pch_can.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (C) 1999 - 2010 Intel Corporation.
  4. * Copyright (C) 2010 LAPIS SEMICONDUCTOR CO., LTD.
  5. */
  6. #include <linux/interrupt.h>
  7. #include <linux/delay.h>
  8. #include <linux/ethtool.h>
  9. #include <linux/io.h>
  10. #include <linux/module.h>
  11. #include <linux/sched.h>
  12. #include <linux/pci.h>
  13. #include <linux/kernel.h>
  14. #include <linux/types.h>
  15. #include <linux/errno.h>
  16. #include <linux/netdevice.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/can.h>
  19. #include <linux/can/dev.h>
  20. #include <linux/can/error.h>
  21. #define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */
  22. #define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */
  23. #define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1))
  24. #define PCH_CTRL_CCE BIT(6)
  25. #define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */
  26. #define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */
  27. #define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */
  28. #define PCH_CMASK_RX_TX_SET 0x00f3
  29. #define PCH_CMASK_RX_TX_GET 0x0073
  30. #define PCH_CMASK_ALL 0xff
  31. #define PCH_CMASK_NEWDAT BIT(2)
  32. #define PCH_CMASK_CLRINTPND BIT(3)
  33. #define PCH_CMASK_CTRL BIT(4)
  34. #define PCH_CMASK_ARB BIT(5)
  35. #define PCH_CMASK_MASK BIT(6)
  36. #define PCH_CMASK_RDWR BIT(7)
  37. #define PCH_IF_MCONT_NEWDAT BIT(15)
  38. #define PCH_IF_MCONT_MSGLOST BIT(14)
  39. #define PCH_IF_MCONT_INTPND BIT(13)
  40. #define PCH_IF_MCONT_UMASK BIT(12)
  41. #define PCH_IF_MCONT_TXIE BIT(11)
  42. #define PCH_IF_MCONT_RXIE BIT(10)
  43. #define PCH_IF_MCONT_RMTEN BIT(9)
  44. #define PCH_IF_MCONT_TXRQXT BIT(8)
  45. #define PCH_IF_MCONT_EOB BIT(7)
  46. #define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3))
  47. #define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15))
  48. #define PCH_ID2_DIR BIT(13)
  49. #define PCH_ID2_XTD BIT(14)
  50. #define PCH_ID_MSGVAL BIT(15)
  51. #define PCH_IF_CREQ_BUSY BIT(15)
  52. #define PCH_STATUS_INT 0x8000
  53. #define PCH_RP 0x00008000
  54. #define PCH_REC 0x00007f00
  55. #define PCH_TEC 0x000000ff
  56. #define PCH_TX_OK BIT(3)
  57. #define PCH_RX_OK BIT(4)
  58. #define PCH_EPASSIV BIT(5)
  59. #define PCH_EWARN BIT(6)
  60. #define PCH_BUS_OFF BIT(7)
  61. /* bit position of certain controller bits. */
  62. #define PCH_BIT_BRP_SHIFT 0
  63. #define PCH_BIT_SJW_SHIFT 6
  64. #define PCH_BIT_TSEG1_SHIFT 8
  65. #define PCH_BIT_TSEG2_SHIFT 12
  66. #define PCH_BIT_BRPE_BRPE_SHIFT 6
  67. #define PCH_MSK_BITT_BRP 0x3f
  68. #define PCH_MSK_BRPE_BRPE 0x3c0
  69. #define PCH_MSK_CTRL_IE_SIE_EIE 0x07
  70. #define PCH_COUNTER_LIMIT 10
  71. #define PCH_CAN_CLK 50000000 /* 50MHz */
  72. /*
  73. * Define the number of message object.
  74. * PCH CAN communications are done via Message RAM.
  75. * The Message RAM consists of 32 message objects.
