mcf8390.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. /*
  2. * Support for ColdFire CPU based boards using a NS8390 Ethernet device.
  3. *
  4. * Derived from the many other 8390 drivers.
  5. *
  6. * (C) Copyright 2012, Greg Ungerer <[email protected]>
  7. *
  8. * This file is subject to the terms and conditions of the GNU General Public
  9. * License. See the file COPYING in the main directory of the Linux
  10. * distribution for more details.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/kernel.h>
  14. #include <linux/errno.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/netdevice.h>
  17. #include <linux/etherdevice.h>
  18. #include <linux/jiffies.h>
  19. #include <linux/io.h>
  20. #include <asm/mcf8390.h>
  21. static const char version[] =
  22. "mcf8390.c: (15-06-2012) Greg Ungerer <[email protected]>";
  23. #define NE_CMD 0x00
  24. #define NE_DATAPORT 0x10 /* NatSemi-defined port window offset */
  25. #define NE_RESET 0x1f /* Issue a read to reset ,a write to clear */
  26. #define NE_EN0_ISR 0x07
  27. #define NE_EN0_DCFG 0x0e
  28. #define NE_EN0_RSARLO 0x08
  29. #define NE_EN0_RSARHI 0x09
  30. #define NE_EN0_RCNTLO 0x0a
  31. #define NE_EN0_RXCR 0x0c
  32. #define NE_EN0_TXCR 0x0d
  33. #define NE_EN0_RCNTHI 0x0b
  34. #define NE_EN0_IMR 0x0f
  35. #define NESM_START_PG 0x40 /* First page of TX buffer */
  36. #define NESM_STOP_PG 0x80 /* Last page +1 of RX ring */
  37. #ifdef NE2000_ODDOFFSET
  38. /*
  39. * A lot of the ColdFire boards use a separate address region for odd offset
  40. * register addresses. The following functions convert and map as required.
  41. * Note that the data port accesses are treated a little differently, and
  42. * always accessed via the insX/outsX functions.
  43. */
  44. static inline u32 NE_PTR(u32 addr)
  45. {
  46. if (addr & 1)
  47. return addr - 1 + NE2000_ODDOFFSET;
  48. return addr;
  49. }
  50. static inline u32 NE_DATA_PTR(u32 addr)
  51. {
  52. return addr;
  53. }
  54. void ei_outb(u32 val, u32 addr)
  55. {
  56. NE2000_BYTE *rp;
  57. rp = (NE2000_BYTE *) NE_PTR(addr);
  58. *rp = RSWAP(val);
  59. }
  60. #define ei_inb ei_inb
  61. u8 ei_inb(u32 addr)
  62. {
  63. NE2000_BYTE *rp, val;
  64. rp = (NE2000_BYTE *) NE_PTR(addr);
  65. val = *rp;
  66. return (u8) (RSWAP(val) & 0xff);
  67. }
  68. void ei_insb(u32 addr, void *vbuf, int len)
  69. {
  70. NE2000_BYTE *rp, val;
  71. u8 *buf;
  72. buf = (u8 *) vbuf;
  73. rp = (NE2000_BYTE *) NE_DATA_PTR(addr);
  74. for (; (len > 0); len--) {
  75. val = *rp;
  76. *buf++ = RSWAP(val);
  77. }
  78. }
  79. void ei_insw(u32 addr, void *vbuf, int len)
  80. {
  81. volatile u16 *rp;
  82. u16 w, *buf;
  83. buf = (u16 *) vbuf;
  84. rp = (volatile u16 *) NE_DATA_PTR(addr);
  85. for (; (len > 0); len--) {
  86. w = *rp;
  87. *buf++ = BSWAP(w);
  88. }
  89. }
  90. void ei_outsb(u32 addr, const void *vbuf, int len)
  91. {
  92. NE2000_BYTE *rp, val;
  93. u8 *buf;
  94. buf = (u8 *) vbuf;
  95. rp = (NE2000_BYTE *) NE_DATA_PTR(addr);
  96. for (; (len > 0); len--) {
  97. val = *buf++;
  98. *rp = RSWAP(val);
  99. }
  100. }
  101. void ei_outsw(u32 addr, const void *vbuf, int len)
  102. {
  103. volatile u16 *rp;
  104. u16 w, *buf;
  105. buf = (u16 *) vbuf;
  106. rp = (volatile u16 *) NE_DATA_PTR(addr);
  107. for (; (len > 0); len--) {
  108. w = *buf++;
  109. *rp = BSWAP(w);
  110. }
  111. }
  112. #else /* !NE2000_ODDOFFSET */
  113. #define ei_inb inb
  114. #define ei_outb outb
  115. #define ei_insb insb
  116. #define ei_insw insw
  117. #define ei_outsb outsb
  118. #define ei_outsw outsw
  119. #endif /* !NE2000_ODDOFFSET */
  120. #define ei_inb_p ei_inb
  121. #define ei_outb_p ei_outb
  122. #include "lib8390.c"
  123. /*
  124. * Hard reset the card. This used to pause for the same period that a
  125. * 8390 reset command required, but that shouldn't be necessary.
