calc_bittiming.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
  3. * Copyright (C) 2006 Andrey Volkov, Varma Electronics
  4. * Copyright (C) 2008-2009 Wolfgang Grandegger <[email protected]>
  5. */
  6. #include <linux/units.h>
  7. #include <linux/can/dev.h>
  8. #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
  9. /* Bit-timing calculation derived from:
  10. *
  11. * Code based on LinCAN sources and H8S2638 project
  12. * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  13. * Copyright 2005 Stanislav Marek
  14. * email: [email protected]
  15. *
  16. * Calculates proper bit-timing parameters for a specified bit-rate
  17. * and sample-point, which can then be used to set the bit-timing
  18. * registers of the CAN controller. You can find more information
  19. * in the header file linux/can/netlink.h.
  20. */
  21. static int
  22. can_update_sample_point(const struct can_bittiming_const *btc,
  23. const unsigned int sample_point_nominal, const unsigned int tseg,
  24. unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
  25. unsigned int *sample_point_error_ptr)
  26. {
  27. unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
  28. unsigned int sample_point, best_sample_point = 0;
  29. unsigned int tseg1, tseg2;
  30. int i;
  31. for (i = 0; i <= 1; i++) {
  32. tseg2 = tseg + CAN_SYNC_SEG -
  33. (sample_point_nominal * (tseg + CAN_SYNC_SEG)) /
  34. 1000 - i;
  35. tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
  36. tseg1 = tseg - tseg2;
  37. if (tseg1 > btc->tseg1_max) {
  38. tseg1 = btc->tseg1_max;
  39. tseg2 = tseg - tseg1;
  40. }
  41. sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
  42. (tseg + CAN_SYNC_SEG);
  43. sample_point_error = abs(sample_point_nominal - sample_point);
  44. if (sample_point <= sample_point_nominal &&
  45. sample_point_error < best_sample_point_error) {
  46. best_sample_point = sample_point;
  47. best_sample_point_error = sample_point_error;
  48. *tseg1_ptr = tseg1;
  49. *tseg2_ptr = tseg2;
  50. }
  51. }
  52. if (sample_point_error_ptr)
  53. *sample_point_error_ptr = best_sample_point_error;
  54. return best_sample_point;
  55. }
  56. int can_calc_bittiming(const struct net_device *dev, struct can_bittiming *bt,
  57. const struct can_bittiming_const *btc)
  58. {
  59. struct can_priv *priv = netdev_priv(dev);
  60. unsigned int bitrate; /* current bitrate */
  61. unsigned int bitrate_error; /* difference between current and nominal value */
  62. unsigned int best_bitrate_error = UINT_MAX;
  63. unsigned int sample_point_error; /* difference between current and nominal value */
  64. unsigned int best_sample_point_error = UINT_MAX;
  65. unsigned int sample_point_nominal; /* nominal sample point */
  66. unsigned int best_tseg = 0; /* current best value for tseg */
  67. unsigned int best_brp = 0; /* current best value for brp */
  68. unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
  69. u64 v64;
  70. /* Use CiA recommended sample points */
  71. if (bt->sample_point) {
  72. sample_point_nominal = bt->sample_point;
  73. } else {
  74. if (bt->bitrate > 800 * KILO /* BPS */)
  75. sample_point_nominal = 750;
  76. else if (bt->bitrate > 500 * KILO /* BPS */)
  77. sample_point_nominal = 800;
  78. else
  79. sample_point_nominal = 875;
  80. }
  81. /* tseg even = round down, odd = round up */
  82. for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
  83. tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
  84. tsegall = CAN_SYNC_SEG + tseg / 2;
  85. /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
  86. brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
  87. /* choose brp step which is possible in system */
  88. brp = (brp / btc->brp_inc) * btc->brp_inc;
  89. if (brp < btc->brp_min || brp > btc->brp_max)
  90. continue;
  91. bitrate = priv->clock.freq / (brp * tsegall);
  92. bitrate_error = abs(bt->bitrate - bitrate);
  93. /* tseg brp biterror */
  94. if (bitrate_error > best_bitrate_error)
  95. continue;
  96. /* reset sample point error if we have a better bitrate */
  97. if (bitrate_error < best_bitrate_error)
  98. best_sample_point_error = UINT_MAX;
  99. can_update_sample_point(btc, sample_point_nominal, tseg / 2,
  100. &tseg1, &tseg2, &sample_point_error);
  101. if (sample_point_error >= best_sample_point_error)
  102. continue;
  103. best_sample_point_error = sample_point_error;
  104. best_bitrate_error = bitrate_error;
  105. best_tseg = tseg / 2;
  106. best_brp = brp;
  107. if (bitrate_error == 0 && sample_point_error == 0)
  108. break;
  109. }
  110. if (best_bitrate_error) {
  111. /* Error in one-tenth of a percent */
  112. v64 = (u64)best_bitrate_error * 1000;
  113. do_div(v64, bt->bitrate);
  114. bitrate_error = (u32)v64;
  115. if (bitrate_error > CAN_CALC_MAX_ERROR) {
  116. netdev_err(dev,
  117. "bitrate error %d.%d%% too high\n",
  118. bitrate_error / 10, bitrate_error % 10);
  119. return -EDOM;
  120. }
  121. netdev_warn(dev, "bitrate error %d.%d%%\n",
  122. bitrate_error / 10, bitrate_error % 10);
  123. }
  124. /* real sample point */
  125. bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
  126. best_tseg, &tseg1, &tseg2,
  127. NULL);
  128. v64 = (u64)best_brp * 1000 * 1000 * 1000;
  129. do_div(v64, priv->clock.freq);
  130. bt->tq = (u32)v64;
  131. bt->prop_seg = tseg1 / 2;
  132. bt->phase_seg1 = tseg1 - bt->prop_seg;
  133. bt->phase_seg2 = tseg2;
  134. /* check for sjw user settings */
  135. if (!bt->sjw || !btc->sjw_max) {
  136. bt->sjw = 1;
  137. } else {
  138. /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
  139. if (bt->sjw > btc->sjw_max)
  140. bt->sjw = btc->sjw_max;
  141. /* bt->sjw must not be higher than tseg2 */
  142. if (tseg2 < bt->sjw)
  143. bt->sjw = tseg2;
  144. }
  145. bt->brp = best_brp;
  146. /* real bitrate */
  147. bt->bitrate = priv->clock.freq /
  148. (bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2));
  149. return 0;
  150. }
  151. void can_calc_tdco(struct can_tdc *tdc, const struct can_tdc_const *tdc_const,
  152. const struct can_bittiming *dbt,
  153. u32 *ctrlmode, u32 ctrlmode_supported)
  154. {
  155. if (!tdc_const || !(ctrlmode_supported & CAN_CTRLMODE_TDC_AUTO))
  156. return;
  157. *ctrlmode &= ~CAN_CTRLMODE_TDC_MASK;
  158. /* As specified in ISO 11898-1 section 11.3.3 "Transmitter
  159. * delay compensation" (TDC) is only applicable if data BRP is
  160. * one or two.
  161. */
  162. if (dbt->brp == 1 || dbt->brp == 2) {
  163. /* Sample point in clock periods */
  164. u32 sample_point_in_tc = (CAN_SYNC_SEG + dbt->prop_seg +
  165. dbt->phase_seg1) * dbt->brp;
  166. if (sample_point_in_tc < tdc_const->tdco_min)
  167. return;
  168. tdc->tdco = min(sample_point_in_tc, tdc_const->tdco_max);
  169. *ctrlmode |= CAN_CTRLMODE_TDC_AUTO;
  170. }
  171. }