  76. */
  77. #define PCH_RX_OBJ_NUM 26
  78. #define PCH_TX_OBJ_NUM 6
  79. #define PCH_RX_OBJ_START 1
  80. #define PCH_RX_OBJ_END PCH_RX_OBJ_NUM
  81. #define PCH_TX_OBJ_START (PCH_RX_OBJ_END + 1)
  82. #define PCH_TX_OBJ_END (PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
  83. #define PCH_FIFO_THRESH 16
  84. /* TxRqst2 show status of MsgObjNo.17~32 */
  85. #define PCH_TREQ2_TX_MASK (((1 << PCH_TX_OBJ_NUM) - 1) <<\
  86. (PCH_RX_OBJ_END - 16))
  87. enum pch_ifreg {
  88. PCH_RX_IFREG,
  89. PCH_TX_IFREG,
  90. };
  91. enum pch_can_err {
  92. PCH_STUF_ERR = 1,
  93. PCH_FORM_ERR,
  94. PCH_ACK_ERR,
  95. PCH_BIT1_ERR,
  96. PCH_BIT0_ERR,
  97. PCH_CRC_ERR,
  98. PCH_LEC_ALL,
  99. };
  100. enum pch_can_mode {
  101. PCH_CAN_ENABLE,
  102. PCH_CAN_DISABLE,
  103. PCH_CAN_ALL,
  104. PCH_CAN_NONE,
  105. PCH_CAN_STOP,
  106. PCH_CAN_RUN,
  107. };
  108. struct pch_can_if_regs {
  109. u32 creq;
  110. u32 cmask;
  111. u32 mask1;
  112. u32 mask2;
  113. u32 id1;
  114. u32 id2;
  115. u32 mcont;
  116. u32 data[4];
  117. u32 rsv[13];
  118. };
  119. struct pch_can_regs {
  120. u32 cont;
  121. u32 stat;
  122. u32 errc;
  123. u32 bitt;
  124. u32 intr;
  125. u32 opt;
  126. u32 brpe;
  127. u32 reserve;
  128. struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */
  129. u32 reserve1[8];
  130. u32 treq1;
  131. u32 treq2;
  132. u32 reserve2[6];
  133. u32 data1;
  134. u32 data2;
  135. u32 reserve3[6];
  136. u32 canipend1;
  137. u32 canipend2;
  138. u32 reserve4[6];
  139. u32 canmval1;
  140. u32 canmval2;
  141. u32 reserve5[37];
  142. u32 srst;
  143. };
  144. struct pch_can_priv {
  145. struct can_priv can;
  146. struct pci_dev *dev;
  147. u32 tx_enable[PCH_TX_OBJ_END];
  148. u32 rx_enable[PCH_TX_OBJ_END];
  149. u32 rx_link[PCH_TX_OBJ_END];
  150. u32 int_enables;
  151. struct net_device *ndev;
  152. struct pch_can_regs __iomem *regs;
  153. struct napi_struct napi;
  154. int tx_obj; /* Point next Tx Obj index */
  155. int use_msi;
  156. };
  157. static const struct can_bittiming_const pch_can_bittiming_const = {
  158. .name = KBUILD_MODNAME,
  159. .tseg1_min = 2,
  160. .tseg1_max = 16,
  161. .tseg2_min = 1,
  162. .tseg2_max = 8,
  163. .sjw_max = 4,
  164. .brp_min = 1,
  165. .brp_max = 1024, /* 6bit + extended 4bit */
  166. .brp_inc = 1,
  167. };
  168. static const struct pci_device_id pch_pci_tbl[] = {
  169. {PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
  170. {0,}
  171. };
  172. MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
  173. static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
  174. {
  175. iowrite32(ioread32(addr) | mask, addr);
  176. }
  177. static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
  178. {
  179. iowrite32(ioread32(addr) & ~mask, addr);
  180. }
  181. static void pch_can_set_run_mode(struct pch_can_priv *priv,
  182. enum pch_can_mode mode)
  183. {
  184. switch (mode) {
  185. case PCH_CAN_RUN:
  186. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
  187. break;
  188. case PCH_CAN_STOP:
  189. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
  190. break;
  191. default:
  192. netdev_err(priv->ndev, "%s -> Invalid Mode.\n", __func__);
  193. break;
  194. }
  195. }
  196. static void pch_can_set_optmode(struct pch_can_priv *priv)
  197. {
  198. u32 reg_val = ioread32(&priv->regs->opt);
  199. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  200. reg_val |= PCH_OPT_SILENT;
  201. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
  202. reg_val |= PCH_OPT_LBACK;
  203. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
  204. iowrite32(reg_val, &priv->regs->opt);
  205. }
  206. static void pch_can_rw_msg_obj(void __iomem *creq_addr, u32 num)
  207. {
  208. int counter = PCH_COUNTER_LIMIT;
  209. u32 ifx_creq;
  210. iowrite32(num, creq_addr);
  211. while (counter) {
  212. ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
  213. if (!ifx_creq)
  214. break;
  215. counter--;
  216. udelay(1);
  217. }
  218. if (!counter)
  219. pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
  220. }
  221. static void pch_can_set_int_enables(struct pch_can_priv *priv,
  222. enum pch_can_mode interrupt_no)
  223. {
  224. switch (interrupt_no) {
  225. case PCH_CAN_DISABLE:
  226. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
  227. break;
  228. case PCH_CAN_ALL:
  229. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  230. break;
  231. case PCH_CAN_NONE:
  232. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  233. break;
  234. default:
  235. netdev_err(priv->ndev, "Invalid interrupt number.\n");
  236. break;
  237. }
  238. }
  239. static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
  240. int set, enum pch_ifreg dir)
  241. {
  242. u32 ie;
  243. if (dir)
  244. ie = PCH_IF_MCONT_TXIE;
  245. else
  246. ie = PCH_IF_MCONT_RXIE;
  247. /* Reading the Msg buffer from Message RAM to IF1/2 registers. */
  248. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  249. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  250. /* Setting the IF1/2MASK1 register to access MsgVal and RxIE bits */
  251. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
  252. &priv->regs->ifregs[dir].cmask);
  253. if (set) {
  254. /* Setting the MsgVal and RxIE/TxIE bits */
  255. pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
  256. pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  257. } else {
  258. /* Clearing the MsgVal and RxIE/TxIE bits */
  259. pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
