!efx->loopback_selftest))
  129. netif_tx_start_queue(txq1->core_txq);
  130. }
  131. }
  132. static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue,
  133. struct sk_buff *skb)
  134. {
  135. unsigned int min_len = tx_queue->tx_min_size;
  136. unsigned int copy_len = skb->len;
  137. struct ef4_tx_buffer *buffer;
  138. u8 *copy_buffer;
  139. int rc;
  140. EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE);
  141. buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
  142. copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer);
  143. if (unlikely(!copy_buffer))
  144. return -ENOMEM;
  145. rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
  146. EF4_WARN_ON_PARANOID(rc);
  147. if (unlikely(copy_len < min_len)) {
  148. memset(copy_buffer + copy_len, 0, min_len - copy_len);
  149. buffer->len = min_len;
  150. } else {
  151. buffer->len = copy_len;
  152. }
  153. buffer->skb = skb;
  154. buffer->flags = EF4_TX_BUF_SKB;
  155. ++tx_queue->insert_count;
  156. return rc;
  157. }
  158. static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue,
  159. dma_addr_t dma_addr,
  160. size_t len)
  161. {
  162. const struct ef4_nic_type *nic_type = tx_queue->efx->type;
  163. struct ef4_tx_buffer *buffer;
  164. unsigned int dma_len;
  165. /* Map the fragment taking account of NIC-dependent DMA limits. */
  166. do {
  167. buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
  168. dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
  169. buffer->len = dma_len;
  170. buffer->dma_addr = dma_addr;
  171. buffer->flags = EF4_TX_BUF_CONT;
  172. len -= dma_len;
  173. dma_addr += dma_len;
  174. ++tx_queue->insert_count;
  175. } while (len);
  176. return buffer;
  177. }
  178. /* Map all data from an SKB for DMA and create descriptors on the queue.
  179. */
  180. static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
  181. {
  182. struct ef4_nic *efx = tx_queue->efx;
  183. struct device *dma_dev = &efx->pci_dev->dev;
  184. unsigned int frag_index, nr_frags;
  185. dma_addr_t dma_addr, unmap_addr;
  186. unsigned short dma_flags;
  187. size_t len, unmap_len;
  188. nr_frags = skb_shinfo(skb)->nr_frags;
  189. frag_index = 0;
  190. /* Map header data. */
  191. len = skb_headlen(skb);
  192. dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
  193. dma_flags = EF4_TX_BUF_MAP_SINGLE;
  194. unmap_len = len;
  195. unmap_addr = dma_addr;
  196. if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
  197. return -EIO;
  198. /* Add descriptors for each fragment. */
  199. do {
  200. struct ef4_tx_buffer *buffer;
  201. skb_frag_t *fragment;
  202. buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len);
  203. /* The final descriptor for a fragment is responsible for
  204. * unmapping the whole fragment.
  205. */
  206. buffer->flags = EF4_TX_BUF_CONT | dma_flags;
  207. buffer->unmap_len = unmap_len;
  208. buffer->dma_offset = buffer->dma_addr - unmap_addr;
  209. if (frag_index >= nr_frags) {
  210. /* Store SKB details with the final buffer for
  211. * the completion.
  212. */
  213. buffer->skb = skb;
  214. buffer->flags = EF4_TX_BUF_SKB | dma_flags;
  215. return 0;
  216. }
  217. /* Move on to the next fragment. */
  218. fragment = &skb_shinfo(skb)->frags[frag_index++];
  219. len = skb_frag_size(fragment);
  220. dma_addr = skb_frag_dma_map(dma_dev, fragment,
  221. 0, len, DMA_TO_DEVICE);
  222. dma_flags = 0;
  223. unmap_len = len;
  224. unmap_addr = dma_addr;
  225. if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
  226. return -EIO;
  227. } while (1);
  228. }
  229. /* Remove buffers put into a tx_queue. None of the buffers must have
  230. * an skb attached.
