greth.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
  4. *
  5. * 2005-2010 (c) Aeroflex Gaisler AB
  6. *
  7. * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
  8. * available in the GRLIB VHDL IP core library.
  9. *
  10. * Full documentation of both cores can be found here:
  11. * https://www.gaisler.com/products/grlib/grip.pdf
  12. *
  13. * The Gigabit version supports scatter/gather DMA, any alignment of
  14. * buffers and checksum offloading.
  15. *
  16. * Contributors: Kristoffer Glembo
  17. * Daniel Hellstrom
  18. * Marko Isomaki
  19. */
  20. #include <linux/dma-mapping.h>
  21. #include <linux/module.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/ethtool.h>
  27. #include <linux/skbuff.h>
  28. #include <linux/io.h>
  29. #include <linux/crc32.h>
  30. #include <linux/mii.h>
  31. #include <linux/of_device.h>
  32. #include <linux/of_net.h>
  33. #include <linux/of_platform.h>
  34. #include <linux/slab.h>
  35. #include <asm/cacheflush.h>
  36. #include <asm/byteorder.h>
  37. #ifdef CONFIG_SPARC
  38. #include <asm/idprom.h>
  39. #endif
  40. #include "greth.h"
  41. #define GRETH_DEF_MSG_ENABLE \
  42. (NETIF_MSG_DRV | \
  43. NETIF_MSG_PROBE | \
  44. NETIF_MSG_LINK | \
  45. NETIF_MSG_IFDOWN | \
  46. NETIF_MSG_IFUP | \
  47. NETIF_MSG_RX_ERR | \
  48. NETIF_MSG_TX_ERR)
  49. static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
  50. module_param(greth_debug, int, 0);
  51. MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
  52. /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  53. static int macaddr[6];
  54. module_param_array(macaddr, int, NULL, 0);
  55. MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
  56. static int greth_edcl = 1;
  57. module_param(greth_edcl, int, 0);
  58. MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
  59. static int greth_open(struct net_device *dev);
  60. static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
  61. struct net_device *dev);
  62. static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
  63. struct net_device *dev);
  64. static int greth_rx(struct net_device *dev, int limit);
  65. static int greth_rx_gbit(struct net_device *dev, int limit);
  66. static void greth_clean_tx(struct net_device *dev);
  67. static void greth_clean_tx_gbit(struct net_device *dev);
  68. static irqreturn_t greth_interrupt(int irq, void *dev_id);
  69. static int greth_close(struct net_device *dev);
  70. static int greth_set_mac_add(struct net_device *dev, void *p);
  71. static void greth_set_multicast_list(struct net_device *dev);
  72. #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
  73. #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
  74. #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
  75. #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
  76. #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
  77. #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
  78. #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
  79. static void greth_print_rx_packet(void *addr, int len)
  80. {
  81. print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
  82. addr, len, true);
  83. }
  84. static void greth_print_tx_packet(struct sk_buff *skb)
  85. {
  86. int i;
  87. int length;
  88. if (skb_shinfo(skb)->nr_frags == 0)
  89. length = skb->len;
  90. else
  91. length = skb_headlen(skb);
  92. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  93. skb->data, length, true);
  94. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  95. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  96. skb_frag_address(&skb_shinfo(skb)->frags[i]),
  97. skb_frag_size(&skb_shinfo(skb)->frags[i]), true);
  98. }
  99. }
  100. static inline void greth_enable_tx(struct greth_private *greth)
  101. {
  102. wmb();
  103. GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
  104. }
  105. static inline void greth_enable_tx_and_irq(struct greth_private *greth)
  106. {
  107. wmb(); /* BDs must been written to memory before enabling TX */
  108. GRETH_REGORIN(greth->regs->control, GRETH_TXEN | GRETH_TXI);
  109. }
  110. static inline void greth_disable_tx(struct greth_private *greth)
  111. {
  112. GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
  113. }
  114. static inline void greth_enable_rx(struct greth_private *greth)
  115. {
  116. wmb();
  117. GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
  118. }
  119. static inline void greth_disable_rx(struct greth_private *greth)
  120. {
  121. GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
  122. }
  123. static inline void greth_enable_irqs(struct greth_private *greth)
  124. {
  125. GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
  126. }
  127. static inline void greth_disable_irqs(struct greth_private *greth)
  128. {
  129. GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
  130. }
  131. static inline void greth_write_bd(u32 *bd, u32 val)
  132. {
  133. __raw_writel(cpu_to_be32(val), bd);
  134. }
  135. static inline u32 greth_read_bd(u32 *bd)
  136. {
  137. return be32_to_cpu(__raw_readl(bd));
  138. }
  139. static void greth_clean_rings(struct greth_private *greth)
  140. {
  141. int i;
  142. struct greth_bd *rx_bdp = greth->rx_bd_base;
  143. struct greth_bd *tx_bdp = greth->tx_bd_base;
  144. if (greth->gbit_mac) {
  145. /* Free and unmap RX buffers */
  146. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  147. if (greth->rx_skbuff[i] != NULL) {
  148. dev_kfree_skb(greth->rx_skbuff[i]);
  149. dma_unmap_single(greth->dev,
  150. greth_read_bd(&rx_bdp->addr),
  151. MAX_FRAME_SIZE+NET_IP_ALIGN,
  152. DMA_FROM_DEVICE);
  153. }
  154. }
  155. /* TX buffers */
  156. while (greth->tx_free < GRETH_TXBD_NUM) {
  157. struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
  158. int nr_frags = skb_shinfo(skb)->nr_frags;
