enetc.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937
  1. // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
  2. /* Copyright 2017-2019 NXP */
  3. #include "enetc.h"
  4. #include <linux/bpf_trace.h>
  5. #include <linux/tcp.h>
  6. #include <linux/udp.h>
  7. #include <linux/vmalloc.h>
  8. #include <linux/ptp_classify.h>
  9. #include <net/ip6_checksum.h>
  10. #include <net/pkt_sched.h>
  11. #include <net/tso.h>
  12. static int enetc_num_stack_tx_queues(struct enetc_ndev_priv *priv)
  13. {
  14. int num_tx_rings = priv->num_tx_rings;
  15. int i;
  16. for (i = 0; i < priv->num_rx_rings; i++)
  17. if (priv->rx_ring[i]->xdp.prog)
  18. return num_tx_rings - num_possible_cpus();
  19. return num_tx_rings;
  20. }
  21. static struct enetc_bdr *enetc_rx_ring_from_xdp_tx_ring(struct enetc_ndev_priv *priv,
  22. struct enetc_bdr *tx_ring)
  23. {
  24. int index = &priv->tx_ring[tx_ring->index] - priv->xdp_tx_ring;
  25. return priv->rx_ring[index];
  26. }
  27. static struct sk_buff *enetc_tx_swbd_get_skb(struct enetc_tx_swbd *tx_swbd)
  28. {
  29. if (tx_swbd->is_xdp_tx || tx_swbd->is_xdp_redirect)
  30. return NULL;
  31. return tx_swbd->skb;
  32. }
  33. static struct xdp_frame *
  34. enetc_tx_swbd_get_xdp_frame(struct enetc_tx_swbd *tx_swbd)
  35. {
  36. if (tx_swbd->is_xdp_redirect)
  37. return tx_swbd->xdp_frame;
  38. return NULL;
  39. }
  40. static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
  41. struct enetc_tx_swbd *tx_swbd)
  42. {
  43. /* For XDP_TX, pages come from RX, whereas for the other contexts where
  44. * we have is_dma_page_set, those come from skb_frag_dma_map. We need
  45. * to match the DMA mapping length, so we need to differentiate those.
  46. */
  47. if (tx_swbd->is_dma_page)
  48. dma_unmap_page(tx_ring->dev, tx_swbd->dma,
  49. tx_swbd->is_xdp_tx ? PAGE_SIZE : tx_swbd->len,
  50. tx_swbd->dir);
  51. else
  52. dma_unmap_single(tx_ring->dev, tx_swbd->dma,
  53. tx_swbd->len, tx_swbd->dir);
  54. tx_swbd->dma = 0;
  55. }
  56. static void enetc_free_tx_frame(struct enetc_bdr *tx_ring,
  57. struct enetc_tx_swbd *tx_swbd)
  58. {
  59. struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
  60. struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
  61. if (tx_swbd->dma)
  62. enetc_unmap_tx_buff(tx_ring, tx_swbd);
  63. if (xdp_frame) {
  64. xdp_return_frame(tx_swbd->xdp_frame);
  65. tx_swbd->xdp_frame = NULL;
  66. } else if (skb) {
  67. dev_kfree_skb_any(skb);
  68. tx_swbd->skb = NULL;
  69. }
  70. }
  71. /* Let H/W know BD ring has been updated */
  72. static void enetc_update_tx_ring_tail(struct enetc_bdr *tx_ring)
  73. {
  74. /* includes wmb() */
  75. enetc_wr_reg_hot(tx_ring->tpir, tx_ring->next_to_use);
  76. }
  77. static int enetc_ptp_parse(struct sk_buff *skb, u8 *udp,
  78. u8 *msgtype, u8 *twostep,
  79. u16 *correction_offset, u16 *body_offset)
  80. {
  81. unsigned int ptp_class;
  82. struct ptp_header *hdr;
  83. unsigned int type;
  84. u8 *base;
  85. ptp_class = ptp_classify_raw(skb);
  86. if (ptp_class == PTP_CLASS_NONE)
  87. return -EINVAL;
  88. hdr = ptp_parse_header(skb, ptp_class);
  89. if (!hdr)
  90. return -EINVAL;
  91. type = ptp_class & PTP_CLASS_PMASK;
  92. if (type == PTP_CLASS_IPV4 || type == PTP_CLASS_IPV6)
  93. *udp = 1;
  94. else
  95. *udp = 0;
  96. *msgtype = ptp_get_msgtype(hdr, ptp_class);
  97. *twostep = hdr->flag_field[0] & 0x2;
  98. base = skb_mac_header(skb);
  99. *correction_offset = (u8 *)&hdr->correction - base;
  100. *body_offset = (u8 *)hdr + sizeof(struct ptp_header) - base;
  101. return 0;
  102. }
  103. static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
  104. {
  105. bool do_vlan, do_onestep_tstamp = false, do_twostep_tstamp = false;
  106. struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
  107. struct enetc_hw *hw = &priv->si->hw;
  108. struct enetc_tx_swbd *tx_swbd;
  109. int len = skb_headlen(skb);
  110. union enetc_tx_bd temp_bd;
  111. u8 msgtype, twostep, udp;
  112. union enetc_tx_bd *txbd;
  113. u16 offset1, offset2;
  114. int i, count = 0;
  115. skb_frag_t *frag;
  116. unsigned int f;
  117. dma_addr_t dma;
  118. u8 flags = 0;
  119. i = tx_ring->next_to_use;
  120. txbd = ENETC_TXBD(*tx_ring, i);
  121. prefetchw(txbd);
  122. dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
  123. if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
  124. goto dma_err;
  125. temp_bd.addr = cpu_to_le64(dma);
  126. temp_bd.buf_len = cpu_to_le16(len);
  127. temp_bd.lstatus = 0;
  128. tx_swbd = &tx_ring->tx_swbd[i];
  129. tx_swbd->dma = dma;
  130. tx_swbd->len = len;
  131. tx_swbd->is_dma_page = 0;
  132. tx_swbd->dir = DMA_TO_DEVICE;
  133. count++;
  134. do_vlan = skb_vlan_tag_present(skb);
  135. if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
  136. if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep, &offset1,
  137. &offset2) ||
  138. msgtype != PTP_MSGTYPE_SYNC || twostep)
  139. WARN_ONCE(1, "Bad packet for one-step timestamping\n");
  140. else
  141. do_onestep_tstamp = true;
  142. } else if (skb->cb[0] & ENETC_F_TX_TSTAMP) {
  143. do_twostep_tstamp = true;
  144. }
  145. tx_swbd->do_twostep_tstamp = do_twostep_tstamp;
  146. tx_swbd->qbv_en = !!(priv->active_offloads & ENETC_F_QBV);
  147. tx_swbd->check_wb = tx_swbd->do_twostep_tstamp || tx_swbd->qbv_en;
  148. if (do_vlan || do_onestep_tstamp || do_twostep_tstamp)
  149. flags |= ENETC_TXBD_FLAGS_EX;
  150. if (tx_ring->tsd_enable)
  151. flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART;
  152. /* first BD needs frm_len and offload flags set */
  153. temp_bd.frm_len = cpu_to_le16(skb->len);
  154. temp_bd.flags = flags;
  155. if (flags & ENETC_TXBD_FLAGS_TSE)
  156. temp_bd.txstart = enetc_txbd_set_tx_start(skb->skb_mstamp_ns,
  157. flags);
  158. if (flags & ENETC_TXBD_FLAGS_EX) {
  159. u8 e_flags = 0;
  160. *txbd = temp_bd;
  161. enetc_clear_tx_bd(&temp_bd);
  162. /* add extension BD for VLAN and/or timestamping */
  163. flags = 0;
  164. tx_swbd++;
  165. txbd++;
  166. i++;
  167. if (unlikely(i == tx_ring->bd_count)) {
  168. i = 0;
  169. tx_swbd = tx_ring->tx_swbd;
  170. txbd = ENETC_TXBD(*tx_ring, 0);
  171. }
  172. prefetchw(txbd);
  173. if (do_vlan) {
  174. temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
  175. temp_bd.ext.tpid = 0; /* < C-TAG */
  176. e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
  177. }
  178. if (do_onestep_tstamp) {
  179. u32 lo, hi, val;
  180. u64 sec, nsec;
  181. u8 *data;
  182. lo = enetc_rd_hot(hw, ENETC_SICTR0);
  183. hi = enetc_rd_hot(hw, ENETC_SICTR1);
  184. sec = (u64)hi << 32 | lo;
  185. nsec = do_div(sec, 1000000000);
  186. /* Configure extension BD */
  187. temp_bd.ext.tstamp = cpu_to_le32(lo & 0x3fffffff);
  188. e_flags |= ENETC_TXBD_E_FLAGS_ONE_STEP_PTP;
  189. /* Update originTimestamp field of Sync packet
  190. * - 48 bits seconds field
  191. * - 32 bits nanseconds field
  192. */
  193. data = skb_mac_header(skb);
  194. *(__be16 *)(data + offset2) =
  195. htons((sec >> 32) & 0xffff);
  196. *(__be32 *)(data + offset2 + 2) =
  197. htonl(sec & 0xffffffff);
  198. *(__be32 *)(data + offset2 + 6) = htonl(nsec);
  199. /* Configure single-step register */
  200. val = ENETC_PM0_SINGLE_STEP_EN;
  201. val |= ENETC_SET_SINGLE_STEP_OFFSET(offset1);
  202. if (udp)
  203. val |= ENETC_PM0_SINGLE_STEP_CH;
  204. enetc_port_wr(hw, ENETC_PM0_SINGLE_STEP, val);
  205. enetc_port_wr(hw, ENETC_PM1_SINGLE_STEP, val);
  206. } else if (do_twostep_tstamp) {
  207. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  208. e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
  209. }
  210. temp_bd.ext.e_flags = e_flags;
  211. count++;
  212. }
  213. frag = &skb_shinfo(skb)->frags[0];
  214. for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
  215. len = skb_frag_size(frag);
  216. dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
  217. DMA_TO_DEVICE);
  218. if (dma_mapping_error(tx_ring->dev, dma))
  219. goto dma_err;
  220. *txbd = temp_bd;
  221. enetc_clear_tx_bd(&temp_bd);
  222. flags = 0;
  223. tx_swbd++;
  224. txbd++;
  225. i++;
  226. if (unlikely(i == tx_ring->bd_count)) {
  227. i = 0;
  228. tx_swbd = tx_ring->tx_swbd;
  229. txbd = ENETC_TXBD(*tx_ring, 0);
  230. }
  231. prefetchw(txbd);
  232. temp_bd.addr = cpu_to_le64(dma);
  233. temp_bd.buf_len = cpu_to_le16(len);
  234. tx_swbd->dma = dma;
  235. tx_swbd->len = len;
  236. tx_swbd->is_dma_page = 1;
  237. tx_swbd->dir = DMA_TO_DEVICE;
  238. count++;
  239. }
  240. /* last BD needs 'F' bit set */
  241. flags |= ENETC_TXBD_FLAGS_F;
  242. temp_bd.flags = flags;
  243. *txbd = temp_bd;
  244. tx_ring->tx_swbd[i].is_eof = true;
  245. tx_ring->tx_swbd[i].skb = skb;
  246. enetc_bdr_idx_inc(tx_ring, &i);
  247. tx_ring->next_to_use = i;
  248. skb_tx_timestamp(skb);
  249. enetc_update_tx_ring_tail(tx_ring);
  250. return count;
  251. dma_err:
  252. dev_err(tx_ring->dev, "DMA map error");
  253. do {
  254. tx_swbd = &tx_ring->tx_swbd[i];
  255. enetc_free_tx_frame(tx_ring, tx_swbd);
  256. if (i == 0)
  257. i = tx_ring->bd_count;
  258. i--;
  259. } while (count--);
  260. return 0;
  261. }
  262. static void enetc_map_tx_tso_hdr(struct enetc_bdr *tx_ring, struct sk_buff *skb,
  263. struct enetc_tx_swbd *tx_swbd,
  264. union enetc_tx_bd *txbd, int *i, int hdr_len,
  265. int data_len)
  266. {
  267. union enetc_tx_bd txbd_tmp;
  268. u8 flags = 0, e_flags = 0;
  269. dma_addr_t addr;
  270. enetc_clear_tx_bd(&txbd_tmp);
  271. addr = tx_ring->tso_headers_dma + *i * TSO_HEADER_SIZE;
  272. if (skb_vlan_tag_present(skb))
  273. flags |= ENETC_TXBD_FLAGS_EX;
  274. txbd_tmp.addr = cpu_to_le64(addr);
  275. txbd_tmp.buf_len = cpu_to_le16(hdr_len);
  276. /* first BD needs frm_len and offload flags set */
  277. txbd_tmp.frm_len = cpu_to_le16(hdr_len + data_len);
  278. txbd_tmp.flags = flags;
  279. /* For the TSO header we do not set the dma address since we do not
  280. * want it unmapped when we do cleanup. We still set len so that we
  281. * count the bytes sent.
