ep93xx_eth.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * EP93xx ethernet network device driver
  4. * Copyright (C) 2006 Lennert Buytenhek <[email protected]>
  5. * Dedicated to Marija Kulikova.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ":%s: " fmt, __func__
  8. #include <linux/dma-mapping.h>
  9. #include <linux/module.h>
  10. #include <linux/kernel.h>
  11. #include <linux/netdevice.h>
  12. #include <linux/mii.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/ethtool.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/moduleparam.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/delay.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/platform_data/eth-ep93xx.h>
  22. #define DRV_MODULE_NAME "ep93xx-eth"
  23. #define RX_QUEUE_ENTRIES 64
  24. #define TX_QUEUE_ENTRIES 8
  25. #define MAX_PKT_SIZE 2044
  26. #define PKT_BUF_SIZE 2048
  27. #define REG_RXCTL 0x0000
  28. #define REG_RXCTL_DEFAULT 0x00073800
  29. #define REG_TXCTL 0x0004
  30. #define REG_TXCTL_ENABLE 0x00000001
  31. #define REG_MIICMD 0x0010
  32. #define REG_MIICMD_READ 0x00008000
  33. #define REG_MIICMD_WRITE 0x00004000
  34. #define REG_MIIDATA 0x0014
  35. #define REG_MIISTS 0x0018
  36. #define REG_MIISTS_BUSY 0x00000001
  37. #define REG_SELFCTL 0x0020
  38. #define REG_SELFCTL_RESET 0x00000001
  39. #define REG_INTEN 0x0024
  40. #define REG_INTEN_TX 0x00000008
  41. #define REG_INTEN_RX 0x00000007
  42. #define REG_INTSTSP 0x0028
  43. #define REG_INTSTS_TX 0x00000008
  44. #define REG_INTSTS_RX 0x00000004
  45. #define REG_INTSTSC 0x002c
  46. #define REG_AFP 0x004c
  47. #define REG_INDAD0 0x0050
  48. #define REG_INDAD1 0x0051
  49. #define REG_INDAD2 0x0052
  50. #define REG_INDAD3 0x0053
  51. #define REG_INDAD4 0x0054
  52. #define REG_INDAD5 0x0055
  53. #define REG_GIINTMSK 0x0064
  54. #define REG_GIINTMSK_ENABLE 0x00008000
  55. #define REG_BMCTL 0x0080
  56. #define REG_BMCTL_ENABLE_TX 0x00000100
  57. #define REG_BMCTL_ENABLE_RX 0x00000001
  58. #define REG_BMSTS 0x0084
  59. #define REG_BMSTS_RX_ACTIVE 0x00000008
  60. #define REG_RXDQBADD 0x0090
  61. #define REG_RXDQBLEN 0x0094
  62. #define REG_RXDCURADD 0x0098
  63. #define REG_RXDENQ 0x009c
  64. #define REG_RXSTSQBADD 0x00a0
  65. #define REG_RXSTSQBLEN 0x00a4
  66. #define REG_RXSTSQCURADD 0x00a8
  67. #define REG_RXSTSENQ 0x00ac
  68. #define REG_TXDQBADD 0x00b0
  69. #define REG_TXDQBLEN 0x00b4
  70. #define REG_TXDQCURADD 0x00b8
  71. #define REG_TXDENQ 0x00bc
  72. #define REG_TXSTSQBADD 0x00c0
  73. #define REG_TXSTSQBLEN 0x00c4
  74. #define REG_TXSTSQCURADD 0x00c8
  75. #define REG_MAXFRMLEN 0x00e8
  76. struct ep93xx_rdesc
  77. {
  78. u32 buf_addr;
  79. u32 rdesc1;
  80. };
  81. #define RDESC1_NSOF 0x80000000
  82. #define RDESC1_BUFFER_INDEX 0x7fff0000
  83. #define RDESC1_BUFFER_LENGTH 0x0000ffff
  84. struct ep93xx_rstat
  85. {
  86. u32 rstat0;
  87. u32 rstat1;
  88. };
  89. #define RSTAT0_RFP 0x80000000
  90. #define RSTAT0_RWE 0x40000000