  159. tx_bdp = greth->tx_bd_base + greth->tx_last;
  160. greth->tx_last = NEXT_TX(greth->tx_last);
  161. dma_unmap_single(greth->dev,
  162. greth_read_bd(&tx_bdp->addr),
  163. skb_headlen(skb),
  164. DMA_TO_DEVICE);
  165. for (i = 0; i < nr_frags; i++) {
  166. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  167. tx_bdp = greth->tx_bd_base + greth->tx_last;
  168. dma_unmap_page(greth->dev,
  169. greth_read_bd(&tx_bdp->addr),
  170. skb_frag_size(frag),
  171. DMA_TO_DEVICE);
  172. greth->tx_last = NEXT_TX(greth->tx_last);
  173. }
  174. greth->tx_free += nr_frags+1;
  175. dev_kfree_skb(skb);
  176. }
  177. } else { /* 10/100 Mbps MAC */
  178. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  179. kfree(greth->rx_bufs[i]);
  180. dma_unmap_single(greth->dev,
  181. greth_read_bd(&rx_bdp->addr),
  182. MAX_FRAME_SIZE,
  183. DMA_FROM_DEVICE);
  184. }
  185. for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
  186. kfree(greth->tx_bufs[i]);
  187. dma_unmap_single(greth->dev,
  188. greth_read_bd(&tx_bdp->addr),
  189. MAX_FRAME_SIZE,
  190. DMA_TO_DEVICE);
  191. }
  192. }
  193. }
  194. static int greth_init_rings(struct greth_private *greth)
  195. {
  196. struct sk_buff *skb;
  197. struct greth_bd *rx_bd, *tx_bd;
  198. u32 dma_addr;
  199. int i;
  200. rx_bd = greth->rx_bd_base;
  201. tx_bd = greth->tx_bd_base;
  202. /* Initialize descriptor rings and buffers */
  203. if (greth->gbit_mac) {
  204. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  205. skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
  206. if (skb == NULL) {
  207. if (netif_msg_ifup(greth))
  208. dev_err(greth->dev, "Error allocating DMA ring.\n");
  209. goto cleanup;
  210. }
  211. skb_reserve(skb, NET_IP_ALIGN);
  212. dma_addr = dma_map_single(greth->dev,
  213. skb->data,
  214. MAX_FRAME_SIZE+NET_IP_ALIGN,
  215. DMA_FROM_DEVICE);
  216. if (dma_mapping_error(greth->dev, dma_addr)) {
  217. if (netif_msg_ifup(greth))
  218. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  219. dev_kfree_skb(skb);
  220. goto cleanup;
  221. }
  222. greth->rx_skbuff[i] = skb;
  223. greth_write_bd(&rx_bd[i].addr, dma_addr);
  224. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  225. }
  226. } else {
  227. /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
  228. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  229. greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  230. if (greth->rx_bufs[i] == NULL) {
  231. if (netif_msg_ifup(greth))
  232. dev_err(greth->dev, "Error allocating DMA ring.\n");
  233. goto cleanup;
  234. }
  235. dma_addr = dma_map_single(greth->dev,
  236. greth->rx_bufs[i],
  237. MAX_FRAME_SIZE,
  238. DMA_FROM_DEVICE);
  239. if (dma_mapping_error(greth->dev, dma_addr)) {
  240. if (netif_msg_ifup(greth))
  241. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  242. goto cleanup;
  243. }
  244. greth_write_bd(&rx_bd[i].addr, dma_addr);
  245. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  246. }
  247. for (i = 0; i < GRETH_TXBD_NUM; i++) {
  248. greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  249. if (greth->tx_bufs[i] == NULL) {
  250. if (netif_msg_ifup(greth))
  251. dev_err(greth->dev, "Error allocating DMA ring.\n");
  252. goto cleanup;
  253. }
  254. dma_addr = dma_map_single(greth->dev,
  255. greth->tx_bufs[i],
  256. MAX_FRAME_SIZE,
  257. DMA_TO_DEVICE);
  258. if (dma_mapping_error(greth->dev, dma_addr)) {
  259. if (netif_msg_ifup(greth))
  260. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  261. goto cleanup;
  262. }
  263. greth_write_bd(&tx_bd[i].addr, dma_addr);
  264. greth_write_bd(&tx_bd[i].stat, 0);
  265. }
  266. }
  267. greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
  268. greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
  269. /* Initialize pointers. */
  270. greth->rx_cur = 0;
  271. greth->tx_next = 0;
  272. greth->tx_last = 0;
  273. greth->tx_free = GRETH_TXBD_NUM;
  274. /* Initialize descriptor base address */
  275. GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
  276. GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
  277. return 0;
  278. cleanup:
  279. greth_clean_rings(greth);
  280. return -ENOMEM;
  281. }
  282. static int greth_open(struct net_device *dev)
  283. {
  284. struct greth_private *greth = netdev_priv(dev);
  285. int err;
  286. err = greth_init_rings(greth);
  287. if (err) {
  288. if (netif_msg_ifup(greth))
  289. dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
  290. return err;
  291. }
  292. err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
  293. if (err) {
  294. if (netif_msg_ifup(greth))
  295. dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
  296. greth_clean_rings(greth);
  297. return err;
  298. }
  299. if (netif_msg_ifup(greth))
  300. dev_dbg(&dev->dev, " starting queue\n");
  301. netif_start_queue(dev);
  302. GRETH_REGSAVE(greth->regs->status, 0xFF);
  303. napi_enable(&greth->napi);
  304. greth_enable_irqs(greth);
  305. greth_enable_tx(greth);
  306. greth_enable_rx(greth);
  307. return 0;
  308. }
  309. static int greth_close(struct net_device *dev)
  310. {
  311. struct greth_private *greth = netdev_priv(dev);
  312. napi_disable(&greth->napi);
  313. greth_disable_irqs(greth);
  314. greth_disable_tx(greth);
  315. greth_disable_rx(greth);
  316. netif_stop_queue(dev);
  317. free_irq(greth->irq, (void *) dev);
  318. greth_clean_rings(greth);
  319. return 0;
  320. }
  321. static netdev_tx_t
  322. greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
  323. {
  324. struct greth_private *greth = netdev_priv(dev);
  325. struct greth_bd *bdp;
  326. int err = NETDEV_TX_OK;
  327. u32 status, dma_addr, ctrl;
  328. unsigned long flags;
  329. /* Clean TX Ring */
  330. greth_clean_tx(greth->netdev);