  282. */
  283. tx_swbd->len = hdr_len;
  284. tx_swbd->do_twostep_tstamp = false;
  285. tx_swbd->check_wb = false;
  286. /* Actually write the header in the BD */
  287. *txbd = txbd_tmp;
  288. /* Add extension BD for VLAN */
  289. if (flags & ENETC_TXBD_FLAGS_EX) {
  290. /* Get the next BD */
  291. enetc_bdr_idx_inc(tx_ring, i);
  292. txbd = ENETC_TXBD(*tx_ring, *i);
  293. tx_swbd = &tx_ring->tx_swbd[*i];
  294. prefetchw(txbd);
  295. /* Setup the VLAN fields */
  296. enetc_clear_tx_bd(&txbd_tmp);
  297. txbd_tmp.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
  298. txbd_tmp.ext.tpid = 0; /* < C-TAG */
  299. e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
  300. /* Write the BD */
  301. txbd_tmp.ext.e_flags = e_flags;
  302. *txbd = txbd_tmp;
  303. }
  304. }
  305. static int enetc_map_tx_tso_data(struct enetc_bdr *tx_ring, struct sk_buff *skb,
  306. struct enetc_tx_swbd *tx_swbd,
  307. union enetc_tx_bd *txbd, char *data,
  308. int size, bool last_bd)
  309. {
  310. union enetc_tx_bd txbd_tmp;
  311. dma_addr_t addr;
  312. u8 flags = 0;
  313. enetc_clear_tx_bd(&txbd_tmp);
  314. addr = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
  315. if (unlikely(dma_mapping_error(tx_ring->dev, addr))) {
  316. netdev_err(tx_ring->ndev, "DMA map error\n");
  317. return -ENOMEM;
  318. }
  319. if (last_bd) {
  320. flags |= ENETC_TXBD_FLAGS_F;
  321. tx_swbd->is_eof = 1;
  322. }
  323. txbd_tmp.addr = cpu_to_le64(addr);
  324. txbd_tmp.buf_len = cpu_to_le16(size);
  325. txbd_tmp.flags = flags;
  326. tx_swbd->dma = addr;
  327. tx_swbd->len = size;
  328. tx_swbd->dir = DMA_TO_DEVICE;
  329. *txbd = txbd_tmp;
  330. return 0;
  331. }
  332. static __wsum enetc_tso_hdr_csum(struct tso_t *tso, struct sk_buff *skb,
  333. char *hdr, int hdr_len, int *l4_hdr_len)
  334. {
  335. char *l4_hdr = hdr + skb_transport_offset(skb);
  336. int mac_hdr_len = skb_network_offset(skb);
  337. if (tso->tlen != sizeof(struct udphdr)) {
  338. struct tcphdr *tcph = (struct tcphdr *)(l4_hdr);
  339. tcph->check = 0;
  340. } else {
  341. struct udphdr *udph = (struct udphdr *)(l4_hdr);
  342. udph->check = 0;
  343. }
  344. /* Compute the IP checksum. This is necessary since tso_build_hdr()
  345. * already incremented the IP ID field.
  346. */
  347. if (!tso->ipv6) {
  348. struct iphdr *iph = (void *)(hdr + mac_hdr_len);
  349. iph->check = 0;
  350. iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
  351. }
  352. /* Compute the checksum over the L4 header. */
  353. *l4_hdr_len = hdr_len - skb_transport_offset(skb);
  354. return csum_partial(l4_hdr, *l4_hdr_len, 0);
  355. }
  356. static void enetc_tso_complete_csum(struct enetc_bdr *tx_ring, struct tso_t *tso,
  357. struct sk_buff *skb, char *hdr, int len,
  358. __wsum sum)
  359. {
  360. char *l4_hdr = hdr + skb_transport_offset(skb);
  361. __sum16 csum_final;
  362. /* Complete the L4 checksum by appending the pseudo-header to the
  363. * already computed checksum.
  364. */
  365. if (!tso->ipv6)
  366. csum_final = csum_tcpudp_magic(ip_hdr(skb)->saddr,
  367. ip_hdr(skb)->daddr,
  368. len, ip_hdr(skb)->protocol, sum);
  369. else
  370. csum_final = csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  371. &ipv6_hdr(skb)->daddr,
  372. len, ipv6_hdr(skb)->nexthdr, sum);
  373. if (tso->tlen != sizeof(struct udphdr)) {
  374. struct tcphdr *tcph = (struct tcphdr *)(l4_hdr);
  375. tcph->check = csum_final;
  376. } else {
  377. struct udphdr *udph = (struct udphdr *)(l4_hdr);
  378. udph->check = csum_final;
  379. }
  380. }
  381. static int enetc_map_tx_tso_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
  382. {
  383. int hdr_len, total_len, data_len;
  384. struct enetc_tx_swbd *tx_swbd;
  385. union enetc_tx_bd *txbd;
  386. struct tso_t tso;
  387. __wsum csum, csum2;
  388. int count = 0, pos;
  389. int err, i, bd_data_num;
  390. /* Initialize the TSO handler, and prepare the first payload */
  391. hdr_len = tso_start(skb, &tso);
  392. total_len = skb->len - hdr_len;
  393. i = tx_ring->next_to_use;
  394. while (total_len > 0) {
  395. char *hdr;
  396. /* Get the BD */
  397. txbd = ENETC_TXBD(*tx_ring, i);
  398. tx_swbd = &tx_ring->tx_swbd[i];
  399. prefetchw(txbd);
  400. /* Determine the length of this packet */
  401. data_len = min_t(int, skb_shinfo(skb)->gso_size, total_len);
  402. total_len -= data_len;
  403. /* prepare packet headers: MAC + IP + TCP */
  404. hdr = tx_ring->tso_headers + i * TSO_HEADER_SIZE;
  405. tso_build_hdr(skb, hdr, &tso, data_len, total_len == 0);
  406. /* compute the csum over the L4 header */
  407. csum = enetc_tso_hdr_csum(&tso, skb, hdr, hdr_len, &pos);
  408. enetc_map_tx_tso_hdr(tx_ring, skb, tx_swbd, txbd, &i, hdr_len, data_len);
  409. bd_data_num = 0;
  410. count++;
  411. while (data_len > 0) {
  412. int size;
  413. size = min_t(int, tso.size, data_len);
  414. /* Advance the index in the BDR */
  415. enetc_bdr_idx_inc(tx_ring, &i);
  416. txbd = ENETC_TXBD(*tx_ring, i);
  417. tx_swbd = &tx_ring->tx_swbd[i];
  418. prefetchw(txbd);
  419. /* Compute the checksum over this segment of data and
  420. * add it to the csum already computed (over the L4
  421. * header and possible other data segments).
  422. */
  423. csum2 = csum_partial(tso.data, size, 0);
  424. csum = csum_block_add(csum, csum2, pos);
  425. pos += size;
  426. err = enetc_map_tx_tso_data(tx_ring, skb, tx_swbd, txbd,
  427. tso.data, size,
  428. size == data_len);
  429. if (err)
  430. goto err_map_data;
  431. data_len -= size;
  432. count++;
  433. bd_data_num++;
  434. tso_build_data(skb, &tso, size);
  435. if (unlikely(bd_data_num >= ENETC_MAX_SKB_FRAGS && data_len))
  436. goto err_chained_bd;
  437. }
  438. enetc_tso_complete_csum(tx_ring, &tso, skb, hdr, pos, csum);
  439. if (total_len == 0)
  440. tx_swbd->skb = skb;
  441. /* Go to the next BD */
  442. enetc_bdr_idx_inc(tx_ring, &i);
  443. }
  444. tx_ring->next_to_use = i;
  445. enetc_update_tx_ring_tail(tx_ring);
  446. return count;
  447. err_map_data:
  448. dev_err(tx_ring->dev, "DMA map error");
  449. err_chained_bd:
  450. do {
  451. tx_swbd = &tx_ring->tx_swbd[i];
  452. enetc_free_tx_frame(tx_ring, tx_swbd);
  453. if (i == 0)
  454. i = tx_ring->bd_count;
  455. i--;
  456. } while (count--);
  457. return 0;
  458. }
  459. static netdev_tx_t enetc_start_xmit(struct sk_buff *skb,
  460. struct net_device *ndev)
  461. {
  462. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  463. struct enetc_bdr *tx_ring;
  464. int count, err;
  465. /* Queue one-step Sync packet if already locked */
  466. if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
  467. if (test_and_set_bit_lock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS,
  468. &priv->flags)) {
  469. skb_queue_tail(&priv->tx_skbs, skb);
  470. return NETDEV_TX_OK;
  471. }
  472. }
  473. tx_ring = priv->tx_ring[skb->queue_mapping];
  474. if (skb_is_gso(skb)) {
  475. if (enetc_bd_unused(tx_ring) < tso_count_descs(skb)) {
  476. netif_stop_subqueue(ndev, tx_ring->index);
  477. return NETDEV_TX_BUSY;
  478. }
  479. enetc_lock_mdio();
  480. count = enetc_map_tx_tso_buffs(tx_ring, skb);
  481. enetc_unlock_mdio();
  482. } else {
  483. if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
  484. if (unlikely(skb_linearize(skb)))
  485. goto drop_packet_err;
  486. count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
  487. if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
  488. netif_stop_subqueue(ndev, tx_ring->index);
  489. return NETDEV_TX_BUSY;
  490. }
  491. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  492. err = skb_checksum_help(skb);
  493. if (err)
  494. goto drop_packet_err;
  495. }
  496. enetc_lock_mdio();
  497. count = enetc_map_tx_buffs(tx_ring, skb);
  498. enetc_unlock_mdio();
  499. }
  500. if (unlikely(!count))
  501. goto drop_packet_err;
  502. if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
  503. netif_stop_subqueue(ndev, tx_ring->index);
  504. return NETDEV_TX_OK;
  505. drop_packet_err:
  506. dev_kfree_skb_any(skb);
  507. return NETDEV_TX_OK;
  508. }
  509. netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
  510. {
  511. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  512. u8 udp, msgtype, twostep;
  513. u16 offset1, offset2;
  514. /* Mark tx timestamp type on skb->cb[0] if requires */
  515. if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
  516. (priv->active_offloads & ENETC_F_TX_TSTAMP_MASK)) {
  517. skb->cb[0] = priv->active_offloads & ENETC_F_TX_TSTAMP_MASK;
  518. } else {
  519. skb->cb[0] = 0;
  520. }
  521. /* Fall back to two-step timestamp if not one-step Sync packet */
  522. if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
  523. if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep,
  524. &offset1, &offset2) ||
  525. msgtype != PTP_MSGTYPE_SYNC || twostep != 0)
  526. skb->cb[0] = ENETC_F_TX_TSTAMP;
  527. }
  528. return enetc_start_xmit(skb, ndev);
  529. }
  530. static irqreturn_t enetc_msix(int irq, void *data)
  531. {
  532. struct enetc_int_vector *v = data;
  533. int i;
  534. enetc_lock_mdio();
  535. /* disable interrupts */
  536. enetc_wr_reg_hot(v->rbier, 0);
  537. enetc_wr_reg_hot(v->ricr1, v->rx_ictt);
  538. for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
  539. enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0);
  540. enetc_unlock_mdio();
  541. napi_schedule(&v->napi);
  542. return IRQ_HANDLED;
  543. }
  544. static void enetc_rx_dim_work(struct work_struct *w)
  545. {
  546. struct dim *dim = container_of(w, struct dim, work);
  547. struct dim_cq_moder moder =
  548. net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
  549. struct enetc_int_vector *v =
  550. container_of(dim, struct enetc_int_vector, rx_dim);
  551. v->rx_ictt = enetc_usecs_to_cycles(moder.usec);
  552. dim->state = DIM_START_MEASURE;
  553. }
  554. static void enetc_rx_net_dim(struct enetc_int_vector *v)
  555. {
  556. struct dim_sample dim_sample = {};
  557. v->comp_cnt++;
  558. if (!v->rx_napi_work)
  559. return;
  560. dim_update_sample(v->comp_cnt,
  561. v->rx_ring.stats.packets,
  562. v->rx_ring.stats.bytes,
  563. &dim_sample);
  564. net_dim(&v->rx_dim, dim_sample);
  565. }
  566. static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
  567. {
  568. int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
  569. return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
  570. }
  571. static bool enetc_page_reusable(struct page *page)
  572. {
  573. return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
  574. }
  575. static void enetc_reuse_page(struct enetc_bdr *rx_ring,
  576. struct enetc_rx_swbd *old)
  577. {
  578. struct enetc_rx_swbd *new;
  579. new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
  580. /* next buf that may reuse a page */
  581. enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
  582. /* copy page reference */
  583. *new = *old;
  584. }
  585. static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
  586. u64 *tstamp)
  587. {
  588. u32 lo, hi, tstamp_lo;
  589. lo = enetc_rd_hot(hw, ENETC_SICTR0);
  590. hi = enetc_rd_hot(hw, ENETC_SICTR1);
  591. tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
  592. if (lo <= tstamp_lo)
  593. hi -= 1;
  594. *tstamp = (u64)hi << 32 | tstamp_lo;
  595. }
  596. static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
  597. {
  598. struct skb_shared_hwtstamps shhwtstamps;
  599. if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
  600. memset(&shhwtstamps, 0, sizeof(shhwtstamps));
  601. shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
  602. skb_txtime_consumed(skb);
  603. skb_tstamp_tx(skb, &shhwtstamps);
  604. }
  605. }
  606. static void enetc_recycle_xdp_tx_buff(struct enetc_bdr *tx_ring,
  607. struct enetc_tx_swbd *tx_swbd)
  608. {
  609. struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
  610. struct enetc_rx_swbd rx_swbd = {
  611. .dma = tx_swbd->dma,
  612. .page = tx_swbd->page,
  613. .page_offset = tx_swbd->page_offset,
  614. .dir = tx_swbd->dir,
  615. .len = tx_swbd->len,
  616. };
  617. struct enetc_bdr *rx_ring;
  618. rx_ring = enetc_rx_ring_from_xdp_tx_ring(priv, tx_ring);
  619. if (likely(enetc_swbd_unused(rx_ring))) {
  620. enetc_reuse_page(rx_ring, &rx_swbd);
  621. /* sync for use by the device */
  622. dma_sync_single_range_for_device(rx_ring->dev, rx_swbd.dma,
  623. rx_swbd.page_offset,
  624. ENETC_RXB_DMA_SIZE_XDP,
  625. rx_swbd.dir);
  626. rx_ring->stats.recycles++;
  627. } else {
  628. /* RX ring is already full, we need to unmap and free the
  629. * page, since there's nothing useful we can do with it.