  260. pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  261. }
  262. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  263. }
  264. static void pch_can_set_rx_all(struct pch_can_priv *priv, int set)
  265. {
  266. int i;
  267. /* Traversing to obtain the object configured as receivers. */
  268. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
  269. pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
  270. }
  271. static void pch_can_set_tx_all(struct pch_can_priv *priv, int set)
  272. {
  273. int i;
  274. /* Traversing to obtain the object configured as transmit object. */
  275. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  276. pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
  277. }
  278. static u32 pch_can_int_pending(struct pch_can_priv *priv)
  279. {
  280. return ioread32(&priv->regs->intr) & 0xffff;
  281. }
  282. static void pch_can_clear_if_buffers(struct pch_can_priv *priv)
  283. {
  284. int i; /* Msg Obj ID (1~32) */
  285. for (i = PCH_RX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  286. iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
  287. iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
  288. iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
  289. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  290. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  291. iowrite32(0x0, &priv->regs->ifregs[0].mcont);
  292. iowrite32(0x0, &priv->regs->ifregs[0].data[0]);
  293. iowrite32(0x0, &priv->regs->ifregs[0].data[1]);
  294. iowrite32(0x0, &priv->regs->ifregs[0].data[2]);
  295. iowrite32(0x0, &priv->regs->ifregs[0].data[3]);
  296. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  297. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  298. &priv->regs->ifregs[0].cmask);
  299. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  300. }
  301. }
  302. static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
  303. {
  304. int i;
  305. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  306. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  307. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  308. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  309. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  310. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  311. PCH_IF_MCONT_UMASK);
  312. /* In case FIFO mode, Last EoB of Rx Obj must be 1 */
  313. if (i == PCH_RX_OBJ_END)
  314. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  315. PCH_IF_MCONT_EOB);
  316. else
  317. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  318. PCH_IF_MCONT_EOB);
  319. iowrite32(0, &priv->regs->ifregs[0].mask1);
  320. pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
  321. 0x1fff | PCH_MASK2_MDIR_MXTD);
  322. /* Setting CMASK for writing */
  323. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
  324. PCH_CMASK_CTRL, &priv->regs->ifregs[0].cmask);
  325. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  326. }
  327. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  328. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
  329. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
  330. /* Resetting DIR bit for reception */
  331. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  332. iowrite32(PCH_ID2_DIR, &priv->regs->ifregs[1].id2);
  333. /* Setting EOB bit for transmitter */
  334. iowrite32(PCH_IF_MCONT_EOB | PCH_IF_MCONT_UMASK,
  335. &priv->regs->ifregs[1].mcont);
  336. iowrite32(0, &priv->regs->ifregs[1].mask1);
  337. pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
  338. /* Setting CMASK for writing */
  339. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
  340. PCH_CMASK_CTRL, &priv->regs->ifregs[1].cmask);
  341. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
  342. }
  343. }
  344. static void pch_can_init(struct pch_can_priv *priv)
  345. {
  346. /* Stopping the Can device. */
  347. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  348. /* Clearing all the message object buffers. */
  349. pch_can_clear_if_buffers(priv);
  350. /* Configuring the respective message object as either rx/tx object. */
  351. pch_can_config_rx_tx_buffers(priv);
  352. /* Enabling the interrupts. */
  353. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  354. }
  355. static void pch_can_release(struct pch_can_priv *priv)
  356. {
  357. /* Stooping the CAN device. */
  358. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  359. /* Disabling the interrupts. */
  360. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  361. /* Disabling all the receive object. */
  362. pch_can_set_rx_all(priv, 0);
  363. /* Disabling all the transmit object. */
  364. pch_can_set_tx_all(priv, 0);
  365. }
  366. /* This function clears interrupt(s) from the CAN device. */
  367. static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
  368. {
  369. /* Clear interrupt for transmit object */
  370. if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
  371. /* Setting CMASK for clearing the reception interrupts. */
  372. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  373. &priv->regs->ifregs[0].cmask);
  374. /* Clearing the Dir bit. */
  375. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  376. /* Clearing NewDat & IntPnd */
  377. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  378. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
  379. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, mask);
  380. } else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
  381. /*
  382. * Setting CMASK for clearing interrupts for frame transmission.