  331. if (unlikely(greth->tx_free <= 0)) {
  332. spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
  333. ctrl = GRETH_REGLOAD(greth->regs->control);
  334. /* Enable TX IRQ only if not already in poll() routine */
  335. if (ctrl & GRETH_RXI)
  336. GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
  337. netif_stop_queue(dev);
  338. spin_unlock_irqrestore(&greth->devlock, flags);
  339. return NETDEV_TX_BUSY;
  340. }
  341. if (netif_msg_pktdata(greth))
  342. greth_print_tx_packet(skb);
  343. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  344. dev->stats.tx_errors++;
  345. goto out;
  346. }
  347. bdp = greth->tx_bd_base + greth->tx_next;
  348. dma_addr = greth_read_bd(&bdp->addr);
  349. memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
  350. dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
  351. status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN);
  352. greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN;
  353. /* Wrap around descriptor ring */
  354. if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
  355. status |= GRETH_BD_WR;
  356. }
  357. greth->tx_next = NEXT_TX(greth->tx_next);
  358. greth->tx_free--;
  359. /* Write descriptor control word and enable transmission */
  360. greth_write_bd(&bdp->stat, status);
  361. spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
  362. greth_enable_tx(greth);
  363. spin_unlock_irqrestore(&greth->devlock, flags);
  364. out:
  365. dev_kfree_skb(skb);
  366. return err;
  367. }
  368. static inline u16 greth_num_free_bds(u16 tx_last, u16 tx_next)
  369. {
  370. if (tx_next < tx_last)
  371. return (tx_last - tx_next) - 1;
  372. else
  373. return GRETH_TXBD_NUM - (tx_next - tx_last) - 1;
  374. }
  375. static netdev_tx_t
  376. greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
  377. {
  378. struct greth_private *greth = netdev_priv(dev);
  379. struct greth_bd *bdp;
  380. u32 status, dma_addr;
  381. int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
  382. unsigned long flags;
  383. u16 tx_last;
  384. nr_frags = skb_shinfo(skb)->nr_frags;
  385. tx_last = greth->tx_last;
  386. rmb(); /* tx_last is updated by the poll task */
  387. if (greth_num_free_bds(tx_last, greth->tx_next) < nr_frags + 1) {
  388. netif_stop_queue(dev);
  389. err = NETDEV_TX_BUSY;
  390. goto out;
  391. }
  392. if (netif_msg_pktdata(greth))
  393. greth_print_tx_packet(skb);
  394. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  395. dev->stats.tx_errors++;
  396. goto out;
  397. }
  398. /* Save skb pointer. */
  399. greth->tx_skbuff[greth->tx_next] = skb;
  400. /* Linear buf */
  401. if (nr_frags != 0)
  402. status = GRETH_TXBD_MORE;
  403. else
  404. status = GRETH_BD_IE;
  405. if (skb->ip_summed == CHECKSUM_PARTIAL)
  406. status |= GRETH_TXBD_CSALL;
  407. status |= skb_headlen(skb) & GRETH_BD_LEN;
  408. if (greth->tx_next == GRETH_TXBD_NUM_MASK)
  409. status |= GRETH_BD_WR;
  410. bdp = greth->tx_bd_base + greth->tx_next;
  411. greth_write_bd(&bdp->stat, status);
  412. dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
  413. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  414. goto map_error;
  415. greth_write_bd(&bdp->addr, dma_addr);
  416. curr_tx = NEXT_TX(greth->tx_next);
  417. /* Frags */
  418. for (i = 0; i < nr_frags; i++) {
  419. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  420. greth->tx_skbuff[curr_tx] = NULL;
  421. bdp = greth->tx_bd_base + curr_tx;
  422. status = GRETH_BD_EN;
  423. if (skb->ip_summed == CHECKSUM_PARTIAL)
  424. status |= GRETH_TXBD_CSALL;
  425. status |= skb_frag_size(frag) & GRETH_BD_LEN;
  426. /* Wrap around descriptor ring */
  427. if (curr_tx == GRETH_TXBD_NUM_MASK)
  428. status |= GRETH_BD_WR;
  429. /* More fragments left */
  430. if (i < nr_frags - 1)
  431. status |= GRETH_TXBD_MORE;
  432. else
  433. status |= GRETH_BD_IE; /* enable IRQ on last fragment */
  434. greth_write_bd(&bdp->stat, status);
  435. dma_addr = skb_frag_dma_map(greth->dev, frag, 0, skb_frag_size(frag),
  436. DMA_TO_DEVICE);
  437. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  438. goto frag_map_error;
  439. greth_write_bd(&bdp->addr, dma_addr);
  440. curr_tx = NEXT_TX(curr_tx);
  441. }
  442. wmb();
  443. /* Enable the descriptor chain by enabling the first descriptor */
  444. bdp = greth->tx_bd_base + greth->tx_next;
  445. greth_write_bd(&bdp->stat,
  446. greth_read_bd(&bdp->stat) | GRETH_BD_EN);
  447. spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
  448. greth->tx_next = curr_tx;
  449. greth_enable_tx_and_irq(greth);
  450. spin_unlock_irqrestore(&greth->devlock, flags);
  451. return NETDEV_TX_OK;
  452. frag_map_error:
  453. /* Unmap SKB mappings that succeeded and disable descriptor */
  454. for (i = 0; greth->tx_next + i != curr_tx; i++) {
  455. bdp = greth->tx_bd_base + greth->tx_next + i;
  456. dma_unmap_single(greth->dev,
  457. greth_read_bd(&bdp->addr),
  458. greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
  459. DMA_TO_DEVICE);
  460. greth_write_bd(&bdp->stat, 0);
  461. }
  462. map_error:
  463. if (net_ratelimit())
  464. dev_warn(greth->dev, "Could not create TX DMA mapping\n");
  465. dev_kfree_skb(skb);
  466. out:
  467. return err;
  468. }
  469. static irqreturn_t greth_interrupt(int irq, void *dev_id)
  470. {
  471. struct net_device *dev = dev_id;
  472. struct greth_private *greth;
  473. u32 status, ctrl;
  474. irqreturn_t retval = IRQ_NONE;
  475. greth = netdev_priv(dev);
  476. spin_lock(&greth->devlock);
  477. /* Get the interrupt events that caused us to be here. */
  478. status = GRETH_REGLOAD(greth->regs->status);
  479. /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be
  480. * set regardless of whether IRQ is enabled or not. Especially
  481. * important when shared IRQ.