  231. */
  232. static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue)
  233. {
  234. struct ef4_tx_buffer *buffer;
  235. /* Work backwards until we hit the original insert pointer value */
  236. while (tx_queue->insert_count != tx_queue->write_count) {
  237. --tx_queue->insert_count;
  238. buffer = __ef4_tx_queue_get_insert_buffer(tx_queue);
  239. ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL);
  240. }
  241. }
  242. /*
  243. * Add a socket buffer to a TX queue
  244. *
  245. * This maps all fragments of a socket buffer for DMA and adds them to
  246. * the TX queue. The queue's insert pointer will be incremented by
  247. * the number of fragments in the socket buffer.
  248. *
  249. * If any DMA mapping fails, any mapped fragments will be unmapped,
  250. * the queue's insert pointer will be restored to its original value.
  251. *
  252. * This function is split out from ef4_hard_start_xmit to allow the
  253. * loopback test to direct packets via specific TX queues.
  254. *
  255. * Returns NETDEV_TX_OK.
  256. * You must hold netif_tx_lock() to call this function.
  257. */
  258. netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
  259. {
  260. bool data_mapped = false;
  261. unsigned int skb_len;
  262. skb_len = skb->len;
  263. EF4_WARN_ON_PARANOID(skb_is_gso(skb));
  264. if (skb_len < tx_queue->tx_min_size ||
  265. (skb->data_len && skb_len <= EF4_TX_CB_SIZE)) {
  266. /* Pad short packets or coalesce short fragmented packets. */
  267. if (ef4_enqueue_skb_copy(tx_queue, skb))
  268. goto err;
  269. tx_queue->cb_packets++;
  270. data_mapped = true;
  271. }
  272. /* Map for DMA and create descriptors if we haven't done so already. */
  273. if (!data_mapped && (ef4_tx_map_data(tx_queue, skb)))
  274. goto err;
  275. /* Update BQL */
  276. netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
  277. /* Pass off to hardware */
  278. if (!netdev_xmit_more() || netif_xmit_stopped(tx_queue->core_txq)) {
  279. struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue);
  280. /* There could be packets left on the partner queue if those
  281. * SKBs had skb->xmit_more set. If we do not push those they
  282. * could be left for a long time and cause a netdev watchdog.
  283. */
  284. if (txq2->xmit_more_available)
  285. ef4_nic_push_buffers(txq2);
  286. ef4_nic_push_buffers(tx_queue);
  287. } else {
  288. tx_queue->xmit_more_available = netdev_xmit_more();
  289. }
  290. tx_queue->tx_packets++;
  291. ef4_tx_maybe_stop_queue(tx_queue);
  292. return NETDEV_TX_OK;
  293. err:
  294. ef4_enqueue_unwind(tx_queue);
  295. dev_kfree_skb_any(skb);
  296. return NETDEV_TX_OK;
  297. }
  298. /* Remove packets from the TX queue
  299. *
  300. * This removes packets from the TX queue, up to and including the
  301. * specified index.
  302. */
  303. static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue,
  304. unsigned int index,
  305. unsigned int *pkts_compl,
  306. unsigned int *bytes_compl)
  307. {
  308. struct ef4_nic *efx = tx_queue->efx;
  309. unsigned int stop_index, read_ptr;
  310. stop_index = (index + 1) & tx_queue->ptr_mask;
  311. read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
  312. while (read_ptr != stop_index) {
  313. struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
  314. if (!(buffer->flags & EF4_TX_BUF_OPTION) &&
  315. unlikely(buffer->len == 0)) {
  316. netif_err(efx, tx_err, efx->net_dev,
  317. "TX queue %d spurious TX completion id %x\n",
  318. tx_queue->queue, read_ptr);
  319. ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP);
  320. return;
  321. }
  322. ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
  323. ++tx_queue->read_count;
  324. read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
  325. }
  326. }
  327. /* Initiate a packet transmission. We use one channel per CPU
  328. * (sharing when we have more CPUs than channels). On Falcon, the TX
  329. * completion events will be directed back to the CPU that transmitted
  330. * the packet, which should be cache-efficient.
  331. *
  332. * Context: non-blocking.