  630. */
  631. rx_ring->stats.recycle_failures++;
  632. dma_unmap_page(rx_ring->dev, rx_swbd.dma, PAGE_SIZE,
  633. rx_swbd.dir);
  634. __free_page(rx_swbd.page);
  635. }
  636. rx_ring->xdp.xdp_tx_in_flight--;
  637. }
  638. static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
  639. {
  640. int tx_frm_cnt = 0, tx_byte_cnt = 0, tx_win_drop = 0;
  641. struct net_device *ndev = tx_ring->ndev;
  642. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  643. struct enetc_tx_swbd *tx_swbd;
  644. int i, bds_to_clean;
  645. bool do_twostep_tstamp;
  646. u64 tstamp = 0;
  647. i = tx_ring->next_to_clean;
  648. tx_swbd = &tx_ring->tx_swbd[i];
  649. bds_to_clean = enetc_bd_ready_count(tx_ring, i);
  650. do_twostep_tstamp = false;
  651. while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
  652. struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
  653. struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
  654. bool is_eof = tx_swbd->is_eof;
  655. if (unlikely(tx_swbd->check_wb)) {
  656. union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
  657. if (txbd->flags & ENETC_TXBD_FLAGS_W &&
  658. tx_swbd->do_twostep_tstamp) {
  659. enetc_get_tx_tstamp(&priv->si->hw, txbd,
  660. &tstamp);
  661. do_twostep_tstamp = true;
  662. }
  663. if (tx_swbd->qbv_en &&
  664. txbd->wb.status & ENETC_TXBD_STATS_WIN)
  665. tx_win_drop++;
  666. }
  667. if (tx_swbd->is_xdp_tx)
  668. enetc_recycle_xdp_tx_buff(tx_ring, tx_swbd);
  669. else if (likely(tx_swbd->dma))
  670. enetc_unmap_tx_buff(tx_ring, tx_swbd);
  671. if (xdp_frame) {
  672. xdp_return_frame(xdp_frame);
  673. } else if (skb) {
  674. if (unlikely(skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)) {
  675. /* Start work to release lock for next one-step
  676. * timestamping packet. And send one skb in
  677. * tx_skbs queue if has.
  678. */
  679. schedule_work(&priv->tx_onestep_tstamp);
  680. } else if (unlikely(do_twostep_tstamp)) {
  681. enetc_tstamp_tx(skb, tstamp);
  682. do_twostep_tstamp = false;
  683. }
  684. napi_consume_skb(skb, napi_budget);
  685. }
  686. tx_byte_cnt += tx_swbd->len;
  687. /* Scrub the swbd here so we don't have to do that
  688. * when we reuse it during xmit
  689. */
  690. memset(tx_swbd, 0, sizeof(*tx_swbd));
  691. bds_to_clean--;
  692. tx_swbd++;
  693. i++;
  694. if (unlikely(i == tx_ring->bd_count)) {
  695. i = 0;
  696. tx_swbd = tx_ring->tx_swbd;
  697. }
  698. /* BD iteration loop end */
  699. if (is_eof) {
  700. tx_frm_cnt++;
  701. /* re-arm interrupt source */
  702. enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) |
  703. BIT(16 + tx_ring->index));
  704. }
  705. if (unlikely(!bds_to_clean))
  706. bds_to_clean = enetc_bd_ready_count(tx_ring, i);
  707. }
  708. tx_ring->next_to_clean = i;
  709. tx_ring->stats.packets += tx_frm_cnt;
  710. tx_ring->stats.bytes += tx_byte_cnt;
  711. tx_ring->stats.win_drop += tx_win_drop;
  712. if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
  713. __netif_subqueue_stopped(ndev, tx_ring->index) &&
  714. (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
  715. netif_wake_subqueue(ndev, tx_ring->index);
  716. }
  717. return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
  718. }
  719. static bool enetc_new_page(struct enetc_bdr *rx_ring,
  720. struct enetc_rx_swbd *rx_swbd)
  721. {
  722. bool xdp = !!(rx_ring->xdp.prog);
  723. struct page *page;
  724. dma_addr_t addr;
  725. page = dev_alloc_page();
  726. if (unlikely(!page))
  727. return false;
  728. /* For XDP_TX, we forgo dma_unmap -> dma_map */
  729. rx_swbd->dir = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
  730. addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, rx_swbd->dir);
  731. if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
  732. __free_page(page);
  733. return false;
  734. }
  735. rx_swbd->dma = addr;
  736. rx_swbd->page = page;
  737. rx_swbd->page_offset = rx_ring->buffer_offset;
  738. return true;
  739. }
  740. static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
  741. {
  742. struct enetc_rx_swbd *rx_swbd;
  743. union enetc_rx_bd *rxbd;
  744. int i, j;
  745. i = rx_ring->next_to_use;
  746. rx_swbd = &rx_ring->rx_swbd[i];
  747. rxbd = enetc_rxbd(rx_ring, i);
  748. for (j = 0; j < buff_cnt; j++) {
  749. /* try reuse page */
  750. if (unlikely(!rx_swbd->page)) {
  751. if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
  752. rx_ring->stats.rx_alloc_errs++;
  753. break;
  754. }
  755. }
  756. /* update RxBD */
  757. rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
  758. rx_swbd->page_offset);
  759. /* clear 'R" as well */
  760. rxbd->r.lstatus = 0;
  761. enetc_rxbd_next(rx_ring, &rxbd, &i);
  762. rx_swbd = &rx_ring->rx_swbd[i];
  763. }
  764. if (likely(j)) {
  765. rx_ring->next_to_alloc = i; /* keep track from page reuse */
  766. rx_ring->next_to_use = i;
  767. /* update ENETC's consumer index */
  768. enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use);
  769. }
  770. return j;
  771. }
  772. #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
  773. static void enetc_get_rx_tstamp(struct net_device *ndev,
  774. union enetc_rx_bd *rxbd,
  775. struct sk_buff *skb)
  776. {
  777. struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
  778. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  779. struct enetc_hw *hw = &priv->si->hw;
  780. u32 lo, hi, tstamp_lo;
  781. u64 tstamp;
  782. if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
  783. lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0);
  784. hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1);
  785. rxbd = enetc_rxbd_ext(rxbd);
  786. tstamp_lo = le32_to_cpu(rxbd->ext.tstamp);
  787. if (lo <= tstamp_lo)
  788. hi -= 1;
  789. tstamp = (u64)hi << 32 | tstamp_lo;
  790. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  791. shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
  792. }
  793. }
  794. #endif
  795. static void enetc_get_offloads(struct enetc_bdr *rx_ring,
  796. union enetc_rx_bd *rxbd, struct sk_buff *skb)
  797. {
  798. struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
  799. /* TODO: hashing */
  800. if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
  801. u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
  802. skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
  803. skb->ip_summed = CHECKSUM_COMPLETE;
  804. }
  805. if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) {
  806. __be16 tpid = 0;
  807. switch (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TPID) {
  808. case 0:
  809. tpid = htons(ETH_P_8021Q);
  810. break;
  811. case 1:
  812. tpid = htons(ETH_P_8021AD);
  813. break;
  814. case 2:
  815. tpid = htons(enetc_port_rd(&priv->si->hw,
  816. ENETC_PCVLANR1));
  817. break;
  818. case 3:
  819. tpid = htons(enetc_port_rd(&priv->si->hw,
  820. ENETC_PCVLANR2));
  821. break;
  822. default:
  823. break;
  824. }
  825. __vlan_hwaccel_put_tag(skb, tpid, le16_to_cpu(rxbd->r.vlan_opt));
  826. }
  827. #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
  828. if (priv->active_offloads & ENETC_F_RX_TSTAMP)
  829. enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
  830. #endif
  831. }
  832. /* This gets called during the non-XDP NAPI poll cycle as well as on XDP_PASS,
  833. * so it needs to work with both DMA_FROM_DEVICE as well as DMA_BIDIRECTIONAL
  834. * mapped buffers.