  482. */
  483. ctrl = GRETH_REGLOAD(greth->regs->control);
  484. /* Handle rx and tx interrupts through poll */
  485. if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) ||
  486. ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) {
  487. retval = IRQ_HANDLED;
  488. /* Disable interrupts and schedule poll() */
  489. greth_disable_irqs(greth);
  490. napi_schedule(&greth->napi);
  491. }
  492. spin_unlock(&greth->devlock);
  493. return retval;
  494. }
  495. static void greth_clean_tx(struct net_device *dev)
  496. {
  497. struct greth_private *greth;
  498. struct greth_bd *bdp;
  499. u32 stat;
  500. greth = netdev_priv(dev);
  501. while (1) {
  502. bdp = greth->tx_bd_base + greth->tx_last;
  503. GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
  504. mb();
  505. stat = greth_read_bd(&bdp->stat);
  506. if (unlikely(stat & GRETH_BD_EN))
  507. break;
  508. if (greth->tx_free == GRETH_TXBD_NUM)
  509. break;
  510. /* Check status for errors */
  511. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  512. dev->stats.tx_errors++;
  513. if (stat & GRETH_TXBD_ERR_AL)
  514. dev->stats.tx_aborted_errors++;
  515. if (stat & GRETH_TXBD_ERR_UE)
  516. dev->stats.tx_fifo_errors++;
  517. }
  518. dev->stats.tx_packets++;
  519. dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last];
  520. greth->tx_last = NEXT_TX(greth->tx_last);
  521. greth->tx_free++;
  522. }
  523. if (greth->tx_free > 0) {
  524. netif_wake_queue(dev);
  525. }
  526. }
  527. static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
  528. {
  529. /* Check status for errors */
  530. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  531. dev->stats.tx_errors++;
  532. if (stat & GRETH_TXBD_ERR_AL)
  533. dev->stats.tx_aborted_errors++;
  534. if (stat & GRETH_TXBD_ERR_UE)
  535. dev->stats.tx_fifo_errors++;
  536. if (stat & GRETH_TXBD_ERR_LC)
  537. dev->stats.tx_aborted_errors++;
  538. }
  539. dev->stats.tx_packets++;
  540. }
  541. static void greth_clean_tx_gbit(struct net_device *dev)
  542. {
  543. struct greth_private *greth;
  544. struct greth_bd *bdp, *bdp_last_frag;
  545. struct sk_buff *skb = NULL;
  546. u32 stat;
  547. int nr_frags, i;
  548. u16 tx_last;
  549. greth = netdev_priv(dev);
  550. tx_last = greth->tx_last;
  551. while (tx_last != greth->tx_next) {
  552. skb = greth->tx_skbuff[tx_last];
  553. nr_frags = skb_shinfo(skb)->nr_frags;
  554. /* We only clean fully completed SKBs */
  555. bdp_last_frag = greth->tx_bd_base + SKIP_TX(tx_last, nr_frags);
  556. GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
  557. mb();
  558. stat = greth_read_bd(&bdp_last_frag->stat);
  559. if (stat & GRETH_BD_EN)
  560. break;
  561. greth->tx_skbuff[tx_last] = NULL;
  562. greth_update_tx_stats(dev, stat);
  563. dev->stats.tx_bytes += skb->len;
  564. bdp = greth->tx_bd_base + tx_last;
  565. tx_last = NEXT_TX(tx_last);
  566. dma_unmap_single(greth->dev,
  567. greth_read_bd(&bdp->addr),
  568. skb_headlen(skb),
  569. DMA_TO_DEVICE);
  570. for (i = 0; i < nr_frags; i++) {
  571. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  572. bdp = greth->tx_bd_base + tx_last;
  573. dma_unmap_page(greth->dev,
  574. greth_read_bd(&bdp->addr),
  575. skb_frag_size(frag),
  576. DMA_TO_DEVICE);
  577. tx_last = NEXT_TX(tx_last);
  578. }
  579. dev_kfree_skb(skb);
  580. }
  581. if (skb) { /* skb is set only if the above while loop was entered */
  582. wmb();
  583. greth->tx_last = tx_last;
  584. if (netif_queue_stopped(dev) &&
  585. (greth_num_free_bds(tx_last, greth->tx_next) >
  586. (MAX_SKB_FRAGS+1)))
  587. netif_wake_queue(dev);
  588. }
  589. }
  590. static int greth_rx(struct net_device *dev, int limit)
  591. {
  592. struct greth_private *greth;
  593. struct greth_bd *bdp;
  594. struct sk_buff *skb;
  595. int pkt_len;
  596. int bad, count;
  597. u32 status, dma_addr;
  598. unsigned long flags;
  599. greth = netdev_priv(dev);
  600. for (count = 0; count < limit; ++count) {
  601. bdp = greth->rx_bd_base + greth->rx_cur;
  602. GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
  603. mb();
  604. status = greth_read_bd(&bdp->stat);
  605. if (unlikely(status & GRETH_BD_EN)) {
  606. break;
  607. }
  608. dma_addr = greth_read_bd(&bdp->addr);
  609. bad = 0;
  610. /* Check status for errors. */
  611. if (unlikely(status & GRETH_RXBD_STATUS)) {
  612. if (status & GRETH_RXBD_ERR_FT) {
  613. dev->stats.rx_length_errors++;
  614. bad = 1;
  615. }
  616. if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
  617. dev->stats.rx_frame_errors++;
  618. bad = 1;
  619. }
  620. if (status & GRETH_RXBD_ERR_CRC) {
  621. dev->stats.rx_crc_errors++;
  622. bad = 1;
  623. }
  624. }
  625. if (unlikely(bad)) {
  626. dev->stats.rx_errors++;
  627. } else {
  628. pkt_len = status & GRETH_BD_LEN;
  629. skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
  630. if (unlikely(skb == NULL)) {
  631. if (net_ratelimit())
  632. dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
  633. dev->stats.rx_dropped++;
  634. } else {
  635. skb_reserve(skb, NET_IP_ALIGN);
  636. dma_sync_single_for_cpu(greth->dev,
  637. dma_addr,
  638. pkt_len,
  639. DMA_FROM_DEVICE);
  640. if (netif_msg_pktdata(greth))
  641. greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
  642. skb_put_data(skb, phys_to_virt(dma_addr),
  643. pkt_len);