  91. #define RSTAT0_EOF 0x20000000
  92. #define RSTAT0_EOB 0x10000000
  93. #define RSTAT0_AM 0x00c00000
  94. #define RSTAT0_RX_ERR 0x00200000
  95. #define RSTAT0_OE 0x00100000
  96. #define RSTAT0_FE 0x00080000
  97. #define RSTAT0_RUNT 0x00040000
  98. #define RSTAT0_EDATA 0x00020000
  99. #define RSTAT0_CRCE 0x00010000
  100. #define RSTAT0_CRCI 0x00008000
  101. #define RSTAT0_HTI 0x00003f00
  102. #define RSTAT1_RFP 0x80000000
  103. #define RSTAT1_BUFFER_INDEX 0x7fff0000
  104. #define RSTAT1_FRAME_LENGTH 0x0000ffff
  105. struct ep93xx_tdesc
  106. {
  107. u32 buf_addr;
  108. u32 tdesc1;
  109. };
  110. #define TDESC1_EOF 0x80000000
  111. #define TDESC1_BUFFER_INDEX 0x7fff0000
  112. #define TDESC1_BUFFER_ABORT 0x00008000
  113. #define TDESC1_BUFFER_LENGTH 0x00000fff
  114. struct ep93xx_tstat
  115. {
  116. u32 tstat0;
  117. };
  118. #define TSTAT0_TXFP 0x80000000
  119. #define TSTAT0_TXWE 0x40000000
  120. #define TSTAT0_FA 0x20000000
  121. #define TSTAT0_LCRS 0x10000000
  122. #define TSTAT0_OW 0x04000000
  123. #define TSTAT0_TXU 0x02000000
  124. #define TSTAT0_ECOLL 0x01000000
  125. #define TSTAT0_NCOLL 0x001f0000
  126. #define TSTAT0_BUFFER_INDEX 0x00007fff
  127. struct ep93xx_descs
  128. {
  129. struct ep93xx_rdesc rdesc[RX_QUEUE_ENTRIES];
  130. struct ep93xx_tdesc tdesc[TX_QUEUE_ENTRIES];
  131. struct ep93xx_rstat rstat[RX_QUEUE_ENTRIES];
  132. struct ep93xx_tstat tstat[TX_QUEUE_ENTRIES];
  133. };
  134. struct ep93xx_priv
  135. {
  136. struct resource *res;
  137. void __iomem *base_addr;
  138. int irq;
  139. struct ep93xx_descs *descs;
  140. dma_addr_t descs_dma_addr;
  141. void *rx_buf[RX_QUEUE_ENTRIES];
  142. void *tx_buf[TX_QUEUE_ENTRIES];
  143. spinlock_t rx_lock;
  144. unsigned int rx_pointer;
  145. unsigned int tx_clean_pointer;
  146. unsigned int tx_pointer;
  147. spinlock_t tx_pending_lock;
  148. unsigned int tx_pending;
  149. struct net_device *dev;
  150. struct napi_struct napi;
  151. struct mii_if_info mii;
  152. u8 mdc_divisor;
  153. };
  154. #define rdb(ep, off) __raw_readb((ep)->base_addr + (off))
  155. #define rdw(ep, off) __raw_readw((ep)->base_addr + (off))
  156. #define rdl(ep, off) __raw_readl((ep)->base_addr + (off))
  157. #define wrb(ep, off, val) __raw_writeb((val), (ep)->base_addr + (off))
  158. #define wrw(ep, off, val) __raw_writew((val), (ep)->base_addr + (off))
  159. #define wrl(ep, off, val) __raw_writel((val), (ep)->base_addr + (off))
  160. static int ep93xx_mdio_read(struct net_device *dev, int phy_id, int reg)
  161. {
  162. struct ep93xx_priv *ep = netdev_priv(dev);
  163. int data;
  164. int i;
  165. wrl(ep, REG_MIICMD, REG_MIICMD_READ | (phy_id << 5) | reg);
  166. for (i = 0; i < 10; i++) {
  167. if ((rdl(ep, REG_MIISTS) & REG_MIISTS_BUSY) == 0)
  168. break;
  169. msleep(1);
  170. }
  171. if (i == 10) {
  172. pr_info("mdio read timed out\n");
  173. data = 0xffff;
  174. } else {
  175. data = rdl(ep, REG_MIIDATA);
  176. }
  177. return data;
  178. }