  835. */
  836. static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
  837. int i, u16 size)
  838. {
  839. struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
  840. dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
  841. rx_swbd->page_offset,
  842. size, rx_swbd->dir);
  843. return rx_swbd;
  844. }
  845. /* Reuse the current page without performing half-page buffer flipping */
  846. static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
  847. struct enetc_rx_swbd *rx_swbd)
  848. {
  849. size_t buffer_size = ENETC_RXB_TRUESIZE - rx_ring->buffer_offset;
  850. enetc_reuse_page(rx_ring, rx_swbd);
  851. dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
  852. rx_swbd->page_offset,
  853. buffer_size, rx_swbd->dir);
  854. rx_swbd->page = NULL;
  855. }
  856. /* Reuse the current page by performing half-page buffer flipping */
  857. static void enetc_flip_rx_buff(struct enetc_bdr *rx_ring,
  858. struct enetc_rx_swbd *rx_swbd)
  859. {
  860. if (likely(enetc_page_reusable(rx_swbd->page))) {
  861. rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
  862. page_ref_inc(rx_swbd->page);
  863. enetc_put_rx_buff(rx_ring, rx_swbd);
  864. } else {
  865. dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
  866. rx_swbd->dir);
  867. rx_swbd->page = NULL;
  868. }
  869. }
  870. static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
  871. int i, u16 size)
  872. {
  873. struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
  874. struct sk_buff *skb;
  875. void *ba;
  876. ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
  877. skb = build_skb(ba - rx_ring->buffer_offset, ENETC_RXB_TRUESIZE);
  878. if (unlikely(!skb)) {
  879. rx_ring->stats.rx_alloc_errs++;
  880. return NULL;
  881. }
  882. skb_reserve(skb, rx_ring->buffer_offset);
  883. __skb_put(skb, size);
  884. enetc_flip_rx_buff(rx_ring, rx_swbd);
  885. return skb;
  886. }
  887. static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
  888. u16 size, struct sk_buff *skb)
  889. {
  890. struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
  891. skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
  892. rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
  893. enetc_flip_rx_buff(rx_ring, rx_swbd);
  894. }
  895. static bool enetc_check_bd_errors_and_consume(struct enetc_bdr *rx_ring,
  896. u32 bd_status,
  897. union enetc_rx_bd **rxbd, int *i)
  898. {
  899. if (likely(!(bd_status & ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))))
  900. return false;
  901. enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
  902. enetc_rxbd_next(rx_ring, rxbd, i);
  903. while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
  904. dma_rmb();
  905. bd_status = le32_to_cpu((*rxbd)->r.lstatus);
  906. enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
  907. enetc_rxbd_next(rx_ring, rxbd, i);
  908. }
  909. rx_ring->ndev->stats.rx_dropped++;
  910. rx_ring->ndev->stats.rx_errors++;
  911. return true;
  912. }
  913. static struct sk_buff *enetc_build_skb(struct enetc_bdr *rx_ring,
  914. u32 bd_status, union enetc_rx_bd **rxbd,
  915. int *i, int *cleaned_cnt, int buffer_size)
  916. {
  917. struct sk_buff *skb;
  918. u16 size;
  919. size = le16_to_cpu((*rxbd)->r.buf_len);
  920. skb = enetc_map_rx_buff_to_skb(rx_ring, *i, size);
  921. if (!skb)
  922. return NULL;
  923. enetc_get_offloads(rx_ring, *rxbd, skb);
  924. (*cleaned_cnt)++;
  925. enetc_rxbd_next(rx_ring, rxbd, i);
  926. /* not last BD in frame? */
  927. while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
  928. bd_status = le32_to_cpu((*rxbd)->r.lstatus);
  929. size = buffer_size;
  930. if (bd_status & ENETC_RXBD_LSTATUS_F) {
  931. dma_rmb();
  932. size = le16_to_cpu((*rxbd)->r.buf_len);
  933. }
  934. enetc_add_rx_buff_to_skb(rx_ring, *i, size, skb);
  935. (*cleaned_cnt)++;
  936. enetc_rxbd_next(rx_ring, rxbd, i);
  937. }
  938. skb_record_rx_queue(skb, rx_ring->index);
  939. skb->protocol = eth_type_trans(skb, rx_ring->ndev);
  940. return skb;
  941. }
  942. #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
  943. static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
  944. struct napi_struct *napi, int work_limit)
  945. {
  946. int rx_frm_cnt = 0, rx_byte_cnt = 0;
  947. int cleaned_cnt, i;
  948. cleaned_cnt = enetc_bd_unused(rx_ring);
  949. /* next descriptor to process */
  950. i = rx_ring->next_to_clean;
  951. while (likely(rx_frm_cnt < work_limit)) {
  952. union enetc_rx_bd *rxbd;
  953. struct sk_buff *skb;
  954. u32 bd_status;
  955. if (cleaned_cnt >= ENETC_RXBD_BUNDLE)
  956. cleaned_cnt -= enetc_refill_rx_ring(rx_ring,
  957. cleaned_cnt);
  958. rxbd = enetc_rxbd(rx_ring, i);
  959. bd_status = le32_to_cpu(rxbd->r.lstatus);
  960. if (!bd_status)
  961. break;
  962. enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
  963. dma_rmb(); /* for reading other rxbd fields */
  964. if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
  965. &rxbd, &i))
  966. break;
  967. skb = enetc_build_skb(rx_ring, bd_status, &rxbd, &i,
  968. &cleaned_cnt, ENETC_RXB_DMA_SIZE);
  969. if (!skb)
  970. break;
  971. /* When set, the outer VLAN header is extracted and reported
  972. * in the receive buffer descriptor. So rx_byte_cnt should
  973. * add the length of the extracted VLAN header.
  974. */
  975. if (bd_status & ENETC_RXBD_FLAG_VLAN)
  976. rx_byte_cnt += VLAN_HLEN;
  977. rx_byte_cnt += skb->len + ETH_HLEN;
  978. rx_frm_cnt++;
  979. napi_gro_receive(napi, skb);
  980. }
  981. rx_ring->next_to_clean = i;
  982. rx_ring->stats.packets += rx_frm_cnt;
  983. rx_ring->stats.bytes += rx_byte_cnt;
  984. return rx_frm_cnt;
  985. }
  986. static void enetc_xdp_map_tx_buff(struct enetc_bdr *tx_ring, int i,
  987. struct enetc_tx_swbd *tx_swbd,
  988. int frm_len)
  989. {
  990. union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
  991. prefetchw(txbd);
  992. enetc_clear_tx_bd(txbd);
  993. txbd->addr = cpu_to_le64(tx_swbd->dma + tx_swbd->page_offset);
  994. txbd->buf_len = cpu_to_le16(tx_swbd->len);
  995. txbd->frm_len = cpu_to_le16(frm_len);
  996. memcpy(&tx_ring->tx_swbd[i], tx_swbd, sizeof(*tx_swbd));
  997. }
  998. /* Puts in the TX ring one XDP frame, mapped as an array of TX software buffer
  999. * descriptors.
  1000. */
  1001. static bool enetc_xdp_tx(struct enetc_bdr *tx_ring,
  1002. struct enetc_tx_swbd *xdp_tx_arr, int num_tx_swbd)
  1003. {
  1004. struct enetc_tx_swbd *tmp_tx_swbd = xdp_tx_arr;
  1005. int i, k, frm_len = tmp_tx_swbd->len;
  1006. if (unlikely(enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(num_tx_swbd)))
  1007. return false;
  1008. while (unlikely(!tmp_tx_swbd->is_eof)) {
  1009. tmp_tx_swbd++;
  1010. frm_len += tmp_tx_swbd->len;
  1011. }
  1012. i = tx_ring->next_to_use;
  1013. for (k = 0; k < num_tx_swbd; k++) {
  1014. struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[k];
  1015. enetc_xdp_map_tx_buff(tx_ring, i, xdp_tx_swbd, frm_len);
  1016. /* last BD needs 'F' bit set */
  1017. if (xdp_tx_swbd->is_eof) {
  1018. union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
  1019. txbd->flags = ENETC_TXBD_FLAGS_F;
  1020. }
  1021. enetc_bdr_idx_inc(tx_ring, &i);
  1022. }
  1023. tx_ring->next_to_use = i;
  1024. return true;
  1025. }
  1026. static int enetc_xdp_frame_to_xdp_tx_swbd(struct enetc_bdr *tx_ring,
  1027. struct enetc_tx_swbd *xdp_tx_arr,
  1028. struct xdp_frame *xdp_frame)
  1029. {
  1030. struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[0];
  1031. struct skb_shared_info *shinfo;
  1032. void *data = xdp_frame->data;
  1033. int len = xdp_frame->len;
  1034. skb_frag_t *frag;
  1035. dma_addr_t dma;
  1036. unsigned int f;
  1037. int n = 0;
  1038. dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
  1039. if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
  1040. netdev_err(tx_ring->ndev, "DMA map error\n");
  1041. return -1;
  1042. }
  1043. xdp_tx_swbd->dma = dma;
  1044. xdp_tx_swbd->dir = DMA_TO_DEVICE;
  1045. xdp_tx_swbd->len = len;
  1046. xdp_tx_swbd->is_xdp_redirect = true;
  1047. xdp_tx_swbd->is_eof = false;
  1048. xdp_tx_swbd->xdp_frame = NULL;
  1049. n++;
  1050. xdp_tx_swbd = &xdp_tx_arr[n];
  1051. shinfo = xdp_get_shared_info_from_frame(xdp_frame);
  1052. for (f = 0, frag = &shinfo->frags[0]; f < shinfo->nr_frags;
  1053. f++, frag++) {
  1054. data = skb_frag_address(frag);
  1055. len = skb_frag_size(frag);
  1056. dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
  1057. if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
  1058. /* Undo the DMA mapping for all fragments */
  1059. while (--n >= 0)
  1060. enetc_unmap_tx_buff(tx_ring, &xdp_tx_arr[n]);
  1061. netdev_err(tx_ring->ndev, "DMA map error\n");
  1062. return -1;
  1063. }
  1064. xdp_tx_swbd->dma = dma;
  1065. xdp_tx_swbd->dir = DMA_TO_DEVICE;
  1066. xdp_tx_swbd->len = len;
  1067. xdp_tx_swbd->is_xdp_redirect = true;
  1068. xdp_tx_swbd->is_eof = false;
  1069. xdp_tx_swbd->xdp_frame = NULL;
  1070. n++;
  1071. xdp_tx_swbd = &xdp_tx_arr[n];
  1072. }
  1073. xdp_tx_arr[n - 1].is_eof = true;
  1074. xdp_tx_arr[n - 1].xdp_frame = xdp_frame;
  1075. return n;
  1076. }
  1077. int enetc_xdp_xmit(struct net_device *ndev, int num_frames,
  1078. struct xdp_frame **frames, u32 flags)
  1079. {
  1080. struct enetc_tx_swbd xdp_redirect_arr[ENETC_MAX_SKB_FRAGS] = {0};
  1081. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  1082. struct enetc_bdr *tx_ring;
  1083. int xdp_tx_bd_cnt, i, k;
  1084. int xdp_tx_frm_cnt = 0;
  1085. enetc_lock_mdio();
  1086. tx_ring = priv->xdp_tx_ring[smp_processor_id()];
  1087. prefetchw(ENETC_TXBD(*tx_ring, tx_ring->next_to_use));
  1088. for (k = 0; k < num_frames; k++) {
  1089. xdp_tx_bd_cnt = enetc_xdp_frame_to_xdp_tx_swbd(tx_ring,
  1090. xdp_redirect_arr,
  1091. frames[k]);
  1092. if (unlikely(xdp_tx_bd_cnt < 0))
  1093. break;
  1094. if (unlikely(!enetc_xdp_tx(tx_ring, xdp_redirect_arr,
  1095. xdp_tx_bd_cnt))) {
  1096. for (i = 0; i < xdp_tx_bd_cnt; i++)
  1097. enetc_unmap_tx_buff(tx_ring,
  1098. &xdp_redirect_arr[i]);
  1099. tx_ring->stats.xdp_tx_drops++;
  1100. break;
  1101. }
  1102. xdp_tx_frm_cnt++;
  1103. }
  1104. if (unlikely((flags & XDP_XMIT_FLUSH) || k != xdp_tx_frm_cnt))
  1105. enetc_update_tx_ring_tail(tx_ring);
  1106. tx_ring->stats.xdp_tx += xdp_tx_frm_cnt;
  1107. enetc_unlock_mdio();
  1108. return xdp_tx_frm_cnt;
  1109. }
  1110. static void enetc_map_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
  1111. struct xdp_buff *xdp_buff, u16 size)
  1112. {
  1113. struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
  1114. void *hard_start = page_address(rx_swbd->page) + rx_swbd->page_offset;
  1115. struct skb_shared_info *shinfo;
  1116. /* To be used for XDP_TX */
  1117. rx_swbd->len = size;
  1118. xdp_prepare_buff(xdp_buff, hard_start - rx_ring->buffer_offset,
  1119. rx_ring->buffer_offset, size, false);
  1120. shinfo = xdp_get_shared_info_from_buff(xdp_buff);
  1121. shinfo->nr_frags = 0;
  1122. }
  1123. static void enetc_add_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
  1124. u16 size, struct xdp_buff *xdp_buff)
  1125. {
  1126. struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp_buff);
  1127. struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
  1128. skb_frag_t *frag = &shinfo->frags[shinfo->nr_frags];
  1129. /* To be used for XDP_TX */
  1130. rx_swbd->len = size;
  1131. skb_frag_off_set(frag, rx_swbd->page_offset);
  1132. skb_frag_size_set(frag, size);
  1133. __skb_frag_set_page(frag, rx_swbd->page);
  1134. shinfo->nr_frags++;
  1135. }
  1136. static void enetc_build_xdp_buff(struct enetc_bdr *rx_ring, u32 bd_status,
  1137. union enetc_rx_bd **rxbd, int *i,
  1138. int *cleaned_cnt, struct xdp_buff *xdp_buff)
  1139. {
  1140. u16 size = le16_to_cpu((*rxbd)->r.buf_len);
  1141. xdp_init_buff(xdp_buff, ENETC_RXB_TRUESIZE, &rx_ring->xdp.rxq);
  1142. enetc_map_rx_buff_to_xdp(rx_ring, *i, xdp_buff, size);
  1143. (*cleaned_cnt)++;
  1144. enetc_rxbd_next(rx_ring, rxbd, i);
  1145. /* not last BD in frame? */
  1146. while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
  1147. bd_status = le32_to_cpu((*rxbd)->r.lstatus);
  1148. size = ENETC_RXB_DMA_SIZE_XDP;
  1149. if (bd_status & ENETC_RXBD_LSTATUS_F) {
  1150. dma_rmb();
  1151. size = le16_to_cpu((*rxbd)->r.buf_len);
  1152. }
  1153. enetc_add_rx_buff_to_xdp(rx_ring, *i, size, xdp_buff);
  1154. (*cleaned_cnt)++;
  1155. enetc_rxbd_next(rx_ring, rxbd, i);
  1156. }
  1157. }
  1158. /* Convert RX buffer descriptors to TX buffer descriptors. These will be
  1159. * recycled back into the RX ring in enetc_clean_tx_ring.