  383. */
  384. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  385. &priv->regs->ifregs[1].cmask);
  386. /* Resetting the ID registers. */
  387. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  388. PCH_ID2_DIR | (0x7ff << 2));
  389. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  390. /* Clearing NewDat, TxRqst & IntPnd */
  391. pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
  392. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
  393. PCH_IF_MCONT_TXRQXT);
  394. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, mask);
  395. }
  396. }
  397. static void pch_can_reset(struct pch_can_priv *priv)
  398. {
  399. /* write to sw reset register */
  400. iowrite32(1, &priv->regs->srst);
  401. iowrite32(0, &priv->regs->srst);
  402. }
  403. static void pch_can_error(struct net_device *ndev, u32 status)
  404. {
  405. struct sk_buff *skb;
  406. struct pch_can_priv *priv = netdev_priv(ndev);
  407. struct can_frame *cf;
  408. u32 errc, lec;
  409. struct net_device_stats *stats = &(priv->ndev->stats);
  410. enum can_state state = priv->can.state;
  411. skb = alloc_can_err_skb(ndev, &cf);
  412. if (!skb)
  413. return;
  414. errc = ioread32(&priv->regs->errc);
  415. if (status & PCH_BUS_OFF) {
  416. pch_can_set_tx_all(priv, 0);
  417. pch_can_set_rx_all(priv, 0);
  418. state = CAN_STATE_BUS_OFF;
  419. cf->can_id |= CAN_ERR_BUSOFF;
  420. priv->can.can_stats.bus_off++;
  421. can_bus_off(ndev);
  422. } else {
  423. cf->can_id |= CAN_ERR_CNT;
  424. cf->data[6] = errc & PCH_TEC;
  425. cf->data[7] = (errc & PCH_REC) >> 8;
  426. }
  427. /* Warning interrupt. */
  428. if (status & PCH_EWARN) {
  429. state = CAN_STATE_ERROR_WARNING;
  430. priv->can.can_stats.error_warning++;
  431. cf->can_id |= CAN_ERR_CRTL;
  432. if (((errc & PCH_REC) >> 8) > 96)
  433. cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
  434. if ((errc & PCH_TEC) > 96)
  435. cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
  436. netdev_dbg(ndev,
  437. "%s -> Error Counter is more than 96.\n", __func__);
  438. }
  439. /* Error passive interrupt. */
  440. if (status & PCH_EPASSIV) {
  441. priv->can.can_stats.error_passive++;
  442. state = CAN_STATE_ERROR_PASSIVE;
  443. cf->can_id |= CAN_ERR_CRTL;
  444. if (errc & PCH_RP)
  445. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  446. if ((errc & PCH_TEC) > 127)
  447. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  448. netdev_dbg(ndev,
  449. "%s -> CAN controller is ERROR PASSIVE .\n", __func__);
  450. }
  451. lec = status & PCH_LEC_ALL;
  452. switch (lec) {
  453. case PCH_STUF_ERR:
  454. cf->data[2] |= CAN_ERR_PROT_STUFF;
  455. priv->can.can_stats.bus_error++;
  456. stats->rx_errors++;
  457. break;
  458. case PCH_FORM_ERR:
  459. cf->data[2] |= CAN_ERR_PROT_FORM;
  460. priv->can.can_stats.bus_error++;
  461. stats->rx_errors++;
  462. break;
  463. case PCH_ACK_ERR:
  464. cf->can_id |= CAN_ERR_ACK;
  465. priv->can.can_stats.bus_error++;
  466. stats->rx_errors++;
  467. break;
  468. case PCH_BIT1_ERR:
  469. case PCH_BIT0_ERR:
  470. cf->data[2] |= CAN_ERR_PROT_BIT;
  471. priv->can.can_stats.bus_error++;
  472. stats->rx_errors++;
  473. break;
  474. case PCH_CRC_ERR:
  475. cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
  476. priv->can.can_stats.bus_error++;
  477. stats->rx_errors++;
  478. break;
  479. case PCH_LEC_ALL: /* Written by CPU. No error status */
  480. break;
  481. }
  482. priv->can.state = state;
  483. netif_receive_skb(skb);
  484. }
  485. static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
  486. {
  487. struct net_device *ndev = (struct net_device *)dev_id;
  488. struct pch_can_priv *priv = netdev_priv(ndev);
  489. if (!pch_can_int_pending(priv))
  490. return IRQ_NONE;
  491. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  492. napi_schedule(&priv->napi);
  493. return IRQ_HANDLED;
  494. }
  495. static void pch_fifo_thresh(struct pch_can_priv *priv, int obj_id)
  496. {
  497. if (obj_id < PCH_FIFO_THRESH) {
  498. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
  499. PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
  500. /* Clearing the Dir bit. */
  501. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  502. /* Clearing NewDat & IntPnd */
  503. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  504. PCH_IF_MCONT_INTPND);
  505. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
  506. } else if (obj_id > PCH_FIFO_THRESH) {
  507. pch_can_int_clr(priv, obj_id);
  508. } else if (obj_id == PCH_FIFO_THRESH) {
  509. int cnt;
  510. for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
  511. pch_can_int_clr(priv, cnt + 1);
  512. }
  513. }
  514. static void pch_can_rx_msg_lost(struct net_device *ndev, int obj_id)