  179. static void ep93xx_mdio_write(struct net_device *dev, int phy_id, int reg, int data)
  180. {
  181. struct ep93xx_priv *ep = netdev_priv(dev);
  182. int i;
  183. wrl(ep, REG_MIIDATA, data);
  184. wrl(ep, REG_MIICMD, REG_MIICMD_WRITE | (phy_id << 5) | reg);
  185. for (i = 0; i < 10; i++) {
  186. if ((rdl(ep, REG_MIISTS) & REG_MIISTS_BUSY) == 0)
  187. break;
  188. msleep(1);
  189. }
  190. if (i == 10)
  191. pr_info("mdio write timed out\n");
  192. }
  193. static int ep93xx_rx(struct net_device *dev, int budget)
  194. {
  195. struct ep93xx_priv *ep = netdev_priv(dev);
  196. int processed = 0;
  197. while (processed < budget) {
  198. int entry;
  199. struct ep93xx_rstat *rstat;
  200. u32 rstat0;
  201. u32 rstat1;
  202. int length;
  203. struct sk_buff *skb;
  204. entry = ep->rx_pointer;
  205. rstat = ep->descs->rstat + entry;
  206. rstat0 = rstat->rstat0;
  207. rstat1 = rstat->rstat1;
  208. if (!(rstat0 & RSTAT0_RFP) || !(rstat1 & RSTAT1_RFP))
  209. break;
  210. rstat->rstat0 = 0;
  211. rstat->rstat1 = 0;
  212. if (!(rstat0 & RSTAT0_EOF))
  213. pr_crit("not end-of-frame %.8x %.8x\n", rstat0, rstat1);
  214. if (!(rstat0 & RSTAT0_EOB))
  215. pr_crit("not end-of-buffer %.8x %.8x\n", rstat0, rstat1);
  216. if ((rstat1 & RSTAT1_BUFFER_INDEX) >> 16 != entry)
  217. pr_crit("entry mismatch %.8x %.8x\n", rstat0, rstat1);
  218. if (!(rstat0 & RSTAT0_RWE)) {
  219. dev->stats.rx_errors++;
  220. if (rstat0 & RSTAT0_OE)
  221. dev->stats.rx_fifo_errors++;
  222. if (rstat0 & RSTAT0_FE)
  223. dev->stats.rx_frame_errors++;
  224. if (rstat0 & (RSTAT0_RUNT | RSTAT0_EDATA))
  225. dev->stats.rx_length_errors++;
  226. if (rstat0 & RSTAT0_CRCE)
  227. dev->stats.rx_crc_errors++;
  228. goto err;
  229. }
  230. length = rstat1 & RSTAT1_FRAME_LENGTH;
  231. if (length > MAX_PKT_SIZE) {
  232. pr_notice("invalid length %.8x %.8x\n", rstat0, rstat1);
  233. goto err;
  234. }
  235. /* Strip FCS. */
  236. if (rstat0 & RSTAT0_CRCI)
  237. length -= 4;
  238. skb = netdev_alloc_skb(dev, length + 2);
  239. if (likely(skb != NULL)) {
  240. struct ep93xx_rdesc *rxd = &ep->descs->rdesc[entry];
  241. skb_reserve(skb, 2);
  242. dma_sync_single_for_cpu(dev->dev.parent, rxd->buf_addr,
  243. length, DMA_FROM_DEVICE);
  244. skb_copy_to_linear_data(skb, ep->rx_buf[entry], length);
  245. dma_sync_single_for_device(dev->dev.parent,
  246. rxd->buf_addr, length,
  247. DMA_FROM_DEVICE);
  248. skb_put(skb, length);
  249. skb->protocol = eth_type_trans(skb, dev);
  250. napi_gro_receive(&ep->napi, skb);
  251. dev->stats.rx_packets++;
  252. dev->stats.rx_bytes += length;
  253. } else {
  254. dev->stats.rx_dropped++;
  255. }
  256. err:
  257. ep->rx_pointer = (entry + 1) & (RX_QUEUE_ENTRIES - 1);
  258. processed++;
  259. }
  260. return processed;
  261. }
  262. static int ep93xx_poll(struct napi_struct *napi, int budget)
  263. {
  264. struct ep93xx_priv *ep = container_of(napi, struct ep93xx_priv, napi);