  644. skb->protocol = eth_type_trans(skb, dev);
  645. dev->stats.rx_bytes += pkt_len;
  646. dev->stats.rx_packets++;
  647. netif_receive_skb(skb);
  648. }
  649. }
  650. status = GRETH_BD_EN | GRETH_BD_IE;
  651. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  652. status |= GRETH_BD_WR;
  653. }
  654. wmb();
  655. greth_write_bd(&bdp->stat, status);
  656. dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
  657. spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */
  658. greth_enable_rx(greth);
  659. spin_unlock_irqrestore(&greth->devlock, flags);
  660. greth->rx_cur = NEXT_RX(greth->rx_cur);
  661. }
  662. return count;
  663. }
  664. static inline int hw_checksummed(u32 status)
  665. {
  666. if (status & GRETH_RXBD_IP_FRAG)
  667. return 0;
  668. if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
  669. return 0;
  670. if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
  671. return 0;
  672. if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
  673. return 0;
  674. return 1;
  675. }
  676. static int greth_rx_gbit(struct net_device *dev, int limit)
  677. {
  678. struct greth_private *greth;
  679. struct greth_bd *bdp;
  680. struct sk_buff *skb, *newskb;
  681. int pkt_len;
  682. int bad, count = 0;
  683. u32 status, dma_addr;
  684. unsigned long flags;
  685. greth = netdev_priv(dev);
  686. for (count = 0; count < limit; ++count) {
  687. bdp = greth->rx_bd_base + greth->rx_cur;
  688. skb = greth->rx_skbuff[greth->rx_cur];
  689. GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
  690. mb();
  691. status = greth_read_bd(&bdp->stat);
  692. bad = 0;
  693. if (status & GRETH_BD_EN)
  694. break;
  695. /* Check status for errors. */
  696. if (unlikely(status & GRETH_RXBD_STATUS)) {
  697. if (status & GRETH_RXBD_ERR_FT) {
  698. dev->stats.rx_length_errors++;
  699. bad = 1;
  700. } else if (status &
  701. (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
  702. dev->stats.rx_frame_errors++;
  703. bad = 1;
  704. } else if (status & GRETH_RXBD_ERR_CRC) {
  705. dev->stats.rx_crc_errors++;
  706. bad = 1;
  707. }
  708. }
  709. /* Allocate new skb to replace current, not needed if the
  710. * current skb can be reused */
  711. if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) {
  712. skb_reserve(newskb, NET_IP_ALIGN);
  713. dma_addr = dma_map_single(greth->dev,
  714. newskb->data,
  715. MAX_FRAME_SIZE + NET_IP_ALIGN,
  716. DMA_FROM_DEVICE);
  717. if (!dma_mapping_error(greth->dev, dma_addr)) {
  718. /* Process the incoming frame. */
  719. pkt_len = status & GRETH_BD_LEN;
  720. dma_unmap_single(greth->dev,
  721. greth_read_bd(&bdp->addr),
  722. MAX_FRAME_SIZE + NET_IP_ALIGN,
  723. DMA_FROM_DEVICE);
  724. if (netif_msg_pktdata(greth))
  725. greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
  726. skb_put(skb, pkt_len);
  727. if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status))
  728. skb->ip_summed = CHECKSUM_UNNECESSARY;
  729. else
  730. skb_checksum_none_assert(skb);
  731. skb->protocol = eth_type_trans(skb, dev);
  732. dev->stats.rx_packets++;
  733. dev->stats.rx_bytes += pkt_len;
  734. netif_receive_skb(skb);
  735. greth->rx_skbuff[greth->rx_cur] = newskb;
  736. greth_write_bd(&bdp->addr, dma_addr);
  737. } else {
  738. if (net_ratelimit())
  739. dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
  740. dev_kfree_skb(newskb);
  741. /* reusing current skb, so it is a drop */
  742. dev->stats.rx_dropped++;
  743. }
  744. } else if (bad) {
  745. /* Bad Frame transfer, the skb is reused */
  746. dev->stats.rx_dropped++;
  747. } else {
  748. /* Failed Allocating a new skb. This is rather stupid
  749. * but the current "filled" skb is reused, as if
  750. * transfer failure. One could argue that RX descriptor
  751. * table handling should be divided into cleaning and
  752. * filling as the TX part of the driver
  753. */
  754. if (net_ratelimit())
  755. dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
  756. /* reusing current skb, so it is a drop */
  757. dev->stats.rx_dropped++;
  758. }
  759. status = GRETH_BD_EN | GRETH_BD_IE;
  760. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  761. status |= GRETH_BD_WR;
  762. }
  763. wmb();
  764. greth_write_bd(&bdp->stat, status);
  765. spin_lock_irqsave(&greth->devlock, flags);
  766. greth_enable_rx(greth);
  767. spin_unlock_irqrestore(&greth->devlock, flags);
  768. greth->rx_cur = NEXT_RX(greth->rx_cur);
  769. }
  770. return count;
  771. }
  772. static int greth_poll(struct napi_struct *napi, int budget)
  773. {
  774. struct greth_private *greth;
  775. int work_done = 0;
  776. unsigned long flags;
  777. u32 mask, ctrl;
  778. greth = container_of(napi, struct greth_private, napi);
  779. restart_txrx_poll:
  780. if (greth->gbit_mac) {
  781. greth_clean_tx_gbit(greth->netdev);
  782. work_done += greth_rx_gbit(greth->netdev, budget - work_done);
  783. } else {
  784. if (netif_queue_stopped(greth->netdev))
  785. greth_clean_tx(greth->netdev);
  786. work_done += greth_rx(greth->netdev, budget - work_done);
  787. }
  788. if (work_done < budget) {
  789. spin_lock_irqsave(&greth->devlock, flags);
  790. ctrl = GRETH_REGLOAD(greth->regs->control);
  791. if ((greth->gbit_mac && (greth->tx_last != greth->tx_next)) ||
  792. (!greth->gbit_mac && netif_queue_stopped(greth->netdev))) {
  793. GRETH_REGSAVE(greth->regs->control,