  1160. */
  1161. static int enetc_rx_swbd_to_xdp_tx_swbd(struct enetc_tx_swbd *xdp_tx_arr,
  1162. struct enetc_bdr *rx_ring,
  1163. int rx_ring_first, int rx_ring_last)
  1164. {
  1165. int n = 0;
  1166. for (; rx_ring_first != rx_ring_last;
  1167. n++, enetc_bdr_idx_inc(rx_ring, &rx_ring_first)) {
  1168. struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first];
  1169. struct enetc_tx_swbd *tx_swbd = &xdp_tx_arr[n];
  1170. /* No need to dma_map, we already have DMA_BIDIRECTIONAL */
  1171. tx_swbd->dma = rx_swbd->dma;
  1172. tx_swbd->dir = rx_swbd->dir;
  1173. tx_swbd->page = rx_swbd->page;
  1174. tx_swbd->page_offset = rx_swbd->page_offset;
  1175. tx_swbd->len = rx_swbd->len;
  1176. tx_swbd->is_dma_page = true;
  1177. tx_swbd->is_xdp_tx = true;
  1178. tx_swbd->is_eof = false;
  1179. }
  1180. /* We rely on caller providing an rx_ring_last > rx_ring_first */
  1181. xdp_tx_arr[n - 1].is_eof = true;
  1182. return n;
  1183. }
  1184. static void enetc_xdp_drop(struct enetc_bdr *rx_ring, int rx_ring_first,
  1185. int rx_ring_last)
  1186. {
  1187. while (rx_ring_first != rx_ring_last) {
  1188. enetc_put_rx_buff(rx_ring,
  1189. &rx_ring->rx_swbd[rx_ring_first]);
  1190. enetc_bdr_idx_inc(rx_ring, &rx_ring_first);
  1191. }
  1192. rx_ring->stats.xdp_drops++;
  1193. }
  1194. static int enetc_clean_rx_ring_xdp(struct enetc_bdr *rx_ring,
  1195. struct napi_struct *napi, int work_limit,
  1196. struct bpf_prog *prog)
  1197. {
  1198. int xdp_tx_bd_cnt, xdp_tx_frm_cnt = 0, xdp_redirect_frm_cnt = 0;
  1199. struct enetc_tx_swbd xdp_tx_arr[ENETC_MAX_SKB_FRAGS] = {0};
  1200. struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
  1201. int rx_frm_cnt = 0, rx_byte_cnt = 0;
  1202. struct enetc_bdr *tx_ring;
  1203. int cleaned_cnt, i;
  1204. u32 xdp_act;
  1205. cleaned_cnt = enetc_bd_unused(rx_ring);
  1206. /* next descriptor to process */
  1207. i = rx_ring->next_to_clean;
  1208. while (likely(rx_frm_cnt < work_limit)) {
  1209. union enetc_rx_bd *rxbd, *orig_rxbd;
  1210. int orig_i, orig_cleaned_cnt;
  1211. struct xdp_buff xdp_buff;
  1212. struct sk_buff *skb;
  1213. u32 bd_status;
  1214. int err;
  1215. rxbd = enetc_rxbd(rx_ring, i);
  1216. bd_status = le32_to_cpu(rxbd->r.lstatus);
  1217. if (!bd_status)
  1218. break;
  1219. enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
  1220. dma_rmb(); /* for reading other rxbd fields */
  1221. if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
  1222. &rxbd, &i))
  1223. break;
  1224. orig_rxbd = rxbd;
  1225. orig_cleaned_cnt = cleaned_cnt;
  1226. orig_i = i;
  1227. enetc_build_xdp_buff(rx_ring, bd_status, &rxbd, &i,
  1228. &cleaned_cnt, &xdp_buff);
  1229. /* When set, the outer VLAN header is extracted and reported
  1230. * in the receive buffer descriptor. So rx_byte_cnt should
  1231. * add the length of the extracted VLAN header.
  1232. */
  1233. if (bd_status & ENETC_RXBD_FLAG_VLAN)
  1234. rx_byte_cnt += VLAN_HLEN;
  1235. rx_byte_cnt += xdp_get_buff_len(&xdp_buff);
  1236. xdp_act = bpf_prog_run_xdp(prog, &xdp_buff);
  1237. switch (xdp_act) {
  1238. default:
  1239. bpf_warn_invalid_xdp_action(rx_ring->ndev, prog, xdp_act);
  1240. fallthrough;
  1241. case XDP_ABORTED:
  1242. trace_xdp_exception(rx_ring->ndev, prog, xdp_act);
  1243. fallthrough;
  1244. case XDP_DROP:
  1245. enetc_xdp_drop(rx_ring, orig_i, i);
  1246. break;
  1247. case XDP_PASS:
  1248. rxbd = orig_rxbd;
  1249. cleaned_cnt = orig_cleaned_cnt;
  1250. i = orig_i;
  1251. skb = enetc_build_skb(rx_ring, bd_status, &rxbd,
  1252. &i, &cleaned_cnt,
  1253. ENETC_RXB_DMA_SIZE_XDP);
  1254. if (unlikely(!skb))
  1255. goto out;
  1256. napi_gro_receive(napi, skb);
  1257. break;
  1258. case XDP_TX:
  1259. tx_ring = priv->xdp_tx_ring[rx_ring->index];
  1260. xdp_tx_bd_cnt = enetc_rx_swbd_to_xdp_tx_swbd(xdp_tx_arr,
  1261. rx_ring,
  1262. orig_i, i);
  1263. if (!enetc_xdp_tx(tx_ring, xdp_tx_arr, xdp_tx_bd_cnt)) {
  1264. enetc_xdp_drop(rx_ring, orig_i, i);
  1265. tx_ring->stats.xdp_tx_drops++;
  1266. } else {
  1267. tx_ring->stats.xdp_tx += xdp_tx_bd_cnt;
  1268. rx_ring->xdp.xdp_tx_in_flight += xdp_tx_bd_cnt;
  1269. xdp_tx_frm_cnt++;
  1270. /* The XDP_TX enqueue was successful, so we
  1271. * need to scrub the RX software BDs because
  1272. * the ownership of the buffers no longer
  1273. * belongs to the RX ring, and we must prevent
  1274. * enetc_refill_rx_ring() from reusing
  1275. * rx_swbd->page.
  1276. */
  1277. while (orig_i != i) {
  1278. rx_ring->rx_swbd[orig_i].page = NULL;
  1279. enetc_bdr_idx_inc(rx_ring, &orig_i);
  1280. }
  1281. }
  1282. break;
  1283. case XDP_REDIRECT:
  1284. /* xdp_return_frame does not support S/G in the sense
  1285. * that it leaks the fragments (__xdp_return should not
  1286. * call page_frag_free only for the initial buffer).
  1287. * Until XDP_REDIRECT gains support for S/G let's keep
  1288. * the code structure in place, but dead. We drop the
  1289. * S/G frames ourselves to avoid memory leaks which
  1290. * would otherwise leave the kernel OOM.
  1291. */
  1292. if (unlikely(cleaned_cnt - orig_cleaned_cnt != 1)) {
  1293. enetc_xdp_drop(rx_ring, orig_i, i);
  1294. rx_ring->stats.xdp_redirect_sg++;
  1295. break;
  1296. }
  1297. err = xdp_do_redirect(rx_ring->ndev, &xdp_buff, prog);
  1298. if (unlikely(err)) {
  1299. enetc_xdp_drop(rx_ring, orig_i, i);
  1300. rx_ring->stats.xdp_redirect_failures++;
  1301. } else {
  1302. while (orig_i != i) {
  1303. enetc_flip_rx_buff(rx_ring,
  1304. &rx_ring->rx_swbd[orig_i]);
  1305. enetc_bdr_idx_inc(rx_ring, &orig_i);
  1306. }
  1307. xdp_redirect_frm_cnt++;
  1308. rx_ring->stats.xdp_redirect++;
  1309. }
  1310. }
  1311. rx_frm_cnt++;
  1312. }
  1313. out:
  1314. rx_ring->next_to_clean = i;
  1315. rx_ring->stats.packets += rx_frm_cnt;
  1316. rx_ring->stats.bytes += rx_byte_cnt;
  1317. if (xdp_redirect_frm_cnt)
  1318. xdp_do_flush_map();
  1319. if (xdp_tx_frm_cnt)
  1320. enetc_update_tx_ring_tail(tx_ring);
  1321. if (cleaned_cnt > rx_ring->xdp.xdp_tx_in_flight)
  1322. enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring) -
  1323. rx_ring->xdp.xdp_tx_in_flight);
  1324. return rx_frm_cnt;
  1325. }
  1326. static int enetc_poll(struct napi_struct *napi, int budget)
  1327. {
  1328. struct enetc_int_vector
  1329. *v = container_of(napi, struct enetc_int_vector, napi);
  1330. struct enetc_bdr *rx_ring = &v->rx_ring;
  1331. struct bpf_prog *prog;
  1332. bool complete = true;
  1333. int work_done;
  1334. int i;
  1335. enetc_lock_mdio();
  1336. for (i = 0; i < v->count_tx_rings; i++)
  1337. if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
  1338. complete = false;
  1339. prog = rx_ring->xdp.prog;
  1340. if (prog)
  1341. work_done = enetc_clean_rx_ring_xdp(rx_ring, napi, budget, prog);
  1342. else
  1343. work_done = enetc_clean_rx_ring(rx_ring, napi, budget);
  1344. if (work_done == budget)
  1345. complete = false;
  1346. if (work_done)
  1347. v->rx_napi_work = true;
  1348. if (!complete) {
  1349. enetc_unlock_mdio();
  1350. return budget;
  1351. }
  1352. napi_complete_done(napi, work_done);
  1353. if (likely(v->rx_dim_en))
  1354. enetc_rx_net_dim(v);
  1355. v->rx_napi_work = false;
  1356. /* enable interrupts */
  1357. enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE);
  1358. for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
  1359. enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i),
  1360. ENETC_TBIER_TXTIE);
  1361. enetc_unlock_mdio();
  1362. return work_done;
  1363. }
  1364. /* Probing and Init */
  1365. #define ENETC_MAX_RFS_SIZE 64
  1366. void enetc_get_si_caps(struct enetc_si *si)
  1367. {
  1368. struct enetc_hw *hw = &si->hw;
  1369. u32 val;
  1370. /* find out how many of various resources we have to work with */
  1371. val = enetc_rd(hw, ENETC_SICAPR0);
  1372. si->num_rx_rings = (val >> 16) & 0xff;
  1373. si->num_tx_rings = val & 0xff;
  1374. val = enetc_rd(hw, ENETC_SIRFSCAPR);
  1375. si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
  1376. si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
  1377. si->num_rss = 0;
  1378. val = enetc_rd(hw, ENETC_SIPCAPR0);
  1379. if (val & ENETC_SIPCAPR0_RSS) {
  1380. u32 rss;
  1381. rss = enetc_rd(hw, ENETC_SIRSSCAPR);
  1382. si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
  1383. }
  1384. if (val & ENETC_SIPCAPR0_QBV)
  1385. si->hw_features |= ENETC_SI_F_QBV;
  1386. if (val & ENETC_SIPCAPR0_PSFP)
  1387. si->hw_features |= ENETC_SI_F_PSFP;
  1388. }
  1389. static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
  1390. {
  1391. r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
  1392. &r->bd_dma_base, GFP_KERNEL);
  1393. if (!r->bd_base)
  1394. return -ENOMEM;
  1395. /* h/w requires 128B alignment */
  1396. if (!IS_ALIGNED(r->bd_dma_base, 128)) {
  1397. dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
  1398. r->bd_dma_base);
  1399. return -EINVAL;
  1400. }
  1401. return 0;
  1402. }
  1403. static int enetc_alloc_txbdr(struct enetc_bdr *txr)
  1404. {
  1405. int err;
  1406. txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