  265. struct net_device *dev = ep->dev;
  266. int rx;
  267. rx = ep93xx_rx(dev, budget);
  268. if (rx < budget && napi_complete_done(napi, rx)) {
  269. spin_lock_irq(&ep->rx_lock);
  270. wrl(ep, REG_INTEN, REG_INTEN_TX | REG_INTEN_RX);
  271. spin_unlock_irq(&ep->rx_lock);
  272. }
  273. if (rx) {
  274. wrw(ep, REG_RXDENQ, rx);
  275. wrw(ep, REG_RXSTSENQ, rx);
  276. }
  277. return rx;
  278. }
  279. static netdev_tx_t ep93xx_xmit(struct sk_buff *skb, struct net_device *dev)
  280. {
  281. struct ep93xx_priv *ep = netdev_priv(dev);
  282. struct ep93xx_tdesc *txd;
  283. int entry;
  284. if (unlikely(skb->len > MAX_PKT_SIZE)) {
  285. dev->stats.tx_dropped++;
  286. dev_kfree_skb(skb);
  287. return NETDEV_TX_OK;
  288. }
  289. entry = ep->tx_pointer;
  290. ep->tx_pointer = (ep->tx_pointer + 1) & (TX_QUEUE_ENTRIES - 1);
  291. txd = &ep->descs->tdesc[entry];
  292. txd->tdesc1 = TDESC1_EOF | (entry << 16) | (skb->len & 0xfff);
  293. dma_sync_single_for_cpu(dev->dev.parent, txd->buf_addr, skb->len,
  294. DMA_TO_DEVICE);
  295. skb_copy_and_csum_dev(skb, ep->tx_buf[entry]);
  296. dma_sync_single_for_device(dev->dev.parent, txd->buf_addr, skb->len,
  297. DMA_TO_DEVICE);
  298. dev_kfree_skb(skb);
  299. spin_lock_irq(&ep->tx_pending_lock);
  300. ep->tx_pending++;
  301. if (ep->tx_pending == TX_QUEUE_ENTRIES)
  302. netif_stop_queue(dev);
  303. spin_unlock_irq(&ep->tx_pending_lock);
  304. wrl(ep, REG_TXDENQ, 1);
  305. return NETDEV_TX_OK;
  306. }
  307. static void ep93xx_tx_complete(struct net_device *dev)
  308. {
  309. struct ep93xx_priv *ep = netdev_priv(dev);
  310. int wake;
  311. wake = 0;
  312. spin_lock(&ep->tx_pending_lock);
  313. while (1) {
  314. int entry;
  315. struct ep93xx_tstat *tstat;
  316. u32 tstat0;
  317. entry = ep->tx_clean_pointer;
  318. tstat = ep->descs->tstat + entry;
  319. tstat0 = tstat->tstat0;
  320. if (!(tstat0 & TSTAT0_TXFP))
  321. break;
  322. tstat->tstat0 = 0;
  323. if (tstat0 & TSTAT0_FA)
  324. pr_crit("frame aborted %.8x\n", tstat0);
  325. if ((tstat0 & TSTAT0_BUFFER_INDEX) != entry)
  326. pr_crit("entry mismatch %.8x\n", tstat0);
  327. if (tstat0 & TSTAT0_TXWE) {
  328. int length = ep->descs->tdesc[entry].tdesc1 & 0xfff;
  329. dev->stats.tx_packets++;
  330. dev->stats.tx_bytes += length;
  331. } else {
  332. dev->stats.tx_errors++;
  333. }
  334. if (tstat0 & TSTAT0_OW)
  335. dev->stats.tx_window_errors++;
  336. if (tstat0 & TSTAT0_TXU)
  337. dev->stats.tx_fifo_errors++;
  338. dev->stats.collisions += (tstat0 >> 16) & 0x1f;
  339. ep->tx_clean_pointer = (entry + 1) & (TX_QUEUE_ENTRIES - 1);
  340. if (ep->tx_pending == TX_QUEUE_ENTRIES)
  341. wake = 1;
  342. ep->tx_pending--;
  343. }
  344. spin_unlock(&ep->tx_pending_lock);
  345. if (wake)
  346. netif_wake_queue(dev);
  347. }
  348. static irqreturn_t ep93xx_irq(int irq, void *dev_id)
  349. {
  350. struct net_device *dev = dev_id;
  351. struct ep93xx_priv *ep = netdev_priv(dev);
  352. u32 status;
  353. status = rdl(ep, REG_INTSTSC);