  126. */
  127. static void mcf8390_reset_8390(struct net_device *dev)
  128. {
  129. unsigned long reset_start_time = jiffies;
  130. u32 addr = dev->base_addr;
  131. struct ei_device *ei_local = netdev_priv(dev);
  132. netif_dbg(ei_local, hw, dev, "resetting the 8390 t=%ld...\n", jiffies);
  133. ei_outb(ei_inb(addr + NE_RESET), addr + NE_RESET);
  134. ei_status.txing = 0;
  135. ei_status.dmaing = 0;
  136. /* This check _should_not_ be necessary, omit eventually. */
  137. while ((ei_inb(addr + NE_EN0_ISR) & ENISR_RESET) == 0) {
  138. if (time_after(jiffies, reset_start_time + 2 * HZ / 100)) {
  139. netdev_warn(dev, "%s: did not complete\n", __func__);
  140. break;
  141. }
  142. }
  143. ei_outb(ENISR_RESET, addr + NE_EN0_ISR);
  144. }
  145. /*
  146. * This *shouldn't* happen.
  147. * If it does, it's the last thing you'll see
  148. */
  149. static void mcf8390_dmaing_err(const char *func, struct net_device *dev,
  150. struct ei_device *ei_local)
  151. {
  152. netdev_err(dev, "%s: DMAing conflict [DMAstat:%d][irqlock:%d]\n",
  153. func, ei_local->dmaing, ei_local->irqlock);
  154. }
  155. /*
  156. * Grab the 8390 specific header. Similar to the block_input routine, but
  157. * we don't need to be concerned with ring wrap as the header will be at
  158. * the start of a page, so we optimize accordingly.
  159. */
  160. static void mcf8390_get_8390_hdr(struct net_device *dev,
  161. struct e8390_pkt_hdr *hdr, int ring_page)
  162. {
  163. struct ei_device *ei_local = netdev_priv(dev);
  164. u32 addr = dev->base_addr;
  165. if (ei_local->dmaing) {
  166. mcf8390_dmaing_err(__func__, dev, ei_local);
  167. return;
  168. }
  169. ei_local->dmaing |= 0x01;
  170. ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, addr + NE_CMD);
  171. ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
  172. ei_outb(sizeof(struct e8390_pkt_hdr), addr + NE_EN0_RCNTLO);
  173. ei_outb(0, addr + NE_EN0_RCNTHI);
  174. ei_outb(0, addr + NE_EN0_RSARLO); /* On page boundary */
  175. ei_outb(ring_page, addr + NE_EN0_RSARHI);
  176. ei_outb(E8390_RREAD + E8390_START, addr + NE_CMD);
  177. ei_insw(addr + NE_DATAPORT, hdr, sizeof(struct e8390_pkt_hdr) >> 1);
  178. outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
  179. ei_local->dmaing &= ~0x01;
  180. hdr->count = cpu_to_le16(hdr->count);
  181. }
  182. /*
  183. * Block input and output, similar to the Crynwr packet driver.
  184. * If you are porting to a new ethercard, look at the packet driver source
  185. * for hints. The NEx000 doesn't share the on-board packet memory --
  186. * you have to put the packet out through the "remote DMA" dataport
  187. * using z_writeb.