  1407. if (!txr->tx_swbd)
  1408. return -ENOMEM;
  1409. err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
  1410. if (err)
  1411. goto err_alloc_bdr;
  1412. txr->tso_headers = dma_alloc_coherent(txr->dev,
  1413. txr->bd_count * TSO_HEADER_SIZE,
  1414. &txr->tso_headers_dma,
  1415. GFP_KERNEL);
  1416. if (!txr->tso_headers) {
  1417. err = -ENOMEM;
  1418. goto err_alloc_tso;
  1419. }
  1420. txr->next_to_clean = 0;
  1421. txr->next_to_use = 0;
  1422. return 0;
  1423. err_alloc_tso:
  1424. dma_free_coherent(txr->dev, txr->bd_count * sizeof(union enetc_tx_bd),
  1425. txr->bd_base, txr->bd_dma_base);
  1426. txr->bd_base = NULL;
  1427. err_alloc_bdr:
  1428. vfree(txr->tx_swbd);
  1429. txr->tx_swbd = NULL;
  1430. return err;
  1431. }
  1432. static void enetc_free_txbdr(struct enetc_bdr *txr)
  1433. {
  1434. int size, i;
  1435. for (i = 0; i < txr->bd_count; i++)
  1436. enetc_free_tx_frame(txr, &txr->tx_swbd[i]);
  1437. size = txr->bd_count * sizeof(union enetc_tx_bd);
  1438. dma_free_coherent(txr->dev, txr->bd_count * TSO_HEADER_SIZE,
  1439. txr->tso_headers, txr->tso_headers_dma);
  1440. txr->tso_headers = NULL;
  1441. dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
  1442. txr->bd_base = NULL;
  1443. vfree(txr->tx_swbd);
  1444. txr->tx_swbd = NULL;
  1445. }
  1446. static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
  1447. {
  1448. int i, err;
  1449. for (i = 0; i < priv->num_tx_rings; i++) {
  1450. err = enetc_alloc_txbdr(priv->tx_ring[i]);
  1451. if (err)
  1452. goto fail;
  1453. }
  1454. return 0;
  1455. fail:
  1456. while (i-- > 0)
  1457. enetc_free_txbdr(priv->tx_ring[i]);
  1458. return err;
  1459. }
  1460. static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
  1461. {
  1462. int i;
  1463. for (i = 0; i < priv->num_tx_rings; i++)
  1464. enetc_free_txbdr(priv->tx_ring[i]);
  1465. }
  1466. static int enetc_alloc_rxbdr(struct enetc_bdr *rxr, bool extended)
  1467. {
  1468. size_t size = sizeof(union enetc_rx_bd);
  1469. int err;
  1470. rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
  1471. if (!rxr->rx_swbd)
  1472. return -ENOMEM;
  1473. if (extended)
  1474. size *= 2;
  1475. err = enetc_dma_alloc_bdr(rxr, size);
  1476. if (err) {
  1477. vfree(rxr->rx_swbd);
  1478. return err;
  1479. }
  1480. rxr->next_to_clean = 0;
  1481. rxr->next_to_use = 0;
  1482. rxr->next_to_alloc = 0;
  1483. rxr->ext_en = extended;
  1484. return 0;
  1485. }
  1486. static void enetc_free_rxbdr(struct enetc_bdr *rxr)
  1487. {
  1488. int size;
  1489. size = rxr->bd_count * sizeof(union enetc_rx_bd);
  1490. dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
  1491. rxr->bd_base = NULL;
  1492. vfree(rxr->rx_swbd);
  1493. rxr->rx_swbd = NULL;
  1494. }
  1495. static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
  1496. {
  1497. bool extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
  1498. int i, err;
  1499. for (i = 0; i < priv->num_rx_rings; i++) {
  1500. err = enetc_alloc_rxbdr(priv->rx_ring[i], extended);
  1501. if (err)
  1502. goto fail;
  1503. }
  1504. return 0;
  1505. fail:
  1506. while (i-- > 0)
  1507. enetc_free_rxbdr(priv->rx_ring[i]);
  1508. return err;
  1509. }
  1510. static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
  1511. {
  1512. int i;
  1513. for (i = 0; i < priv->num_rx_rings; i++)
  1514. enetc_free_rxbdr(priv->rx_ring[i]);
  1515. }
  1516. static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
  1517. {
  1518. int i;
  1519. if (!tx_ring->tx_swbd)
  1520. return;
  1521. for (i = 0; i < tx_ring->bd_count; i++) {
  1522. struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
  1523. enetc_free_tx_frame(tx_ring, tx_swbd);
  1524. }
  1525. tx_ring->next_to_clean = 0;
  1526. tx_ring->next_to_use = 0;
  1527. }
  1528. static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
  1529. {
  1530. int i;
  1531. if (!rx_ring->rx_swbd)
  1532. return;
  1533. for (i = 0; i < rx_ring->bd_count; i++) {
  1534. struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
  1535. if (!rx_swbd->page)
  1536. continue;
  1537. dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
  1538. rx_swbd->dir);
  1539. __free_page(rx_swbd->page);
  1540. rx_swbd->page = NULL;
  1541. }
  1542. rx_ring->next_to_clean = 0;
  1543. rx_ring->next_to_use = 0;
  1544. rx_ring->next_to_alloc = 0;
  1545. }
  1546. static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
  1547. {
  1548. int i;
  1549. for (i = 0; i < priv->num_rx_rings; i++)
  1550. enetc_free_rx_ring(priv->rx_ring[i]);
  1551. for (i = 0; i < priv->num_tx_rings; i++)
  1552. enetc_free_tx_ring(priv->tx_ring[i]);
  1553. }
  1554. static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
  1555. {
  1556. int *rss_table;
  1557. int i;
  1558. rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
  1559. if (!rss_table)
  1560. return -ENOMEM;
  1561. /* Set up RSS table defaults */
  1562. for (i = 0; i < si->num_rss; i++)
  1563. rss_table[i] = i % num_groups;
  1564. enetc_set_rss_table(si, rss_table, si->num_rss);
  1565. kfree(rss_table);
  1566. return 0;
  1567. }
  1568. int enetc_configure_si(struct enetc_ndev_priv *priv)
  1569. {
  1570. struct enetc_si *si = priv->si;
  1571. struct enetc_hw *hw = &si->hw;
  1572. int err;
  1573. /* set SI cache attributes */
  1574. enetc_wr(hw, ENETC_SICAR0,
  1575. ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
  1576. enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
  1577. /* enable SI */
  1578. enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
  1579. if (si->num_rss) {
  1580. err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
  1581. if (err)
  1582. return err;
  1583. }
  1584. return 0;
  1585. }
  1586. void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
  1587. {
  1588. struct enetc_si *si = priv->si;
  1589. int cpus = num_online_cpus();
  1590. priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE;
  1591. priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE;
  1592. /* Enable all available TX rings in order to configure as many
  1593. * priorities as possible, when needed.
  1594. * TODO: Make # of TX rings run-time configurable
  1595. */
  1596. priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
  1597. priv->num_tx_rings = si->num_tx_rings;
  1598. priv->bdr_int_num = cpus;
  1599. priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL;
  1600. priv->tx_ictt = ENETC_TXIC_TIMETHR;
  1601. }
  1602. int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
  1603. {
  1604. struct enetc_si *si = priv->si;
  1605. priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
  1606. GFP_KERNEL);
  1607. if (!priv->cls_rules)
  1608. return -ENOMEM;
  1609. return 0;
  1610. }
  1611. void enetc_free_si_resources(struct enetc_ndev_priv *priv)
  1612. {
  1613. kfree(priv->cls_rules);
  1614. }
  1615. static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
  1616. {
  1617. int idx = tx_ring->index;
  1618. u32 tbmr;
  1619. enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
  1620. lower_32_bits(tx_ring->bd_dma_base));
  1621. enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
  1622. upper_32_bits(tx_ring->bd_dma_base));
  1623. WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
  1624. enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
  1625. ENETC_RTBLENR_LEN(tx_ring->bd_count));
  1626. /* clearing PI/CI registers for Tx not supported, adjust sw indexes */
  1627. tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
  1628. tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
  1629. /* enable Tx ints by setting pkt thr to 1 */
  1630. enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1);
  1631. tbmr = ENETC_TBMR_EN | ENETC_TBMR_SET_PRIO(tx_ring->prio);
  1632. if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
  1633. tbmr |= ENETC_TBMR_VIH;
  1634. /* enable ring */
  1635. enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
  1636. tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
  1637. tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
  1638. tx_ring->idr = hw->reg + ENETC_SITXIDR;
  1639. }
  1640. static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
  1641. {
  1642. int idx = rx_ring->index;
  1643. u32 rbmr;
  1644. enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
  1645. lower_32_bits(rx_ring->bd_dma_base));
  1646. enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
  1647. upper_32_bits(rx_ring->bd_dma_base));
  1648. WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
  1649. enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
  1650. ENETC_RTBLENR_LEN(rx_ring->bd_count));
  1651. if (rx_ring->xdp.prog)
  1652. enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE_XDP);
  1653. else
  1654. enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
  1655. /* Also prepare the consumer index in case page allocation never
  1656. * succeeds. In that case, hardware will never advance producer index
  1657. * to match consumer index, and will drop all frames.