  354. if (status == 0)
  355. return IRQ_NONE;
  356. if (status & REG_INTSTS_RX) {
  357. spin_lock(&ep->rx_lock);
  358. if (likely(napi_schedule_prep(&ep->napi))) {
  359. wrl(ep, REG_INTEN, REG_INTEN_TX);
  360. __napi_schedule(&ep->napi);
  361. }
  362. spin_unlock(&ep->rx_lock);
  363. }
  364. if (status & REG_INTSTS_TX)
  365. ep93xx_tx_complete(dev);
  366. return IRQ_HANDLED;
  367. }
  368. static void ep93xx_free_buffers(struct ep93xx_priv *ep)
  369. {
  370. struct device *dev = ep->dev->dev.parent;
  371. int i;
  372. if (!ep->descs)
  373. return;
  374. for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
  375. dma_addr_t d;
  376. d = ep->descs->rdesc[i].buf_addr;
  377. if (d)
  378. dma_unmap_single(dev, d, PKT_BUF_SIZE, DMA_FROM_DEVICE);
  379. kfree(ep->rx_buf[i]);
  380. }
  381. for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
  382. dma_addr_t d;
  383. d = ep->descs->tdesc[i].buf_addr;
  384. if (d)
  385. dma_unmap_single(dev, d, PKT_BUF_SIZE, DMA_TO_DEVICE);
  386. kfree(ep->tx_buf[i]);
  387. }
  388. dma_free_coherent(dev, sizeof(struct ep93xx_descs), ep->descs,
  389. ep->descs_dma_addr);
  390. ep->descs = NULL;
  391. }
  392. static int ep93xx_alloc_buffers(struct ep93xx_priv *ep)
  393. {
  394. struct device *dev = ep->dev->dev.parent;
  395. int i;
  396. ep->descs = dma_alloc_coherent(dev, sizeof(struct ep93xx_descs),
  397. &ep->descs_dma_addr, GFP_KERNEL);
  398. if (ep->descs == NULL)
  399. return 1;
  400. for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
  401. void *buf;
  402. dma_addr_t d;
  403. buf = kmalloc(PKT_BUF_SIZE, GFP_KERNEL);
  404. if (buf == NULL)
  405. goto err;
  406. d = dma_map_single(dev, buf, PKT_BUF_SIZE, DMA_FROM_DEVICE);
  407. if (dma_mapping_error(dev, d)) {
  408. kfree(buf);
  409. goto err;
  410. }
  411. ep->rx_buf[i] = buf;
  412. ep->descs->rdesc[i].buf_addr = d;
  413. ep->descs->rdesc[i].rdesc1 = (i << 16) | PKT_BUF_SIZE;
  414. }
  415. for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
  416. void *buf;
  417. dma_addr_t d;
  418. buf = kmalloc(PKT_BUF_SIZE, GFP_KERNEL);
  419. if (buf == NULL)
  420. goto err;
  421. d = dma_map_single(dev, buf, PKT_BUF_SIZE, DMA_TO_DEVICE);
  422. if (dma_mapping_error(dev, d)) {
  423. kfree(buf);
  424. goto err;
  425. }
  426. ep->tx_buf[i] = buf;
  427. ep->descs->tdesc[i].buf_addr = d;
  428. }
  429. return 0;
  430. err:
  431. ep93xx_free_buffers(ep);
  432. return 1;
  433. }
  434. static int ep93xx_start_hw(struct net_device *dev)
  435. {
  436. struct ep93xx_priv *ep = netdev_priv(dev);
  437. unsigned long addr;
  438. int i;
  439. wrl(ep, REG_SELFCTL, REG_SELFCTL_RESET);
  440. for (i = 0; i < 10; i++) {
  441. if ((rdl(ep, REG_SELFCTL) & REG_SELFCTL_RESET) == 0)
  442. break;
  443. msleep(1);
  444. }
  445. if (i == 10) {
  446. pr_crit("hw failed to reset\n");
  447. return 1;
  448. }
  449. wrl(ep, REG_SELFCTL, ((ep->mdc_divisor - 1) << 9));
  450. /* Does the PHY support preamble suppress? */