  188. */
  189. static void mcf8390_block_input(struct net_device *dev, int count,
  190. struct sk_buff *skb, int ring_offset)
  191. {
  192. struct ei_device *ei_local = netdev_priv(dev);
  193. u32 addr = dev->base_addr;
  194. char *buf = skb->data;
  195. if (ei_local->dmaing) {
  196. mcf8390_dmaing_err(__func__, dev, ei_local);
  197. return;
  198. }
  199. ei_local->dmaing |= 0x01;
  200. ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, addr + NE_CMD);
  201. ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
  202. ei_outb(count & 0xff, addr + NE_EN0_RCNTLO);
  203. ei_outb(count >> 8, addr + NE_EN0_RCNTHI);
  204. ei_outb(ring_offset & 0xff, addr + NE_EN0_RSARLO);
  205. ei_outb(ring_offset >> 8, addr + NE_EN0_RSARHI);
  206. ei_outb(E8390_RREAD + E8390_START, addr + NE_CMD);
  207. ei_insw(addr + NE_DATAPORT, buf, count >> 1);
  208. if (count & 1)
  209. buf[count - 1] = ei_inb(addr + NE_DATAPORT);
  210. ei_outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
  211. ei_local->dmaing &= ~0x01;
  212. }
  213. static void mcf8390_block_output(struct net_device *dev, int count,
  214. const unsigned char *buf,
  215. const int start_page)
  216. {
  217. struct ei_device *ei_local = netdev_priv(dev);
  218. u32 addr = dev->base_addr;
  219. unsigned long dma_start;
  220. /* Make sure we transfer all bytes if 16bit IO writes */
  221. if (count & 0x1)
  222. count++;
  223. if (ei_local->dmaing) {
  224. mcf8390_dmaing_err(__func__, dev, ei_local);
  225. return;
  226. }
  227. ei_local->dmaing |= 0x01;
  228. /* We should already be in page 0, but to be safe... */
  229. ei_outb(E8390_PAGE0 + E8390_START + E8390_NODMA, addr + NE_CMD);
  230. ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
  231. /* Now the normal output. */
  232. ei_outb(count & 0xff, addr + NE_EN0_RCNTLO);
  233. ei_outb(count >> 8, addr + NE_EN0_RCNTHI);
  234. ei_outb(0x00, addr + NE_EN0_RSARLO);
  235. ei_outb(start_page, addr + NE_EN0_RSARHI);
  236. ei_outb(E8390_RWRITE + E8390_START, addr + NE_CMD);
  237. ei_outsw(addr + NE_DATAPORT, buf, count >> 1);
  238. dma_start = jiffies;
  239. while ((ei_inb(addr + NE_EN0_ISR) & ENISR_RDC) == 0) {
  240. if (time_after(jiffies, dma_start + 2 * HZ / 100)) { /* 20ms */
  241. netdev_warn(dev, "timeout waiting for Tx RDC\n");
  242. mcf8390_reset_8390(dev);
  243. __NS8390_init(dev, 1);
  244. break;
  245. }
  246. }
  247. ei_outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
  248. ei_local->dmaing &= ~0x01;
  249. }
  250. static const struct net_device_ops mcf8390_netdev_ops = {
  251. .ndo_open = __ei_open,
  252. .ndo_stop = __ei_close,
  253. .ndo_start_xmit = __ei_start_xmit,
  254. .ndo_tx_timeout = __ei_tx_timeout,
  255. .ndo_get_stats = __ei_get_stats,
  256. .ndo_set_rx_mode = __ei_set_multicast_list,
  257. .ndo_validate_addr = eth_validate_addr,
  258. .ndo_set_mac_address = eth_mac_addr,
  259. #ifdef CONFIG_NET_POLL_CONTROLLER
  260. .ndo_poll_controller = __ei_poll,
  261. #endif
  262. };
  263. static int mcf8390_init(struct net_device *dev)
  264. {
  265. static u32 offsets[] = {
  266. 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
  267. 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
  268. };
  269. struct ei_device *ei_local = netdev_priv(dev);
  270. unsigned char SA_prom[32];
  271. u32 addr = dev->base_addr;
  272. int start_page, stop_page;
  273. int i, ret;
  274. mcf8390_reset_8390(dev);
  275. /*
  276. * Read the 16 bytes of station address PROM.
  277. * We must first initialize registers,
  278. * similar to NS8390_init(eifdev, 0).
  279. * We can't reliably read the SAPROM address without this.
  280. * (I learned the hard way!).