  515. {
  516. struct pch_can_priv *priv = netdev_priv(ndev);
  517. struct net_device_stats *stats = &(priv->ndev->stats);
  518. struct sk_buff *skb;
  519. struct can_frame *cf;
  520. netdev_dbg(priv->ndev, "Msg Obj is overwritten.\n");
  521. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  522. PCH_IF_MCONT_MSGLOST);
  523. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  524. &priv->regs->ifregs[0].cmask);
  525. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
  526. skb = alloc_can_err_skb(ndev, &cf);
  527. if (!skb)
  528. return;
  529. cf->can_id |= CAN_ERR_CRTL;
  530. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  531. stats->rx_over_errors++;
  532. stats->rx_errors++;
  533. netif_receive_skb(skb);
  534. }
  535. static int pch_can_rx_normal(struct net_device *ndev, u32 obj_num, int quota)
  536. {
  537. u32 reg;
  538. canid_t id;
  539. int rcv_pkts = 0;
  540. struct sk_buff *skb;
  541. struct can_frame *cf;
  542. struct pch_can_priv *priv = netdev_priv(ndev);
  543. struct net_device_stats *stats = &(priv->ndev->stats);
  544. int i;
  545. u32 id2;
  546. u16 data_reg;
  547. do {
  548. /* Reading the message object from the Message RAM */
  549. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  550. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_num);
  551. /* Reading the MCONT register. */
  552. reg = ioread32(&priv->regs->ifregs[0].mcont);
  553. if (reg & PCH_IF_MCONT_EOB)
  554. break;
  555. /* If MsgLost bit set. */
  556. if (reg & PCH_IF_MCONT_MSGLOST) {
  557. pch_can_rx_msg_lost(ndev, obj_num);
  558. rcv_pkts++;
  559. quota--;
  560. obj_num++;
  561. continue;
  562. } else if (!(reg & PCH_IF_MCONT_NEWDAT)) {
  563. obj_num++;
  564. continue;
  565. }
  566. skb = alloc_can_skb(priv->ndev, &cf);
  567. if (!skb) {
  568. netdev_err(ndev, "alloc_can_skb Failed\n");
  569. return rcv_pkts;
  570. }
  571. /* Get Received data */
  572. id2 = ioread32(&priv->regs->ifregs[0].id2);
  573. if (id2 & PCH_ID2_XTD) {
  574. id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
  575. id |= (((id2) & 0x1fff) << 16);
  576. cf->can_id = id | CAN_EFF_FLAG;
  577. } else {
  578. id = (id2 >> 2) & CAN_SFF_MASK;
  579. cf->can_id = id;
  580. }
  581. cf->len = can_cc_dlc2len((ioread32(&priv->regs->
  582. ifregs[0].mcont)) & 0xF);
  583. if (id2 & PCH_ID2_DIR) {
  584. cf->can_id |= CAN_RTR_FLAG;
  585. } else {
  586. for (i = 0; i < cf->len; i += 2) {
  587. data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]);
  588. cf->data[i] = data_reg;
  589. cf->data[i + 1] = data_reg >> 8;
  590. }
  591. stats->rx_bytes += cf->len;
  592. }
  593. stats->rx_packets++;
  594. rcv_pkts++;
  595. quota--;
  596. netif_receive_skb(skb);
  597. pch_fifo_thresh(priv, obj_num);
  598. obj_num++;
  599. } while (quota > 0);
  600. return rcv_pkts;
  601. }
  602. static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
  603. {
  604. struct pch_can_priv *priv = netdev_priv(ndev);
  605. struct net_device_stats *stats = &(priv->ndev->stats);
  606. stats->tx_bytes += can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1,
  607. NULL);
  608. stats->tx_packets++;
  609. iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
  610. &priv->regs->ifregs[1].cmask);
  611. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, int_stat);
  612. if (int_stat == PCH_TX_OBJ_END)
  613. netif_wake_queue(ndev);
  614. }
  615. static int pch_can_poll(struct napi_struct *napi, int quota)
  616. {
  617. struct net_device *ndev = napi->dev;
  618. struct pch_can_priv *priv = netdev_priv(ndev);
  619. u32 int_stat;
  620. u32 reg_stat;
  621. int quota_save = quota;
  622. int_stat = pch_can_int_pending(priv);
  623. if (!int_stat)
  624. goto end;
  625. if (int_stat == PCH_STATUS_INT) {
  626. reg_stat = ioread32(&priv->regs->stat);
  627. if ((reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) &&
  628. ((reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL)) {
  629. pch_can_error(ndev, reg_stat);
  630. quota--;
  631. }
  632. if (reg_stat & (PCH_TX_OK | PCH_RX_OK))
  633. pch_can_bit_clear(&priv->regs->stat,
  634. reg_stat & (PCH_TX_OK | PCH_RX_OK));
  635. int_stat = pch_can_int_pending(priv);
  636. }
  637. if (quota == 0)
  638. goto end;
  639. if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
  640. quota -= pch_can_rx_normal(ndev, int_stat, quota);
  641. } else if ((int_stat >= PCH_TX_OBJ_START) &&
  642. (int_stat <= PCH_TX_OBJ_END)) {
  643. /* Handle transmission interrupt */
  644. pch_can_tx_complete(ndev, int_stat);
  645. }
  646. end:
  647. napi_complete(napi);
  648. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  649. return quota_save - quota;
  650. }