  451. if ((ep93xx_mdio_read(dev, ep->mii.phy_id, MII_BMSR) & 0x0040) != 0)
  452. wrl(ep, REG_SELFCTL, ((ep->mdc_divisor - 1) << 9) | (1 << 8));
  453. /* Receive descriptor ring. */
  454. addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, rdesc);
  455. wrl(ep, REG_RXDQBADD, addr);
  456. wrl(ep, REG_RXDCURADD, addr);
  457. wrw(ep, REG_RXDQBLEN, RX_QUEUE_ENTRIES * sizeof(struct ep93xx_rdesc));
  458. /* Receive status ring. */
  459. addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, rstat);
  460. wrl(ep, REG_RXSTSQBADD, addr);
  461. wrl(ep, REG_RXSTSQCURADD, addr);
  462. wrw(ep, REG_RXSTSQBLEN, RX_QUEUE_ENTRIES * sizeof(struct ep93xx_rstat));
  463. /* Transmit descriptor ring. */
  464. addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, tdesc);
  465. wrl(ep, REG_TXDQBADD, addr);
  466. wrl(ep, REG_TXDQCURADD, addr);
  467. wrw(ep, REG_TXDQBLEN, TX_QUEUE_ENTRIES * sizeof(struct ep93xx_tdesc));
  468. /* Transmit status ring. */
  469. addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, tstat);
  470. wrl(ep, REG_TXSTSQBADD, addr);
  471. wrl(ep, REG_TXSTSQCURADD, addr);
  472. wrw(ep, REG_TXSTSQBLEN, TX_QUEUE_ENTRIES * sizeof(struct ep93xx_tstat));
  473. wrl(ep, REG_BMCTL, REG_BMCTL_ENABLE_TX | REG_BMCTL_ENABLE_RX);
  474. wrl(ep, REG_INTEN, REG_INTEN_TX | REG_INTEN_RX);
  475. wrl(ep, REG_GIINTMSK, 0);
  476. for (i = 0; i < 10; i++) {
  477. if ((rdl(ep, REG_BMSTS) & REG_BMSTS_RX_ACTIVE) != 0)
  478. break;
  479. msleep(1);
  480. }
  481. if (i == 10) {
  482. pr_crit("hw failed to start\n");
  483. return 1;
  484. }
  485. wrl(ep, REG_RXDENQ, RX_QUEUE_ENTRIES);
  486. wrl(ep, REG_RXSTSENQ, RX_QUEUE_ENTRIES);
  487. wrb(ep, REG_INDAD0, dev->dev_addr[0]);
  488. wrb(ep, REG_INDAD1, dev->dev_addr[1]);
  489. wrb(ep, REG_INDAD2, dev->dev_addr[2]);
  490. wrb(ep, REG_INDAD3, dev->dev_addr[3]);
  491. wrb(ep, REG_INDAD4, dev->dev_addr[4]);
  492. wrb(ep, REG_INDAD5, dev->dev_addr[5]);
  493. wrl(ep, REG_AFP, 0);
  494. wrl(ep, REG_MAXFRMLEN, (MAX_PKT_SIZE << 16) | MAX_PKT_SIZE);
  495. wrl(ep, REG_RXCTL, REG_RXCTL_DEFAULT);
  496. wrl(ep, REG_TXCTL, REG_TXCTL_ENABLE);
  497. return 0;
  498. }
  499. static void ep93xx_stop_hw(struct net_device *dev)
  500. {
  501. struct ep93xx_priv *ep = netdev_priv(dev);
  502. int i;
  503. wrl(ep, REG_SELFCTL, REG_SELFCTL_RESET);
  504. for (i = 0; i < 10; i++) {
  505. if ((rdl(ep, REG_SELFCTL) & REG_SELFCTL_RESET) == 0)
  506. break;
  507. msleep(1);
  508. }
  509. if (i == 10)
  510. pr_crit("hw failed to reset\n");
  511. }
  512. static int ep93xx_open(struct net_device *dev)
  513. {
  514. struct ep93xx_priv *ep = netdev_priv(dev);
  515. int err;
  516. if (ep93xx_alloc_buffers(ep))
  517. return -ENOMEM;
  518. napi_enable(&ep->napi);
  519. if (ep93xx_start_hw(dev)) {
  520. napi_disable(&ep->napi);
  521. ep93xx_free_buffers(ep);
  522. return -EIO;
  523. }
  524. spin_lock_init(&ep->rx_lock);
  525. ep->rx_pointer = 0;