  333. * Note that returning anything other than NETDEV_TX_OK will cause the
  334. * OS to free the skb.
  335. */
  336. netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb,
  337. struct net_device *net_dev)
  338. {
  339. struct ef4_nic *efx = netdev_priv(net_dev);
  340. struct ef4_tx_queue *tx_queue;
  341. unsigned index, type;
  342. EF4_WARN_ON_PARANOID(!netif_device_present(net_dev));
  343. index = skb_get_queue_mapping(skb);
  344. type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0;
  345. if (index >= efx->n_tx_channels) {
  346. index -= efx->n_tx_channels;
  347. type |= EF4_TXQ_TYPE_HIGHPRI;
  348. }
  349. tx_queue = ef4_get_tx_queue(efx, index, type);
  350. return ef4_enqueue_skb(tx_queue, skb);
  351. }
  352. void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue)
  353. {
  354. struct ef4_nic *efx = tx_queue->efx;
  355. /* Must be inverse of queue lookup in ef4_hard_start_xmit() */
  356. tx_queue->core_txq =
  357. netdev_get_tx_queue(efx->net_dev,
  358. tx_queue->queue / EF4_TXQ_TYPES +
  359. ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
  360. efx->n_tx_channels : 0));
  361. }
  362. int ef4_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
  363. void *type_data)
  364. {
  365. struct ef4_nic *efx = netdev_priv(net_dev);
  366. struct tc_mqprio_qopt *mqprio = type_data;
  367. struct ef4_channel *channel;
  368. struct ef4_tx_queue *tx_queue;
  369. unsigned tc, num_tc;
  370. int rc;
  371. if (type != TC_SETUP_QDISC_MQPRIO)
  372. return -EOPNOTSUPP;
  373. num_tc = mqprio->num_tc;
  374. if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC)
  375. return -EINVAL;
  376. mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
  377. if (num_tc == net_dev->num_tc)
  378. return 0;
  379. for (tc = 0; tc < num_tc; tc++) {
  380. net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
  381. net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
  382. }
  383. if (num_tc > net_dev->num_tc) {
  384. /* Initialise high-priority queues as necessary */
  385. ef4_for_each_channel(channel, efx) {
  386. ef4_for_each_possible_channel_tx_queue(tx_queue,
  387. channel) {
  388. if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI))
  389. continue;
  390. if (!tx_queue->buffer) {
  391. rc = ef4_probe_tx_queue(tx_queue);
  392. if (rc)
  393. return rc;
  394. }
  395. if (!tx_queue->initialised)
  396. ef4_init_tx_queue(tx_queue);
  397. ef4_init_tx_queue_core_txq(tx_queue);
  398. }
  399. }
  400. } else {
  401. /* Reduce number of classes before number of queues */
  402. net_dev->num_tc = num_tc;
  403. }
  404. rc = netif_set_real_num_tx_queues(net_dev,
  405. max_t(int, num_tc, 1) *
  406. efx->n_tx_channels);
  407. if (rc)
  408. return rc;
  409. /* Do not destroy high-priority queues when they become
  410. * unused. We would have to flush them first, and it is
  411. * fairly difficult to flush a subset of TX queues. Leave
  412. * it to ef4_fini_channels().
  413. */
  414. net_dev->num_tc = num_tc;
  415. return 0;
  416. }
  417. void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index)
  418. {
  419. unsigned fill_level;
  420. struct ef4_nic *efx = tx_queue->efx;
  421. struct ef4_tx_queue *txq2;
  422. unsigned int pkts_compl = 0, bytes_compl = 0;
  423. EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
  424. ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
  425. tx_queue->pkts_compl += pkts_compl;
  426. tx_queue->bytes_compl += bytes_compl;
  427. if (pkts_compl > 1)
  428. ++tx_queue->merge_events;
  429. /* See if we need to restart the netif queue. This memory
  430. * barrier ensures that we write read_count (inside
  431. * ef4_dequeue_buffers()) before reading the queue status.