  281. */
  282. {
  283. static const struct {
  284. u32 value;
  285. u32 offset;
  286. } program_seq[] = {
  287. {E8390_NODMA + E8390_PAGE0 + E8390_STOP, NE_CMD},
  288. /* Select page 0 */
  289. {0x48, NE_EN0_DCFG}, /* 0x48: Set byte-wide access */
  290. {0x00, NE_EN0_RCNTLO}, /* Clear the count regs */
  291. {0x00, NE_EN0_RCNTHI},
  292. {0x00, NE_EN0_IMR}, /* Mask completion irq */
  293. {0xFF, NE_EN0_ISR},
  294. {E8390_RXOFF, NE_EN0_RXCR}, /* 0x20 Set to monitor */
  295. {E8390_TXOFF, NE_EN0_TXCR}, /* 0x02 and loopback mode */
  296. {32, NE_EN0_RCNTLO},
  297. {0x00, NE_EN0_RCNTHI},
  298. {0x00, NE_EN0_RSARLO}, /* DMA starting at 0x0000 */
  299. {0x00, NE_EN0_RSARHI},
  300. {E8390_RREAD + E8390_START, NE_CMD},
  301. };
  302. for (i = 0; i < ARRAY_SIZE(program_seq); i++) {
  303. ei_outb(program_seq[i].value,
  304. addr + program_seq[i].offset);
  305. }
  306. }
  307. for (i = 0; i < 16; i++) {
  308. SA_prom[i] = ei_inb(addr + NE_DATAPORT);
  309. ei_inb(addr + NE_DATAPORT);
  310. }
  311. /* We must set the 8390 for word mode. */
  312. ei_outb(0x49, addr + NE_EN0_DCFG);
  313. start_page = NESM_START_PG;
  314. stop_page = NESM_STOP_PG;
  315. /* Install the Interrupt handler */
  316. ret = request_irq(dev->irq, __ei_interrupt, 0, dev->name, dev);
  317. if (ret)
  318. return ret;
  319. eth_hw_addr_set(dev, SA_prom);
  320. netdev_dbg(dev, "Found ethernet address: %pM\n", dev->dev_addr);
  321. ei_local->name = "mcf8390";
  322. ei_local->tx_start_page = start_page;
  323. ei_local->stop_page = stop_page;
  324. ei_local->word16 = 1;
  325. ei_local->rx_start_page = start_page + TX_PAGES;
  326. ei_local->reset_8390 = mcf8390_reset_8390;
  327. ei_local->block_input = mcf8390_block_input;
  328. ei_local->block_output = mcf8390_block_output;
  329. ei_local->get_8390_hdr = mcf8390_get_8390_hdr;
  330. ei_local->reg_offset = offsets;
  331. dev->netdev_ops = &mcf8390_netdev_ops;
  332. __NS8390_init(dev, 0);
  333. ret = register_netdev(dev);
  334. if (ret) {
  335. free_irq(dev->irq, dev);
  336. return ret;
  337. }
  338. netdev_info(dev, "addr=0x%08x irq=%d, Ethernet Address %pM\n",
  339. addr, dev->irq, dev->dev_addr);
  340. return 0;
  341. }
  342. static int mcf8390_probe(struct platform_device *pdev)
  343. {
  344. struct net_device *dev;
  345. struct resource *mem;
  346. resource_size_t msize;
  347. int ret, irq;
  348. irq = platform_get_irq(pdev, 0);
  349. if (irq < 0)
  350. return -ENXIO;
  351. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  352. if (mem == NULL) {
  353. dev_err(&pdev->dev, "no memory address specified?\n");
  354. return -ENXIO;
  355. }
  356. msize = resource_size(mem);
  357. if (!request_mem_region(mem->start, msize, pdev->name))
  358. return -EBUSY;
  359. dev = ____alloc_ei_netdev(0);
  360. if (dev == NULL) {
  361. release_mem_region(mem->start, msize);
  362. return -ENOMEM;
  363. }
  364. SET_NETDEV_DEV(dev, &pdev->dev);
  365. platform_set_drvdata(pdev, dev);
  366. dev->irq = irq;
  367. dev->base_addr = mem->start;
  368. ret = mcf8390_init(dev);
  369. if (ret) {
  370. release_mem_region(mem->start, msize);
  371. free_netdev(dev);
  372. return ret;
  373. }
  374. return 0;
  375. }
  376. static int mcf8390_remove(struct platform_device *pdev)
  377. {
  378. struct net_device *dev = platform_get_drvdata(pdev);
  379. struct resource *mem;
  380. unregister_netdev(dev);
  381. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  382. release_mem_region(mem->start, resource_size(mem));
  383. free_netdev(dev);
  384. return 0;
  385. }
  386. static struct platform_driver mcf8390_drv = {
  387. .driver = {
  388. .name = "mcf8390",
  389. },
  390. .probe = mcf8390_probe,
  391. .remove = mcf8390_remove,
  392. };
  393. module_platform_driver(mcf8390_drv);
  394. MODULE_DESCRIPTION("MCF8390 ColdFire NS8390 driver");
  395. MODULE_AUTHOR("Greg Ungerer <[email protected]>");
  396. MODULE_LICENSE("GPL");
  397. MODULE_ALIAS("platform:mcf8390");