  794. ctrl | GRETH_TXI | GRETH_RXI);
  795. mask = GRETH_INT_RX | GRETH_INT_RE |
  796. GRETH_INT_TX | GRETH_INT_TE;
  797. } else {
  798. GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI);
  799. mask = GRETH_INT_RX | GRETH_INT_RE;
  800. }
  801. if (GRETH_REGLOAD(greth->regs->status) & mask) {
  802. GRETH_REGSAVE(greth->regs->control, ctrl);
  803. spin_unlock_irqrestore(&greth->devlock, flags);
  804. goto restart_txrx_poll;
  805. } else {
  806. napi_complete_done(napi, work_done);
  807. spin_unlock_irqrestore(&greth->devlock, flags);
  808. }
  809. }
  810. return work_done;
  811. }
  812. static int greth_set_mac_add(struct net_device *dev, void *p)
  813. {
  814. struct sockaddr *addr = p;
  815. struct greth_private *greth;
  816. struct greth_regs *regs;
  817. greth = netdev_priv(dev);
  818. regs = greth->regs;
  819. if (!is_valid_ether_addr(addr->sa_data))
  820. return -EADDRNOTAVAIL;
  821. eth_hw_addr_set(dev, addr->sa_data);
  822. GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
  823. GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
  824. dev->dev_addr[4] << 8 | dev->dev_addr[5]);
  825. return 0;
  826. }
  827. static u32 greth_hash_get_index(__u8 *addr)
  828. {
  829. return (ether_crc(6, addr)) & 0x3F;
  830. }
  831. static void greth_set_hash_filter(struct net_device *dev)
  832. {
  833. struct netdev_hw_addr *ha;
  834. struct greth_private *greth = netdev_priv(dev);
  835. struct greth_regs *regs = greth->regs;
  836. u32 mc_filter[2];
  837. unsigned int bitnr;
  838. mc_filter[0] = mc_filter[1] = 0;
  839. netdev_for_each_mc_addr(ha, dev) {
  840. bitnr = greth_hash_get_index(ha->addr);
  841. mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
  842. }
  843. GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
  844. GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
  845. }
  846. static void greth_set_multicast_list(struct net_device *dev)
  847. {
  848. int cfg;
  849. struct greth_private *greth = netdev_priv(dev);
  850. struct greth_regs *regs = greth->regs;
  851. cfg = GRETH_REGLOAD(regs->control);
  852. if (dev->flags & IFF_PROMISC)
  853. cfg |= GRETH_CTRL_PR;
  854. else
  855. cfg &= ~GRETH_CTRL_PR;
  856. if (greth->multicast) {
  857. if (dev->flags & IFF_ALLMULTI) {
  858. GRETH_REGSAVE(regs->hash_msb, -1);
  859. GRETH_REGSAVE(regs->hash_lsb, -1);
  860. cfg |= GRETH_CTRL_MCEN;
  861. GRETH_REGSAVE(regs->control, cfg);
  862. return;
  863. }
  864. if (netdev_mc_empty(dev)) {
  865. cfg &= ~GRETH_CTRL_MCEN;
  866. GRETH_REGSAVE(regs->control, cfg);
  867. return;
  868. }
  869. /* Setup multicast filter */
  870. greth_set_hash_filter(dev);
  871. cfg |= GRETH_CTRL_MCEN;
  872. }
  873. GRETH_REGSAVE(regs->control, cfg);
  874. }
  875. static u32 greth_get_msglevel(struct net_device *dev)
  876. {
  877. struct greth_private *greth = netdev_priv(dev);
  878. return greth->msg_enable;
  879. }
  880. static void greth_set_msglevel(struct net_device *dev, u32 value)
  881. {
  882. struct greth_private *greth = netdev_priv(dev);
  883. greth->msg_enable = value;
  884. }
  885. static int greth_get_regs_len(struct net_device *dev)
  886. {
  887. return sizeof(struct greth_regs);
  888. }
  889. static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  890. {
  891. struct greth_private *greth = netdev_priv(dev);
  892. strscpy(info->driver, dev_driver_string(greth->dev),
  893. sizeof(info->driver));
  894. strscpy(info->bus_info, greth->dev->bus->name, sizeof(info->bus_info));
  895. }
  896. static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
  897. {
  898. int i;
  899. struct greth_private *greth = netdev_priv(dev);
  900. u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
  901. u32 *buff = p;
  902. for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
  903. buff[i] = greth_read_bd(&greth_regs[i]);
  904. }
  905. static const struct ethtool_ops greth_ethtool_ops = {
  906. .get_msglevel = greth_get_msglevel,
  907. .set_msglevel = greth_set_msglevel,
  908. .get_drvinfo = greth_get_drvinfo,
  909. .get_regs_len = greth_get_regs_len,
  910. .get_regs = greth_get_regs,
  911. .get_link = ethtool_op_get_link,
  912. .get_link_ksettings = phy_ethtool_get_link_ksettings,
  913. .set_link_ksettings = phy_ethtool_set_link_ksettings,
  914. };
  915. static struct net_device_ops greth_netdev_ops = {
  916. .ndo_open = greth_open,
  917. .ndo_stop = greth_close,
  918. .ndo_start_xmit = greth_start_xmit,
  919. .ndo_set_mac_address = greth_set_mac_add,
  920. .ndo_validate_addr = eth_validate_addr,
  921. };
  922. static inline int wait_for_mdio(struct greth_private *greth)
  923. {
  924. unsigned long timeout = jiffies + 4*HZ/100;
  925. while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
  926. if (time_after(jiffies, timeout))
  927. return 0;
  928. }
  929. return 1;
  930. }
  931. static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
  932. {
  933. struct greth_private *greth = bus->priv;
  934. int data;
  935. if (!wait_for_mdio(greth))
  936. return -EBUSY;
  937. GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
  938. if (!wait_for_mdio(greth))
  939. return -EBUSY;
  940. if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
  941. data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
  942. return data;
  943. } else {
  944. return -1;
  945. }