  651. static int pch_set_bittiming(struct net_device *ndev)
  652. {
  653. struct pch_can_priv *priv = netdev_priv(ndev);
  654. const struct can_bittiming *bt = &priv->can.bittiming;
  655. u32 canbit;
  656. u32 bepe;
  657. /* Setting the CCE bit for accessing the Can Timing register. */
  658. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
  659. canbit = (bt->brp - 1) & PCH_MSK_BITT_BRP;
  660. canbit |= (bt->sjw - 1) << PCH_BIT_SJW_SHIFT;
  661. canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1_SHIFT;
  662. canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2_SHIFT;
  663. bepe = ((bt->brp - 1) & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE_SHIFT;
  664. iowrite32(canbit, &priv->regs->bitt);
  665. iowrite32(bepe, &priv->regs->brpe);
  666. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
  667. return 0;
  668. }
  669. static void pch_can_start(struct net_device *ndev)
  670. {
  671. struct pch_can_priv *priv = netdev_priv(ndev);
  672. if (priv->can.state != CAN_STATE_STOPPED)
  673. pch_can_reset(priv);
  674. pch_set_bittiming(ndev);
  675. pch_can_set_optmode(priv);
  676. pch_can_set_tx_all(priv, 1);
  677. pch_can_set_rx_all(priv, 1);
  678. /* Setting the CAN to run mode. */
  679. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  680. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  681. return;
  682. }
  683. static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
  684. {
  685. int ret = 0;
  686. switch (mode) {
  687. case CAN_MODE_START:
  688. pch_can_start(ndev);
  689. netif_wake_queue(ndev);
  690. break;
  691. default:
  692. ret = -EOPNOTSUPP;
  693. break;
  694. }
  695. return ret;
  696. }
  697. static int pch_can_open(struct net_device *ndev)
  698. {
  699. struct pch_can_priv *priv = netdev_priv(ndev);
  700. int retval;
  701. /* Registering the interrupt. */
  702. retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
  703. ndev->name, ndev);
  704. if (retval) {
  705. netdev_err(ndev, "request_irq failed.\n");
  706. goto req_irq_err;
  707. }
  708. /* Open common can device */
  709. retval = open_candev(ndev);
  710. if (retval) {
  711. netdev_err(ndev, "open_candev() failed %d\n", retval);
  712. goto err_open_candev;
  713. }
  714. pch_can_init(priv);
  715. pch_can_start(ndev);
  716. napi_enable(&priv->napi);
  717. netif_start_queue(ndev);
  718. return 0;
  719. err_open_candev:
  720. free_irq(priv->dev->irq, ndev);
  721. req_irq_err:
  722. pch_can_release(priv);
  723. return retval;
  724. }
  725. static int pch_close(struct net_device *ndev)
  726. {
  727. struct pch_can_priv *priv = netdev_priv(ndev);
  728. netif_stop_queue(ndev);
  729. napi_disable(&priv->napi);
  730. pch_can_release(priv);
  731. free_irq(priv->dev->irq, ndev);
  732. close_candev(ndev);
  733. priv->can.state = CAN_STATE_STOPPED;
  734. return 0;
  735. }
  736. static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
  737. {
  738. struct pch_can_priv *priv = netdev_priv(ndev);
  739. struct can_frame *cf = (struct can_frame *)skb->data;
  740. int tx_obj_no;
  741. int i;
  742. u32 id2;
  743. if (can_dev_dropped_skb(ndev, skb))
  744. return NETDEV_TX_OK;
  745. tx_obj_no = priv->tx_obj;
  746. if (priv->tx_obj == PCH_TX_OBJ_END) {
  747. if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
  748. netif_stop_queue(ndev);
  749. priv->tx_obj = PCH_TX_OBJ_START;
  750. } else {
  751. priv->tx_obj++;
  752. }
  753. /* Setting the CMASK register. */
  754. pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
  755. /* If ID extended is set. */
  756. if (cf->can_id & CAN_EFF_FLAG) {
  757. iowrite32(cf->can_id & 0xffff, &priv->regs->ifregs[1].id1);
  758. id2 = ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD;
  759. } else {
  760. iowrite32(0, &priv->regs->ifregs[1].id1);
  761. id2 = (cf->can_id & CAN_SFF_MASK) << 2;
  762. }
  763. id2 |= PCH_ID_MSGVAL;
  764. /* If remote frame has to be transmitted.. */
  765. if (!(cf->can_id & CAN_RTR_FLAG))
  766. id2 |= PCH_ID2_DIR;
  767. iowrite32(id2, &priv->regs->ifregs[1].id2);
  768. /* Copy data to register */
  769. for (i = 0; i < cf->len; i += 2) {
  770. iowrite16(cf->data[i] | (cf->data[i + 1] << 8),
  771. &priv->regs->ifregs[1].data[i / 2]);
  772. }
  773. can_put_echo_skb(skb, ndev, tx_obj_no - PCH_RX_OBJ_END - 1, 0);
  774. /* Set the size of the data. Update if2_mcont */
  775. iowrite32(cf->len | PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT |
  776. PCH_IF_MCONT_TXIE, &priv->regs->ifregs[1].mcont);
  777. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no);
  778. return NETDEV_TX_OK;
  779. }
  780. static const struct net_device_ops pch_can_netdev_ops = {
  781. .ndo_open = pch_can_open,
  782. .ndo_stop = pch_close,