  432. */
  433. smp_mb();
  434. if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
  435. likely(efx->port_enabled) &&
  436. likely(netif_device_present(efx->net_dev))) {
  437. txq2 = ef4_tx_queue_partner(tx_queue);
  438. fill_level = max(tx_queue->insert_count - tx_queue->read_count,
  439. txq2->insert_count - txq2->read_count);
  440. if (fill_level <= efx->txq_wake_thresh)
  441. netif_tx_wake_queue(tx_queue->core_txq);
  442. }
  443. /* Check whether the hardware queue is now empty */
  444. if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
  445. tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
  446. if (tx_queue->read_count == tx_queue->old_write_count) {
  447. smp_mb();
  448. tx_queue->empty_read_count =
  449. tx_queue->read_count | EF4_EMPTY_COUNT_VALID;
  450. }
  451. }
  452. }
  453. static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue)
  454. {
  455. return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER);
  456. }
  457. int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue)
  458. {
  459. struct ef4_nic *efx = tx_queue->efx;
  460. unsigned int entries;
  461. int rc;
  462. /* Create the smallest power-of-two aligned ring */
  463. entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE);
  464. EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
  465. tx_queue->ptr_mask = entries - 1;
  466. netif_dbg(efx, probe, efx->net_dev,
  467. "creating TX queue %d size %#x mask %#x\n",
  468. tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
  469. /* Allocate software ring */
  470. tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
  471. GFP_KERNEL);
  472. if (!tx_queue->buffer)
  473. return -ENOMEM;
  474. tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue),
  475. sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
  476. if (!tx_queue->cb_page) {
  477. rc = -ENOMEM;
  478. goto fail1;
  479. }
  480. /* Allocate hardware ring */
  481. rc = ef4_nic_probe_tx(tx_queue);
  482. if (rc)
  483. goto fail2;
  484. return 0;
  485. fail2:
  486. kfree(tx_queue->cb_page);
  487. tx_queue->cb_page = NULL;
  488. fail1:
  489. kfree(tx_queue->buffer);
  490. tx_queue->buffer = NULL;
  491. return rc;
  492. }
  493. void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue)
  494. {
  495. struct ef4_nic *efx = tx_queue->efx;
  496. netif_dbg(efx, drv, efx->net_dev,
  497. "initialising TX queue %d\n", tx_queue->queue);
  498. tx_queue->insert_count = 0;
  499. tx_queue->write_count = 0;
  500. tx_queue->old_write_count = 0;
  501. tx_queue->read_count = 0;
  502. tx_queue->old_read_count = 0;
  503. tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID;
  504. tx_queue->xmit_more_available = false;
  505. /* Some older hardware requires Tx writes larger than 32. */
  506. tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0;
  507. /* Set up TX descriptor ring */
  508. ef4_nic_init_tx(tx_queue);
  509. tx_queue->initialised = true;
  510. }
  511. void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue)
  512. {
  513. struct ef4_tx_buffer *buffer;
  514. netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
  515. "shutting down TX queue %d\n", tx_queue->queue);
  516. if (!tx_queue->buffer)
  517. return;
  518. /* Free any buffers left in the ring */
  519. while (tx_queue->read_count != tx_queue->write_count) {
  520. unsigned int pkts_compl = 0, bytes_compl = 0;
  521. buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
  522. ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
  523. ++tx_queue->read_count;
  524. }
  525. tx_queue->xmit_more_available = false;
  526. netdev_tx_reset_queue(tx_queue->core_txq);
  527. }
  528. void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue)
  529. {
  530. int i;
  531. if (!tx_queue->buffer)
  532. return;
  533. netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
  534. "destroying TX queue %d\n", tx_queue->queue);
  535. ef4_nic_remove_tx(tx_queue);
  536. if (tx_queue->cb_page) {
  537. for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++)
  538. ef4_nic_free_buffer(tx_queue->efx,
  539. &tx_queue->cb_page[i]);
  540. kfree(tx_queue->cb_page);
  541. tx_queue->cb_page = NULL;
  542. }
  543. kfree(tx_queue->buffer);
  544. tx_queue->buffer = NULL;
  545. }