  946. }
  947. static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
  948. {
  949. struct greth_private *greth = bus->priv;
  950. if (!wait_for_mdio(greth))
  951. return -EBUSY;
  952. GRETH_REGSAVE(greth->regs->mdio,
  953. ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
  954. if (!wait_for_mdio(greth))
  955. return -EBUSY;
  956. return 0;
  957. }
  958. static void greth_link_change(struct net_device *dev)
  959. {
  960. struct greth_private *greth = netdev_priv(dev);
  961. struct phy_device *phydev = dev->phydev;
  962. unsigned long flags;
  963. int status_change = 0;
  964. u32 ctrl;
  965. spin_lock_irqsave(&greth->devlock, flags);
  966. if (phydev->link) {
  967. if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
  968. ctrl = GRETH_REGLOAD(greth->regs->control) &
  969. ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB);
  970. if (phydev->duplex)
  971. ctrl |= GRETH_CTRL_FD;
  972. if (phydev->speed == SPEED_100)
  973. ctrl |= GRETH_CTRL_SP;
  974. else if (phydev->speed == SPEED_1000)
  975. ctrl |= GRETH_CTRL_GB;
  976. GRETH_REGSAVE(greth->regs->control, ctrl);
  977. greth->speed = phydev->speed;
  978. greth->duplex = phydev->duplex;
  979. status_change = 1;
  980. }
  981. }
  982. if (phydev->link != greth->link) {
  983. if (!phydev->link) {
  984. greth->speed = 0;
  985. greth->duplex = -1;
  986. }
  987. greth->link = phydev->link;
  988. status_change = 1;
  989. }
  990. spin_unlock_irqrestore(&greth->devlock, flags);
  991. if (status_change) {
  992. if (phydev->link)
  993. pr_debug("%s: link up (%d/%s)\n",
  994. dev->name, phydev->speed,
  995. DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
  996. else
  997. pr_debug("%s: link down\n", dev->name);
  998. }
  999. }
  1000. static int greth_mdio_probe(struct net_device *dev)
  1001. {
  1002. struct greth_private *greth = netdev_priv(dev);
  1003. struct phy_device *phy = NULL;
  1004. int ret;
  1005. /* Find the first PHY */
  1006. phy = phy_find_first(greth->mdio);
  1007. if (!phy) {
  1008. if (netif_msg_probe(greth))
  1009. dev_err(&dev->dev, "no PHY found\n");
  1010. return -ENXIO;
  1011. }
  1012. ret = phy_connect_direct(dev, phy, &greth_link_change,
  1013. greth->gbit_mac ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII);
  1014. if (ret) {
  1015. if (netif_msg_ifup(greth))
  1016. dev_err(&dev->dev, "could not attach to PHY\n");
  1017. return ret;
  1018. }
  1019. if (greth->gbit_mac)
  1020. phy_set_max_speed(phy, SPEED_1000);
  1021. else
  1022. phy_set_max_speed(phy, SPEED_100);
  1023. linkmode_copy(phy->advertising, phy->supported);
  1024. greth->link = 0;
  1025. greth->speed = 0;
  1026. greth->duplex = -1;
  1027. return 0;
  1028. }
  1029. static int greth_mdio_init(struct greth_private *greth)
  1030. {
  1031. int ret;
  1032. unsigned long timeout;
  1033. struct net_device *ndev = greth->netdev;
  1034. greth->mdio = mdiobus_alloc();
  1035. if (!greth->mdio) {
  1036. return -ENOMEM;
  1037. }
  1038. greth->mdio->name = "greth-mdio";
  1039. snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
  1040. greth->mdio->read = greth_mdio_read;
  1041. greth->mdio->write = greth_mdio_write;
  1042. greth->mdio->priv = greth;
  1043. ret = mdiobus_register(greth->mdio);
  1044. if (ret) {
  1045. goto error;
  1046. }
  1047. ret = greth_mdio_probe(greth->netdev);
  1048. if (ret) {
  1049. if (netif_msg_probe(greth))
  1050. dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
  1051. goto unreg_mdio;
  1052. }
  1053. phy_start(ndev->phydev);
  1054. /* If Ethernet debug link is used make autoneg happen right away */
  1055. if (greth->edcl && greth_edcl == 1) {
  1056. phy_start_aneg(ndev->phydev);
  1057. timeout = jiffies + 6*HZ;
  1058. while (!phy_aneg_done(ndev->phydev) &&
  1059. time_before(jiffies, timeout)) {
  1060. }
  1061. phy_read_status(ndev->phydev);
  1062. greth_link_change(greth->netdev);
  1063. }
  1064. return 0;
  1065. unreg_mdio:
  1066. mdiobus_unregister(greth->mdio);
  1067. error:
  1068. mdiobus_free(greth->mdio);
  1069. return ret;
  1070. }
  1071. /* Initialize the GRETH MAC */
  1072. static int greth_of_probe(struct platform_device *ofdev)
  1073. {
  1074. struct net_device *dev;
  1075. struct greth_private *greth;
  1076. struct greth_regs *regs;
  1077. int i;
  1078. int err;
  1079. int tmp;
  1080. u8 addr[ETH_ALEN];
  1081. unsigned long timeout;
  1082. dev = alloc_etherdev(sizeof(struct greth_private));
  1083. if (dev == NULL)
  1084. return -ENOMEM;
  1085. greth = netdev_priv(dev);
  1086. greth->netdev = dev;
  1087. greth->dev = &ofdev->dev;
  1088. if (greth_debug > 0)
  1089. greth->msg_enable = greth_debug;
  1090. else
  1091. greth->msg_enable = GRETH_DEF_MSG_ENABLE;
  1092. spin_lock_init(&greth->devlock);
  1093. greth->regs = of_ioremap(&ofdev->resource[0], 0,
  1094. resource_size(&ofdev->resource[0]),
  1095. "grlib-greth regs");
  1096. if (greth->regs == NULL) {
  1097. if (netif_msg_probe(greth))
  1098. dev_err(greth->dev, "ioremap failure.\n");
  1099. err = -EIO;
  1100. goto error1;
  1101. }
  1102. regs = greth->regs;
  1103. greth->irq = ofdev->archdata.irqs[0];
  1104. dev_set_drvdata(greth->dev, dev);
  1105. SET_NETDEV_DEV(dev, greth->dev);
  1106. if (netif_msg_probe(greth))
  1107. dev_dbg(greth->dev, "resetting controller.\n");
  1108. /* Reset the controller. */