  783. .ndo_start_xmit = pch_xmit,
  784. .ndo_change_mtu = can_change_mtu,
  785. };
  786. static const struct ethtool_ops pch_can_ethtool_ops = {
  787. .get_ts_info = ethtool_op_get_ts_info,
  788. };
  789. static void pch_can_remove(struct pci_dev *pdev)
  790. {
  791. struct net_device *ndev = pci_get_drvdata(pdev);
  792. struct pch_can_priv *priv = netdev_priv(ndev);
  793. unregister_candev(priv->ndev);
  794. if (priv->use_msi)
  795. pci_disable_msi(priv->dev);
  796. pci_release_regions(pdev);
  797. pci_disable_device(pdev);
  798. pch_can_reset(priv);
  799. pci_iounmap(pdev, priv->regs);
  800. free_candev(priv->ndev);
  801. }
  802. static void __maybe_unused pch_can_set_int_custom(struct pch_can_priv *priv)
  803. {
  804. /* Clearing the IE, SIE and EIE bits of Can control register. */
  805. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  806. /* Appropriately setting them. */
  807. pch_can_bit_set(&priv->regs->cont,
  808. ((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
  809. }
  810. /* This function retrieves interrupt enabled for the CAN device. */
  811. static u32 __maybe_unused pch_can_get_int_enables(struct pch_can_priv *priv)
  812. {
  813. /* Obtaining the status of IE, SIE and EIE interrupt bits. */
  814. return (ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1;
  815. }
  816. static u32 __maybe_unused pch_can_get_rxtx_ir(struct pch_can_priv *priv,
  817. u32 buff_num, enum pch_ifreg dir)
  818. {
  819. u32 ie, enable;
  820. if (dir)
  821. ie = PCH_IF_MCONT_RXIE;
  822. else
  823. ie = PCH_IF_MCONT_TXIE;
  824. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  825. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  826. if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
  827. ((ioread32(&priv->regs->ifregs[dir].mcont)) & ie))
  828. enable = 1;
  829. else
  830. enable = 0;
  831. return enable;
  832. }
  833. static void __maybe_unused pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
  834. u32 buffer_num, int set)
  835. {
  836. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  837. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  838. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  839. &priv->regs->ifregs[0].cmask);
  840. if (set)
  841. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  842. PCH_IF_MCONT_EOB);
  843. else
  844. pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
  845. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  846. }
  847. static u32 __maybe_unused pch_can_get_rx_buffer_link(struct pch_can_priv *priv,
  848. u32 buffer_num)
  849. {
  850. u32 link;
  851. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  852. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  853. if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
  854. link = 0;
  855. else
  856. link = 1;
  857. return link;
  858. }
  859. static int __maybe_unused pch_can_get_buffer_status(struct pch_can_priv *priv)
  860. {
  861. return (ioread32(&priv->regs->treq1) & 0xffff) |
  862. (ioread32(&priv->regs->treq2) << 16);
  863. }
  864. static int __maybe_unused pch_can_suspend(struct device *dev_d)
  865. {
  866. int i;
  867. u32 buf_stat; /* Variable for reading the transmit buffer status. */
  868. int counter = PCH_COUNTER_LIMIT;
  869. struct net_device *dev = dev_get_drvdata(dev_d);
  870. struct pch_can_priv *priv = netdev_priv(dev);
  871. /* Stop the CAN controller */
  872. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  873. /* Indicate that we are aboutto/in suspend */
  874. priv->can.state = CAN_STATE_STOPPED;
  875. /* Waiting for all transmission to complete. */
  876. while (counter) {
  877. buf_stat = pch_can_get_buffer_status(priv);
  878. if (!buf_stat)
  879. break;
  880. counter--;
  881. udelay(1);
  882. }
  883. if (!counter)
  884. dev_err(dev_d, "%s -> Transmission time out.\n", __func__);
  885. /* Save interrupt configuration and then disable them */
  886. priv->int_enables = pch_can_get_int_enables(priv);
  887. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  888. /* Save Tx buffer enable state */
  889. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  890. priv->tx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
  891. PCH_TX_IFREG);
  892. /* Disable all Transmit buffers */
  893. pch_can_set_tx_all(priv, 0);
  894. /* Save Rx buffer enable state */
  895. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  896. priv->rx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
  897. PCH_RX_IFREG);
  898. priv->rx_link[i - 1] = pch_can_get_rx_buffer_link(priv, i);
  899. }
  900. /* Disable all Receive buffers */
  901. pch_can_set_rx_all(priv, 0);
  902. return 0;
  903. }