  526. ep->tx_clean_pointer = 0;
  527. ep->tx_pointer = 0;
  528. spin_lock_init(&ep->tx_pending_lock);
  529. ep->tx_pending = 0;
  530. err = request_irq(ep->irq, ep93xx_irq, IRQF_SHARED, dev->name, dev);
  531. if (err) {
  532. napi_disable(&ep->napi);
  533. ep93xx_stop_hw(dev);
  534. ep93xx_free_buffers(ep);
  535. return err;
  536. }
  537. wrl(ep, REG_GIINTMSK, REG_GIINTMSK_ENABLE);
  538. netif_start_queue(dev);
  539. return 0;
  540. }
  541. static int ep93xx_close(struct net_device *dev)
  542. {
  543. struct ep93xx_priv *ep = netdev_priv(dev);
  544. napi_disable(&ep->napi);
  545. netif_stop_queue(dev);
  546. wrl(ep, REG_GIINTMSK, 0);
  547. free_irq(ep->irq, dev);
  548. ep93xx_stop_hw(dev);
  549. ep93xx_free_buffers(ep);
  550. return 0;
  551. }
  552. static int ep93xx_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  553. {
  554. struct ep93xx_priv *ep = netdev_priv(dev);
  555. struct mii_ioctl_data *data = if_mii(ifr);
  556. return generic_mii_ioctl(&ep->mii, data, cmd, NULL);
  557. }
  558. static void ep93xx_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  559. {
  560. strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  561. }
  562. static int ep93xx_get_link_ksettings(struct net_device *dev,
  563. struct ethtool_link_ksettings *cmd)
  564. {
  565. struct ep93xx_priv *ep = netdev_priv(dev);
  566. mii_ethtool_get_link_ksettings(&ep->mii, cmd);
  567. return 0;
  568. }
  569. static int ep93xx_set_link_ksettings(struct net_device *dev,
  570. const struct ethtool_link_ksettings *cmd)
  571. {
  572. struct ep93xx_priv *ep = netdev_priv(dev);
  573. return mii_ethtool_set_link_ksettings(&ep->mii, cmd);
  574. }
  575. static int ep93xx_nway_reset(struct net_device *dev)
  576. {
  577. struct ep93xx_priv *ep = netdev_priv(dev);
  578. return mii_nway_restart(&ep->mii);
  579. }
  580. static u32 ep93xx_get_link(struct net_device *dev)
  581. {
  582. struct ep93xx_priv *ep = netdev_priv(dev);
  583. return mii_link_ok(&ep->mii);
  584. }
  585. static const struct ethtool_ops ep93xx_ethtool_ops = {
  586. .get_drvinfo = ep93xx_get_drvinfo,
  587. .nway_reset = ep93xx_nway_reset,
  588. .get_link = ep93xx_get_link,
  589. .get_link_ksettings = ep93xx_get_link_ksettings,
  590. .set_link_ksettings = ep93xx_set_link_ksettings,
  591. };
  592. static const struct net_device_ops ep93xx_netdev_ops = {
  593. .ndo_open = ep93xx_open,
  594. .ndo_stop = ep93xx_close,
  595. .ndo_start_xmit = ep93xx_xmit,
  596. .ndo_eth_ioctl = ep93xx_ioctl,
  597. .ndo_validate_addr = eth_validate_addr,
  598. .ndo_set_mac_address = eth_mac_addr,
  599. };
  600. static struct net_device *ep93xx_dev_alloc(struct ep93xx_eth_data *data)
  601. {
  602. struct net_device *dev;
  603. dev = alloc_etherdev(sizeof(struct ep93xx_priv));
  604. if (dev == NULL)
  605. return NULL;
  606. eth_hw_addr_set(dev, data->dev_addr);
  607. dev->ethtool_ops = &ep93xx_ethtool_ops;
  608. dev->netdev_ops = &ep93xx_netdev_ops;