  1658. */
  1659. enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
  1660. enetc_rxbdr_wr(hw, idx, ENETC_RBCIR, 1);
  1661. /* enable Rx ints by setting pkt thr to 1 */
  1662. enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1);
  1663. rbmr = ENETC_RBMR_EN;
  1664. if (rx_ring->ext_en)
  1665. rbmr |= ENETC_RBMR_BDS;
  1666. if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
  1667. rbmr |= ENETC_RBMR_VTE;
  1668. rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
  1669. rx_ring->idr = hw->reg + ENETC_SIRXIDR;
  1670. enetc_lock_mdio();
  1671. enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
  1672. enetc_unlock_mdio();
  1673. /* enable ring */
  1674. enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
  1675. }
  1676. static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
  1677. {
  1678. struct enetc_hw *hw = &priv->si->hw;
  1679. int i;
  1680. for (i = 0; i < priv->num_tx_rings; i++)
  1681. enetc_setup_txbdr(hw, priv->tx_ring[i]);
  1682. for (i = 0; i < priv->num_rx_rings; i++)
  1683. enetc_setup_rxbdr(hw, priv->rx_ring[i]);
  1684. }
  1685. static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
  1686. {
  1687. int idx = rx_ring->index;
  1688. /* disable EN bit on ring */
  1689. enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
  1690. }
  1691. static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
  1692. {
  1693. int delay = 8, timeout = 100;
  1694. int idx = tx_ring->index;
  1695. /* disable EN bit on ring */
  1696. enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
  1697. /* wait for busy to clear */
  1698. while (delay < timeout &&
  1699. enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
  1700. msleep(delay);
  1701. delay *= 2;
  1702. }
  1703. if (delay >= timeout)
  1704. netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
  1705. idx);
  1706. }
  1707. static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
  1708. {
  1709. struct enetc_hw *hw = &priv->si->hw;
  1710. int i;
  1711. for (i = 0; i < priv->num_tx_rings; i++)
  1712. enetc_clear_txbdr(hw, priv->tx_ring[i]);
  1713. for (i = 0; i < priv->num_rx_rings; i++)
  1714. enetc_clear_rxbdr(hw, priv->rx_ring[i]);
  1715. udelay(1);
  1716. }
  1717. static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
  1718. {
  1719. struct pci_dev *pdev = priv->si->pdev;
  1720. struct enetc_hw *hw = &priv->si->hw;
  1721. int i, j, err;
  1722. for (i = 0; i < priv->bdr_int_num; i++) {
  1723. int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
  1724. struct enetc_int_vector *v = priv->int_vector[i];
  1725. int entry = ENETC_BDR_INT_BASE_IDX + i;
  1726. snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
  1727. priv->ndev->name, i);
  1728. err = request_irq(irq, enetc_msix, 0, v->name, v);
  1729. if (err) {
  1730. dev_err(priv->dev, "request_irq() failed!\n");
  1731. goto irq_err;
  1732. }
  1733. disable_irq(irq);
  1734. v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
  1735. v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
  1736. v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1);
  1737. enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
  1738. for (j = 0; j < v->count_tx_rings; j++) {
  1739. int idx = v->tx_ring[j].index;
  1740. enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
  1741. }
  1742. irq_set_affinity_hint(irq, get_cpu_mask(i % num_online_cpus()));
  1743. }
  1744. return 0;
  1745. irq_err:
  1746. while (i--) {
  1747. int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
  1748. irq_set_affinity_hint(irq, NULL);
  1749. free_irq(irq, priv->int_vector[i]);
  1750. }
  1751. return err;
  1752. }
  1753. static void enetc_free_irqs(struct enetc_ndev_priv *priv)
  1754. {
  1755. struct pci_dev *pdev = priv->si->pdev;
  1756. int i;
  1757. for (i = 0; i < priv->bdr_int_num; i++) {
  1758. int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
  1759. irq_set_affinity_hint(irq, NULL);
  1760. free_irq(irq, priv->int_vector[i]);
  1761. }
  1762. }
  1763. static void enetc_setup_interrupts(struct enetc_ndev_priv *priv)
  1764. {
  1765. struct enetc_hw *hw = &priv->si->hw;
  1766. u32 icpt, ictt;
  1767. int i;
  1768. /* enable Tx & Rx event indication */
  1769. if (priv->ic_mode &
  1770. (ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) {
  1771. icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR);
  1772. /* init to non-0 minimum, will be adjusted later */
  1773. ictt = 0x1;
  1774. } else {
  1775. icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */
  1776. ictt = 0;
  1777. }
  1778. for (i = 0; i < priv->num_rx_rings; i++) {
  1779. enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt);
  1780. enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt);
  1781. enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE);
  1782. }
  1783. if (priv->ic_mode & ENETC_IC_TX_MANUAL)
  1784. icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR);
  1785. else
  1786. icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */
  1787. for (i = 0; i < priv->num_tx_rings; i++) {
  1788. enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt);
  1789. enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt);
  1790. enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE);
  1791. }
  1792. }
  1793. static void enetc_clear_interrupts(struct enetc_ndev_priv *priv)
  1794. {
  1795. struct enetc_hw *hw = &priv->si->hw;
  1796. int i;
  1797. for (i = 0; i < priv->num_tx_rings; i++)
  1798. enetc_txbdr_wr(hw, i, ENETC_TBIER, 0);
  1799. for (i = 0; i < priv->num_rx_rings; i++)
  1800. enetc_rxbdr_wr(hw, i, ENETC_RBIER, 0);
  1801. }
  1802. static int enetc_phylink_connect(struct net_device *ndev)
  1803. {
  1804. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  1805. struct ethtool_eee edata;
  1806. int err;
  1807. if (!priv->phylink)
  1808. return 0; /* phy-less mode */
  1809. err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0);
  1810. if (err) {
  1811. dev_err(&ndev->dev, "could not attach to PHY\n");
  1812. return err;
  1813. }
  1814. /* disable EEE autoneg, until ENETC driver supports it */
  1815. memset(&edata, 0, sizeof(struct ethtool_eee));
  1816. phylink_ethtool_set_eee(priv->phylink, &edata);
  1817. return 0;
  1818. }
  1819. static void enetc_tx_onestep_tstamp(struct work_struct *work)
  1820. {
  1821. struct enetc_ndev_priv *priv;
  1822. struct sk_buff *skb;
  1823. priv = container_of(work, struct enetc_ndev_priv, tx_onestep_tstamp);
  1824. netif_tx_lock_bh(priv->ndev);
  1825. clear_bit_unlock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS, &priv->flags);
  1826. skb = skb_dequeue(&priv->tx_skbs);
  1827. if (skb)
  1828. enetc_start_xmit(skb, priv->ndev);
  1829. netif_tx_unlock_bh(priv->ndev);
  1830. }
  1831. static void enetc_tx_onestep_tstamp_init(struct enetc_ndev_priv *priv)
  1832. {
  1833. INIT_WORK(&priv->tx_onestep_tstamp, enetc_tx_onestep_tstamp);
  1834. skb_queue_head_init(&priv->tx_skbs);
  1835. }
  1836. void enetc_start(struct net_device *ndev)
  1837. {
  1838. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  1839. int i;
  1840. enetc_setup_interrupts(priv);
  1841. for (i = 0; i < priv->bdr_int_num; i++) {
  1842. int irq = pci_irq_vector(priv->si->pdev,
  1843. ENETC_BDR_INT_BASE_IDX + i);
  1844. napi_enable(&priv->int_vector[i]->napi);
  1845. enable_irq(irq);
  1846. }
  1847. if (priv->phylink)
  1848. phylink_start(priv->phylink);
  1849. else
  1850. netif_carrier_on(ndev);
  1851. netif_tx_start_all_queues(ndev);
  1852. }
  1853. int enetc_open(struct net_device *ndev)
  1854. {
  1855. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  1856. int num_stack_tx_queues;
  1857. int err;
  1858. err = enetc_setup_irqs(priv);
  1859. if (err)
  1860. return err;
  1861. err = enetc_phylink_connect(ndev);
  1862. if (err)
  1863. goto err_phy_connect;
  1864. err = enetc_alloc_tx_resources(priv);
  1865. if (err)
  1866. goto err_alloc_tx;
  1867. err = enetc_alloc_rx_resources(priv);
  1868. if (err)
  1869. goto err_alloc_rx;
  1870. num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
  1871. err = netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
  1872. if (err)
  1873. goto err_set_queues;
  1874. err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
  1875. if (err)
  1876. goto err_set_queues;
  1877. enetc_tx_onestep_tstamp_init(priv);
  1878. enetc_setup_bdrs(priv);
  1879. enetc_start(ndev);
  1880. return 0;
  1881. err_set_queues:
  1882. enetc_free_rx_resources(priv);
  1883. err_alloc_rx:
  1884. enetc_free_tx_resources(priv);
  1885. err_alloc_tx:
  1886. if (priv->phylink)
  1887. phylink_disconnect_phy(priv->phylink);
  1888. err_phy_connect:
  1889. enetc_free_irqs(priv);
  1890. return err;
  1891. }
  1892. void enetc_stop(struct net_device *ndev)
  1893. {
  1894. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  1895. int i;
  1896. netif_tx_stop_all_queues(ndev);
  1897. for (i = 0; i < priv->bdr_int_num; i++) {
  1898. int irq = pci_irq_vector(priv->si->pdev,
  1899. ENETC_BDR_INT_BASE_IDX + i);
  1900. disable_irq(irq);
  1901. napi_synchronize(&priv->int_vector[i]->napi);
  1902. napi_disable(&priv->int_vector[i]->napi);
  1903. }
  1904. if (priv->phylink)
  1905. phylink_stop(priv->phylink);
  1906. else
  1907. netif_carrier_off(ndev);
  1908. enetc_clear_interrupts(priv);
  1909. }
  1910. int enetc_close(struct net_device *ndev)
  1911. {
  1912. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  1913. enetc_stop(ndev);
  1914. enetc_clear_bdrs(priv);
  1915. if (priv->phylink)
  1916. phylink_disconnect_phy(priv->phylink);
  1917. enetc_free_rxtx_rings(priv);
  1918. enetc_free_rx_resources(priv);
  1919. enetc_free_tx_resources(priv);
  1920. enetc_free_irqs(priv);
  1921. return 0;
  1922. }
  1923. int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
  1924. {
  1925. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  1926. struct tc_mqprio_qopt *mqprio = type_data;
  1927. struct enetc_hw *hw = &priv->si->hw;
  1928. struct enetc_bdr *tx_ring;
  1929. int num_stack_tx_queues;
  1930. u8 num_tc;
  1931. int i;
  1932. num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
  1933. mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
  1934. num_tc = mqprio->num_tc;
  1935. if (!num_tc) {
  1936. netdev_reset_tc(ndev);
  1937. netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
  1938. /* Reset all ring priorities to 0 */
  1939. for (i = 0; i < priv->num_tx_rings; i++) {
  1940. tx_ring = priv->tx_ring[i];
  1941. tx_ring->prio = 0;
  1942. enetc_set_bdr_prio(hw, tx_ring->index, tx_ring->prio);
  1943. }
  1944. return 0;
  1945. }
  1946. /* Check if we have enough BD rings available to accommodate all TCs */
  1947. if (num_tc > num_stack_tx_queues) {
  1948. netdev_err(ndev, "Max %d traffic classes supported\n",
  1949. priv->num_tx_rings);
  1950. return -EINVAL;
  1951. }
  1952. /* For the moment, we use only one BD ring per TC.
  1953. *
  1954. * Configure num_tc BD rings with increasing priorities.
  1955. */
  1956. for (i = 0; i < num_tc; i++) {
  1957. tx_ring = priv->tx_ring[i];
  1958. tx_ring->prio = i;
  1959. enetc_set_bdr_prio(hw, tx_ring->index, tx_ring->prio);
  1960. }
  1961. /* Reset the number of netdev queues based on the TC count */
  1962. netif_set_real_num_tx_queues(ndev, num_tc);
  1963. netdev_set_num_tc(ndev, num_tc);
  1964. /* Each TC is associated with one netdev queue */
  1965. for (i = 0; i < num_tc; i++)
  1966. netdev_set_tc_queue(ndev, i, 1, i);
  1967. return 0;
  1968. }
  1969. static int enetc_setup_xdp_prog(struct net_device *dev, struct bpf_prog *prog,
  1970. struct netlink_ext_ack *extack)
  1971. {
  1972. struct enetc_ndev_priv *priv = netdev_priv(dev);
  1973. struct bpf_prog *old_prog;
  1974. bool is_up;
  1975. int i;
  1976. /* The buffer layout is changing, so we need to drain the old
  1977. * RX buffers and seed new ones.