  904. static int __maybe_unused pch_can_resume(struct device *dev_d)
  905. {
  906. int i;
  907. struct net_device *dev = dev_get_drvdata(dev_d);
  908. struct pch_can_priv *priv = netdev_priv(dev);
  909. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  910. /* Disabling all interrupts. */
  911. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  912. /* Setting the CAN device in Stop Mode. */
  913. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  914. /* Configuring the transmit and receive buffers. */
  915. pch_can_config_rx_tx_buffers(priv);
  916. /* Restore the CAN state */
  917. pch_set_bittiming(dev);
  918. /* Listen/Active */
  919. pch_can_set_optmode(priv);
  920. /* Enabling the transmit buffer. */
  921. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  922. pch_can_set_rxtx(priv, i, priv->tx_enable[i - 1], PCH_TX_IFREG);
  923. /* Configuring the receive buffer and enabling them. */
  924. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  925. /* Restore buffer link */
  926. pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i - 1]);
  927. /* Restore buffer enables */
  928. pch_can_set_rxtx(priv, i, priv->rx_enable[i - 1], PCH_RX_IFREG);
  929. }
  930. /* Enable CAN Interrupts */
  931. pch_can_set_int_custom(priv);
  932. /* Restore Run Mode */
  933. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  934. return 0;
  935. }
  936. static int pch_can_get_berr_counter(const struct net_device *dev,
  937. struct can_berr_counter *bec)
  938. {
  939. struct pch_can_priv *priv = netdev_priv(dev);
  940. u32 errc = ioread32(&priv->regs->errc);
  941. bec->txerr = errc & PCH_TEC;
  942. bec->rxerr = (errc & PCH_REC) >> 8;
  943. return 0;
  944. }
  945. static int pch_can_probe(struct pci_dev *pdev,
  946. const struct pci_device_id *id)
  947. {
  948. struct net_device *ndev;
  949. struct pch_can_priv *priv;
  950. int rc;
  951. void __iomem *addr;
  952. rc = pci_enable_device(pdev);
  953. if (rc) {
  954. dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
  955. goto probe_exit_endev;
  956. }
  957. rc = pci_request_regions(pdev, KBUILD_MODNAME);
  958. if (rc) {
  959. dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
  960. goto probe_exit_pcireq;
  961. }
  962. addr = pci_iomap(pdev, 1, 0);
  963. if (!addr) {
  964. rc = -EIO;
  965. dev_err(&pdev->dev, "Failed pci_iomap\n");
  966. goto probe_exit_ipmap;
  967. }
  968. ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
  969. if (!ndev) {
  970. rc = -ENOMEM;
  971. dev_err(&pdev->dev, "Failed alloc_candev\n");
  972. goto probe_exit_alloc_candev;
  973. }
  974. priv = netdev_priv(ndev);
  975. priv->ndev = ndev;
  976. priv->regs = addr;
  977. priv->dev = pdev;
  978. priv->can.bittiming_const = &pch_can_bittiming_const;
  979. priv->can.do_set_mode = pch_can_do_set_mode;
  980. priv->can.do_get_berr_counter = pch_can_get_berr_counter;
  981. priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
  982. CAN_CTRLMODE_LOOPBACK;
  983. priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
  984. ndev->irq = pdev->irq;
  985. ndev->flags |= IFF_ECHO;
  986. pci_set_drvdata(pdev, ndev);
  987. SET_NETDEV_DEV(ndev, &pdev->dev);
  988. ndev->netdev_ops = &pch_can_netdev_ops;
  989. ndev->ethtool_ops = &pch_can_ethtool_ops;
  990. priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
  991. netif_napi_add_weight(ndev, &priv->napi, pch_can_poll, PCH_RX_OBJ_END);
  992. rc = pci_enable_msi(priv->dev);
  993. if (rc) {
  994. netdev_err(ndev, "PCH CAN opened without MSI\n");
  995. priv->use_msi = 0;
  996. } else {
  997. netdev_err(ndev, "PCH CAN opened with MSI\n");
  998. pci_set_master(pdev);
  999. priv->use_msi = 1;
  1000. }
  1001. rc = register_candev(ndev);
  1002. if (rc) {
  1003. dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
  1004. goto probe_exit_reg_candev;
  1005. }
  1006. return 0;
  1007. probe_exit_reg_candev:
  1008. if (priv->use_msi)
  1009. pci_disable_msi(priv->dev);
  1010. free_candev(ndev);
  1011. probe_exit_alloc_candev:
  1012. pci_iounmap(pdev, addr);
  1013. probe_exit_ipmap:
  1014. pci_release_regions(pdev);
  1015. probe_exit_pcireq:
  1016. pci_disable_device(pdev);
  1017. probe_exit_endev:
  1018. return rc;
  1019. }
  1020. static SIMPLE_DEV_PM_OPS(pch_can_pm_ops,
  1021. pch_can_suspend,
  1022. pch_can_resume);
  1023. static struct pci_driver pch_can_pci_driver = {
  1024. .name = "pch_can",
  1025. .id_table = pch_pci_tbl,
  1026. .probe = pch_can_probe,
  1027. .remove = pch_can_remove,
  1028. .driver.pm = &pch_can_pm_ops,
  1029. };
  1030. module_pci_driver(pch_can_pci_driver);
  1031. MODULE_DESCRIPTION("Intel EG20T PCH CAN(Controller Area Network) Driver");
  1032. MODULE_LICENSE("GPL v2");
  1033. MODULE_VERSION("0.94");