  609. dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
  610. return dev;
  611. }
  612. static int ep93xx_eth_remove(struct platform_device *pdev)
  613. {
  614. struct net_device *dev;
  615. struct ep93xx_priv *ep;
  616. struct resource *mem;
  617. dev = platform_get_drvdata(pdev);
  618. if (dev == NULL)
  619. return 0;
  620. ep = netdev_priv(dev);
  621. /* @@@ Force down. */
  622. unregister_netdev(dev);
  623. ep93xx_free_buffers(ep);
  624. if (ep->base_addr != NULL)
  625. iounmap(ep->base_addr);
  626. if (ep->res != NULL) {
  627. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  628. release_mem_region(mem->start, resource_size(mem));
  629. }
  630. free_netdev(dev);
  631. return 0;
  632. }
  633. static int ep93xx_eth_probe(struct platform_device *pdev)
  634. {
  635. struct ep93xx_eth_data *data;
  636. struct net_device *dev;
  637. struct ep93xx_priv *ep;
  638. struct resource *mem;
  639. int irq;
  640. int err;
  641. if (pdev == NULL)
  642. return -ENODEV;
  643. data = dev_get_platdata(&pdev->dev);
  644. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  645. irq = platform_get_irq(pdev, 0);
  646. if (!mem || irq < 0)
  647. return -ENXIO;
  648. dev = ep93xx_dev_alloc(data);
  649. if (dev == NULL) {
  650. err = -ENOMEM;
  651. goto err_out;
  652. }
  653. ep = netdev_priv(dev);
  654. ep->dev = dev;
  655. SET_NETDEV_DEV(dev, &pdev->dev);
  656. netif_napi_add(dev, &ep->napi, ep93xx_poll);
  657. platform_set_drvdata(pdev, dev);
  658. ep->res = request_mem_region(mem->start, resource_size(mem),
  659. dev_name(&pdev->dev));
  660. if (ep->res == NULL) {
  661. dev_err(&pdev->dev, "Could not reserve memory region\n");
  662. err = -ENOMEM;
  663. goto err_out;
  664. }
  665. ep->base_addr = ioremap(mem->start, resource_size(mem));
  666. if (ep->base_addr == NULL) {
  667. dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
  668. err = -EIO;
  669. goto err_out;
  670. }
  671. ep->irq = irq;
  672. ep->mii.phy_id = data->phy_id;
  673. ep->mii.phy_id_mask = 0x1f;
  674. ep->mii.reg_num_mask = 0x1f;
  675. ep->mii.dev = dev;
  676. ep->mii.mdio_read = ep93xx_mdio_read;
  677. ep->mii.mdio_write = ep93xx_mdio_write;
  678. ep->mdc_divisor = 40; /* Max HCLK 100 MHz, min MDIO clk 2.5 MHz. */
  679. if (is_zero_ether_addr(dev->dev_addr))
  680. eth_hw_addr_random(dev);
  681. err = register_netdev(dev);
  682. if (err) {
  683. dev_err(&pdev->dev, "Failed to register netdev\n");
  684. goto err_out;
  685. }
  686. printk(KERN_INFO "%s: ep93xx on-chip ethernet, IRQ %d, %pM\n",
  687. dev->name, ep->irq, dev->dev_addr);
  688. return 0;
  689. err_out:
  690. ep93xx_eth_remove(pdev);
  691. return err;
  692. }
  693. static struct platform_driver ep93xx_eth_driver = {
  694. .probe = ep93xx_eth_probe,
  695. .remove = ep93xx_eth_remove,
  696. .driver = {
  697. .name = "ep93xx-eth",
  698. },
  699. };
  700. module_platform_driver(ep93xx_eth_driver);
  701. MODULE_LICENSE("GPL");
  702. MODULE_ALIAS("platform:ep93xx-eth");