  1109. GRETH_REGSAVE(regs->control, GRETH_RESET);
  1110. /* Wait for MAC to reset itself */
  1111. timeout = jiffies + HZ/100;
  1112. while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
  1113. if (time_after(jiffies, timeout)) {
  1114. err = -EIO;
  1115. if (netif_msg_probe(greth))
  1116. dev_err(greth->dev, "timeout when waiting for reset.\n");
  1117. goto error2;
  1118. }
  1119. }
  1120. /* Get default PHY address */
  1121. greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
  1122. /* Check if we have GBIT capable MAC */
  1123. tmp = GRETH_REGLOAD(regs->control);
  1124. greth->gbit_mac = (tmp >> 27) & 1;
  1125. /* Check for multicast capability */
  1126. greth->multicast = (tmp >> 25) & 1;
  1127. greth->edcl = (tmp >> 31) & 1;
  1128. /* If we have EDCL we disable the EDCL speed-duplex FSM so
  1129. * it doesn't interfere with the software */
  1130. if (greth->edcl != 0)
  1131. GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
  1132. /* Check if MAC can handle MDIO interrupts */
  1133. greth->mdio_int_en = (tmp >> 26) & 1;
  1134. err = greth_mdio_init(greth);
  1135. if (err) {
  1136. if (netif_msg_probe(greth))
  1137. dev_err(greth->dev, "failed to register MDIO bus\n");
  1138. goto error2;
  1139. }
  1140. /* Allocate TX descriptor ring in coherent memory */
  1141. greth->tx_bd_base = dma_alloc_coherent(greth->dev, 1024,
  1142. &greth->tx_bd_base_phys,
  1143. GFP_KERNEL);
  1144. if (!greth->tx_bd_base) {
  1145. err = -ENOMEM;
  1146. goto error3;
  1147. }
  1148. /* Allocate RX descriptor ring in coherent memory */
  1149. greth->rx_bd_base = dma_alloc_coherent(greth->dev, 1024,
  1150. &greth->rx_bd_base_phys,
  1151. GFP_KERNEL);
  1152. if (!greth->rx_bd_base) {
  1153. err = -ENOMEM;
  1154. goto error4;
  1155. }
  1156. /* Get MAC address from: module param, OF property or ID prom */
  1157. for (i = 0; i < 6; i++) {
  1158. if (macaddr[i] != 0)
  1159. break;
  1160. }
  1161. if (i == 6) {
  1162. err = of_get_mac_address(ofdev->dev.of_node, addr);
  1163. if (!err) {
  1164. for (i = 0; i < 6; i++)
  1165. macaddr[i] = (unsigned int) addr[i];
  1166. } else {
  1167. #ifdef CONFIG_SPARC
  1168. for (i = 0; i < 6; i++)
  1169. macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
  1170. #endif
  1171. }
  1172. }
  1173. for (i = 0; i < 6; i++)
  1174. addr[i] = macaddr[i];
  1175. eth_hw_addr_set(dev, addr);
  1176. macaddr[5]++;
  1177. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  1178. if (netif_msg_probe(greth))
  1179. dev_err(greth->dev, "no valid ethernet address, aborting.\n");
  1180. err = -EINVAL;
  1181. goto error5;
  1182. }
  1183. GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
  1184. GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
  1185. dev->dev_addr[4] << 8 | dev->dev_addr[5]);
  1186. /* Clear all pending interrupts except PHY irq */
  1187. GRETH_REGSAVE(regs->status, 0xFF);
  1188. if (greth->gbit_mac) {
  1189. dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
  1190. NETIF_F_RXCSUM;
  1191. dev->features = dev->hw_features | NETIF_F_HIGHDMA;
  1192. greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
  1193. }
  1194. if (greth->multicast) {
  1195. greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list;
  1196. dev->flags |= IFF_MULTICAST;
  1197. } else {
  1198. dev->flags &= ~IFF_MULTICAST;
  1199. }
  1200. dev->netdev_ops = &greth_netdev_ops;
  1201. dev->ethtool_ops = &greth_ethtool_ops;
  1202. err = register_netdev(dev);
  1203. if (err) {
  1204. if (netif_msg_probe(greth))
  1205. dev_err(greth->dev, "netdevice registration failed.\n");
  1206. goto error5;
  1207. }
  1208. /* setup NAPI */
  1209. netif_napi_add(dev, &greth->napi, greth_poll);
  1210. return 0;
  1211. error5:
  1212. dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1213. error4:
  1214. dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1215. error3:
  1216. mdiobus_unregister(greth->mdio);
  1217. error2:
  1218. of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
  1219. error1:
  1220. free_netdev(dev);
  1221. return err;
  1222. }
  1223. static int greth_of_remove(struct platform_device *of_dev)
  1224. {
  1225. struct net_device *ndev = platform_get_drvdata(of_dev);
  1226. struct greth_private *greth = netdev_priv(ndev);
  1227. /* Free descriptor areas */
  1228. dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1229. dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1230. if (ndev->phydev)
  1231. phy_stop(ndev->phydev);
  1232. mdiobus_unregister(greth->mdio);
  1233. unregister_netdev(ndev);
  1234. of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
  1235. free_netdev(ndev);
  1236. return 0;
  1237. }
  1238. static const struct of_device_id greth_of_match[] = {
  1239. {
  1240. .name = "GAISLER_ETHMAC",
  1241. },
  1242. {
  1243. .name = "01_01d",
  1244. },
  1245. {},
  1246. };
  1247. MODULE_DEVICE_TABLE(of, greth_of_match);
  1248. static struct platform_driver greth_of_driver = {
  1249. .driver = {
  1250. .name = "grlib-greth",
  1251. .of_match_table = greth_of_match,
  1252. },
  1253. .probe = greth_of_probe,
  1254. .remove = greth_of_remove,
  1255. };
  1256. module_platform_driver(greth_of_driver);
  1257. MODULE_AUTHOR("Aeroflex Gaisler AB.");
  1258. MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
  1259. MODULE_LICENSE("GPL");