  1978. */
  1979. is_up = netif_running(dev);
  1980. if (is_up)
  1981. dev_close(dev);
  1982. old_prog = xchg(&priv->xdp_prog, prog);
  1983. if (old_prog)
  1984. bpf_prog_put(old_prog);
  1985. for (i = 0; i < priv->num_rx_rings; i++) {
  1986. struct enetc_bdr *rx_ring = priv->rx_ring[i];
  1987. rx_ring->xdp.prog = prog;
  1988. if (prog)
  1989. rx_ring->buffer_offset = XDP_PACKET_HEADROOM;
  1990. else
  1991. rx_ring->buffer_offset = ENETC_RXB_PAD;
  1992. }
  1993. if (is_up)
  1994. return dev_open(dev, extack);
  1995. return 0;
  1996. }
  1997. int enetc_setup_bpf(struct net_device *dev, struct netdev_bpf *xdp)
  1998. {
  1999. switch (xdp->command) {
  2000. case XDP_SETUP_PROG:
  2001. return enetc_setup_xdp_prog(dev, xdp->prog, xdp->extack);
  2002. default:
  2003. return -EINVAL;
  2004. }
  2005. return 0;
  2006. }
  2007. struct net_device_stats *enetc_get_stats(struct net_device *ndev)
  2008. {
  2009. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  2010. struct net_device_stats *stats = &ndev->stats;
  2011. unsigned long packets = 0, bytes = 0;
  2012. unsigned long tx_dropped = 0;
  2013. int i;
  2014. for (i = 0; i < priv->num_rx_rings; i++) {
  2015. packets += priv->rx_ring[i]->stats.packets;
  2016. bytes += priv->rx_ring[i]->stats.bytes;
  2017. }
  2018. stats->rx_packets = packets;
  2019. stats->rx_bytes = bytes;
  2020. bytes = 0;
  2021. packets = 0;
  2022. for (i = 0; i < priv->num_tx_rings; i++) {
  2023. packets += priv->tx_ring[i]->stats.packets;
  2024. bytes += priv->tx_ring[i]->stats.bytes;
  2025. tx_dropped += priv->tx_ring[i]->stats.win_drop;
  2026. }
  2027. stats->tx_packets = packets;
  2028. stats->tx_bytes = bytes;
  2029. stats->tx_dropped = tx_dropped;
  2030. return stats;
  2031. }
  2032. static int enetc_set_rss(struct net_device *ndev, int en)
  2033. {
  2034. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  2035. struct enetc_hw *hw = &priv->si->hw;
  2036. u32 reg;
  2037. enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
  2038. reg = enetc_rd(hw, ENETC_SIMR);
  2039. reg &= ~ENETC_SIMR_RSSE;
  2040. reg |= (en) ? ENETC_SIMR_RSSE : 0;
  2041. enetc_wr(hw, ENETC_SIMR, reg);
  2042. return 0;
  2043. }
  2044. static void enetc_enable_rxvlan(struct net_device *ndev, bool en)
  2045. {
  2046. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  2047. struct enetc_hw *hw = &priv->si->hw;
  2048. int i;
  2049. for (i = 0; i < priv->num_rx_rings; i++)
  2050. enetc_bdr_enable_rxvlan(hw, i, en);
  2051. }
  2052. static void enetc_enable_txvlan(struct net_device *ndev, bool en)
  2053. {
  2054. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  2055. struct enetc_hw *hw = &priv->si->hw;
  2056. int i;
  2057. for (i = 0; i < priv->num_tx_rings; i++)
  2058. enetc_bdr_enable_txvlan(hw, i, en);
  2059. }
  2060. void enetc_set_features(struct net_device *ndev, netdev_features_t features)
  2061. {
  2062. netdev_features_t changed = ndev->features ^ features;
  2063. if (changed & NETIF_F_RXHASH)
  2064. enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
  2065. if (changed & NETIF_F_HW_VLAN_CTAG_RX)
  2066. enetc_enable_rxvlan(ndev,
  2067. !!(features & NETIF_F_HW_VLAN_CTAG_RX));
  2068. if (changed & NETIF_F_HW_VLAN_CTAG_TX)
  2069. enetc_enable_txvlan(ndev,
  2070. !!(features & NETIF_F_HW_VLAN_CTAG_TX));
  2071. }
  2072. #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
  2073. static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
  2074. {
  2075. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  2076. struct hwtstamp_config config;
  2077. int ao;
  2078. if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
  2079. return -EFAULT;
  2080. switch (config.tx_type) {
  2081. case HWTSTAMP_TX_OFF:
  2082. priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
  2083. break;
  2084. case HWTSTAMP_TX_ON:
  2085. priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
  2086. priv->active_offloads |= ENETC_F_TX_TSTAMP;
  2087. break;
  2088. case HWTSTAMP_TX_ONESTEP_SYNC:
  2089. priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
  2090. priv->active_offloads |= ENETC_F_TX_ONESTEP_SYNC_TSTAMP;
  2091. break;
  2092. default:
  2093. return -ERANGE;
  2094. }
  2095. ao = priv->active_offloads;
  2096. switch (config.rx_filter) {
  2097. case HWTSTAMP_FILTER_NONE:
  2098. priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
  2099. break;
  2100. default:
  2101. priv->active_offloads |= ENETC_F_RX_TSTAMP;
  2102. config.rx_filter = HWTSTAMP_FILTER_ALL;
  2103. }
  2104. if (netif_running(ndev) && ao != priv->active_offloads) {
  2105. enetc_close(ndev);
  2106. enetc_open(ndev);
  2107. }
  2108. return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
  2109. -EFAULT : 0;
  2110. }
  2111. static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
  2112. {
  2113. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  2114. struct hwtstamp_config config;
  2115. config.flags = 0;
  2116. if (priv->active_offloads & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)
  2117. config.tx_type = HWTSTAMP_TX_ONESTEP_SYNC;
  2118. else if (priv->active_offloads & ENETC_F_TX_TSTAMP)
  2119. config.tx_type = HWTSTAMP_TX_ON;
  2120. else
  2121. config.tx_type = HWTSTAMP_TX_OFF;
  2122. config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
  2123. HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
  2124. return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
  2125. -EFAULT : 0;
  2126. }
  2127. #endif
  2128. int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
  2129. {
  2130. struct enetc_ndev_priv *priv = netdev_priv(ndev);
  2131. #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
  2132. if (cmd == SIOCSHWTSTAMP)
  2133. return enetc_hwtstamp_set(ndev, rq);
  2134. if (cmd == SIOCGHWTSTAMP)
  2135. return enetc_hwtstamp_get(ndev, rq);
  2136. #endif
  2137. if (!priv->phylink)
  2138. return -EOPNOTSUPP;
  2139. return phylink_mii_ioctl(priv->phylink, rq, cmd);
  2140. }
  2141. int enetc_alloc_msix(struct enetc_ndev_priv *priv)
  2142. {
  2143. struct pci_dev *pdev = priv->si->pdev;
  2144. int first_xdp_tx_ring;
  2145. int i, n, err, nvec;
  2146. int v_tx_rings;
  2147. nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
  2148. /* allocate MSIX for both messaging and Rx/Tx interrupts */
  2149. n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
  2150. if (n < 0)
  2151. return n;
  2152. if (n != nvec)
  2153. return -EPERM;
  2154. /* # of tx rings per int vector */
  2155. v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
  2156. for (i = 0; i < priv->bdr_int_num; i++) {
  2157. struct enetc_int_vector *v;
  2158. struct enetc_bdr *bdr;
  2159. int j;
  2160. v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL);
  2161. if (!v) {
  2162. err = -ENOMEM;
  2163. goto fail;
  2164. }
  2165. priv->int_vector[i] = v;
  2166. bdr = &v->rx_ring;
  2167. bdr->index = i;
  2168. bdr->ndev = priv->ndev;
  2169. bdr->dev = priv->dev;
  2170. bdr->bd_count = priv->rx_bd_count;
  2171. bdr->buffer_offset = ENETC_RXB_PAD;
  2172. priv->rx_ring[i] = bdr;
  2173. err = xdp_rxq_info_reg(&bdr->xdp.rxq, priv->ndev, i, 0);
  2174. if (err) {
  2175. kfree(v);
  2176. goto fail;
  2177. }
  2178. err = xdp_rxq_info_reg_mem_model(&bdr->xdp.rxq,
  2179. MEM_TYPE_PAGE_SHARED, NULL);
  2180. if (err) {
  2181. xdp_rxq_info_unreg(&bdr->xdp.rxq);
  2182. kfree(v);
  2183. goto fail;
  2184. }
  2185. /* init defaults for adaptive IC */
  2186. if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) {
  2187. v->rx_ictt = 0x1;
  2188. v->rx_dim_en = true;
  2189. }
  2190. INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work);
  2191. netif_napi_add(priv->ndev, &v->napi, enetc_poll);
  2192. v->count_tx_rings = v_tx_rings;
  2193. for (j = 0; j < v_tx_rings; j++) {
  2194. int idx;
  2195. /* default tx ring mapping policy */
  2196. idx = priv->bdr_int_num * j + i;
  2197. __set_bit(idx, &v->tx_rings_map);
  2198. bdr = &v->tx_ring[j];
  2199. bdr->index = idx;
  2200. bdr->ndev = priv->ndev;
  2201. bdr->dev = priv->dev;
  2202. bdr->bd_count = priv->tx_bd_count;
  2203. priv->tx_ring[idx] = bdr;
  2204. }
  2205. }
  2206. first_xdp_tx_ring = priv->num_tx_rings - num_possible_cpus();
  2207. priv->xdp_tx_ring = &priv->tx_ring[first_xdp_tx_ring];
  2208. return 0;
  2209. fail:
  2210. while (i--) {
  2211. struct enetc_int_vector *v = priv->int_vector[i];
  2212. struct enetc_bdr *rx_ring = &v->rx_ring;
  2213. xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
  2214. xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
  2215. netif_napi_del(&v->napi);
  2216. cancel_work_sync(&v->rx_dim.work);
  2217. kfree(v);
  2218. }
  2219. pci_free_irq_vectors(pdev);
  2220. return err;
  2221. }
  2222. void enetc_free_msix(struct enetc_ndev_priv *priv)
  2223. {
  2224. int i;
  2225. for (i = 0; i < priv->bdr_int_num; i++) {
  2226. struct enetc_int_vector *v = priv->int_vector[i];
  2227. struct enetc_bdr *rx_ring = &v->rx_ring;
  2228. xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
  2229. xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
  2230. netif_napi_del(&v->napi);
  2231. cancel_work_sync(&v->rx_dim.work);
  2232. }
  2233. for (i = 0; i < priv->num_rx_rings; i++)
  2234. priv->rx_ring[i] = NULL;
  2235. for (i = 0; i < priv->num_tx_rings; i++)
  2236. priv->tx_ring[i] = NULL;
  2237. for (i = 0; i < priv->bdr_int_num; i++) {
  2238. kfree(priv->int_vector[i]);
  2239. priv->int_vector[i] = NULL;
  2240. }
  2241. /* disable all MSIX for this device */
  2242. pci_free_irq_vectors(priv->si->pdev);
  2243. }
  2244. static void enetc_kfree_si(struct enetc_si *si)
  2245. {
  2246. char *p = (char *)si - si->pad;
  2247. kfree(p);
  2248. }
  2249. static void enetc_detect_errata(struct enetc_si *si)
  2250. {
  2251. if (si->pdev->revision == ENETC_REV1)
  2252. si->errata = ENETC_ERR_VLAN_ISOL | ENETC_ERR_UCMCSWP;
  2253. }
  2254. int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
  2255. {
  2256. struct enetc_si *si, *p;
  2257. struct enetc_hw *hw;
  2258. size_t alloc_size;
  2259. int err, len;
  2260. pcie_flr(pdev);
  2261. err = pci_enable_device_mem(pdev);
  2262. if (err)
  2263. return dev_err_probe(&pdev->dev, err, "device enable failed\n");
  2264. /* set up for high or low dma */
  2265. err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
  2266. if (err) {
  2267. dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err);
  2268. goto err_dma;
  2269. }
  2270. err = pci_request_mem_regions(pdev, name);
  2271. if (err) {
  2272. dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
  2273. goto err_pci_mem_reg;
  2274. }
  2275. pci_set_master(pdev);
  2276. alloc_size = sizeof(struct enetc_si);
  2277. if (sizeof_priv) {
  2278. /* align priv to 32B */
  2279. alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
  2280. alloc_size += sizeof_priv;
  2281. }
  2282. /* force 32B alignment for enetc_si */
  2283. alloc_size += ENETC_SI_ALIGN - 1;
  2284. p = kzalloc(alloc_size, GFP_KERNEL);
  2285. if (!p) {
  2286. err = -ENOMEM;
  2287. goto err_alloc_si;
  2288. }
  2289. si = PTR_ALIGN(p, ENETC_SI_ALIGN);
  2290. si->pad = (char *)si - (char *)p;
  2291. pci_set_drvdata(pdev, si);
  2292. si->pdev = pdev;
  2293. hw = &si->hw;
  2294. len = pci_resource_len(pdev, ENETC_BAR_REGS);
  2295. hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
  2296. if (!hw->reg) {
  2297. err = -ENXIO;
  2298. dev_err(&pdev->dev, "ioremap() failed\n");
  2299. goto err_ioremap;
  2300. }
  2301. if (len > ENETC_PORT_BASE)
  2302. hw->port = hw->reg + ENETC_PORT_BASE;
  2303. if (len > ENETC_GLOBAL_BASE)
  2304. hw->global = hw->reg + ENETC_GLOBAL_BASE;
  2305. enetc_detect_errata(si);
  2306. return 0;
  2307. err_ioremap:
  2308. enetc_kfree_si(si);
  2309. err_alloc_si:
  2310. pci_release_mem_regions(pdev);
  2311. err_pci_mem_reg:
  2312. err_dma:
  2313. pci_disable_device(pdev);
  2314. return err;
  2315. }
  2316. void enetc_pci_remove(struct pci_dev *pdev)
  2317. {
  2318. struct enetc_si *si = pci_get_drvdata(pdev);
  2319. struct enetc_hw *hw = &si->hw;
  2320. iounmap(hw->reg);
  2321. enetc_kfree_si(si);
  2322. pci_release_mem_regions(pdev);
  2323. pci_disable_device(pdev);
  2324. }