123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * CQHCI crypto engine (inline encryption) support
- *
- * Copyright 2020 Google LLC
- */
- #include <linux/blk-crypto.h>
- #include <linux/blk-crypto-profile.h>
- #include <linux/mmc/host.h>
- #include "cqhci-crypto.h"
- /* Map from blk-crypto modes to CQHCI crypto algorithm IDs and key sizes */
- static const struct cqhci_crypto_alg_entry {
- enum cqhci_crypto_alg alg;
- enum cqhci_crypto_key_size key_size;
- } cqhci_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = {
- [BLK_ENCRYPTION_MODE_AES_256_XTS] = {
- .alg = CQHCI_CRYPTO_ALG_AES_XTS,
- .key_size = CQHCI_CRYPTO_KEY_SIZE_256,
- },
- };
- static inline struct cqhci_host *
- cqhci_host_from_crypto_profile(struct blk_crypto_profile *profile)
- {
- struct mmc_host *mmc =
- container_of(profile, struct mmc_host, crypto_profile);
- return mmc->cqe_private;
- }
- static int cqhci_crypto_program_key(struct cqhci_host *cq_host,
- const union cqhci_crypto_cfg_entry *cfg,
- int slot)
- {
- u32 slot_offset = cq_host->crypto_cfg_register + slot * sizeof(*cfg);
- int i;
- if (cq_host->ops->program_key)
- return cq_host->ops->program_key(cq_host, cfg, slot);
- /* Clear CFGE */
- cqhci_writel(cq_host, 0, slot_offset + 16 * sizeof(cfg->reg_val[0]));
- /* Write the key */
- for (i = 0; i < 16; i++) {
- cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[i]),
- slot_offset + i * sizeof(cfg->reg_val[0]));
- }
- /* Write dword 17 */
- cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[17]),
- slot_offset + 17 * sizeof(cfg->reg_val[0]));
- /* Write dword 16, which includes the new value of CFGE */
- cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[16]),
- slot_offset + 16 * sizeof(cfg->reg_val[0]));
- return 0;
- }
- static int cqhci_crypto_keyslot_program(struct blk_crypto_profile *profile,
- const struct blk_crypto_key *key,
- unsigned int slot)
- {
- struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile);
- const union cqhci_crypto_cap_entry *ccap_array =
- cq_host->crypto_cap_array;
- const struct cqhci_crypto_alg_entry *alg =
- &cqhci_crypto_algs[key->crypto_cfg.crypto_mode];
- u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512;
- int i;
- int cap_idx = -1;
- union cqhci_crypto_cfg_entry cfg = {};
- int err;
- BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0);
- for (i = 0; i < cq_host->crypto_capabilities.num_crypto_cap; i++) {
- if (ccap_array[i].algorithm_id == alg->alg &&
- ccap_array[i].key_size == alg->key_size &&
- (ccap_array[i].sdus_mask & data_unit_mask)) {
- cap_idx = i;
- break;
- }
- }
- if (WARN_ON(cap_idx < 0))
- return -EOPNOTSUPP;
- cfg.data_unit_size = data_unit_mask;
- cfg.crypto_cap_idx = cap_idx;
- cfg.config_enable = CQHCI_CRYPTO_CONFIGURATION_ENABLE;
- if (ccap_array[cap_idx].algorithm_id == CQHCI_CRYPTO_ALG_AES_XTS) {
- /* In XTS mode, the blk_crypto_key's size is already doubled */
- memcpy(cfg.crypto_key, key->raw, key->size/2);
- memcpy(cfg.crypto_key + CQHCI_CRYPTO_KEY_MAX_SIZE/2,
- key->raw + key->size/2, key->size/2);
- } else {
- memcpy(cfg.crypto_key, key->raw, key->size);
- }
- err = cqhci_crypto_program_key(cq_host, &cfg, slot);
- memzero_explicit(&cfg, sizeof(cfg));
- return err;
- }
- static int cqhci_crypto_clear_keyslot(struct cqhci_host *cq_host, int slot)
- {
- /*
- * Clear the crypto cfg on the device. Clearing CFGE
- * might not be sufficient, so just clear the entire cfg.
- */
- union cqhci_crypto_cfg_entry cfg = {};
- return cqhci_crypto_program_key(cq_host, &cfg, slot);
- }
- static int cqhci_crypto_keyslot_evict(struct blk_crypto_profile *profile,
- const struct blk_crypto_key *key,
- unsigned int slot)
- {
- struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile);
- return cqhci_crypto_clear_keyslot(cq_host, slot);
- }
- /*
- * The keyslot management operations for CQHCI crypto.
- *
- * Note that the block layer ensures that these are never called while the host
- * controller is runtime-suspended. However, the CQE won't necessarily be
- * "enabled" when these are called, i.e. CQHCI_ENABLE might not be set in the
- * CQHCI_CFG register. But the hardware allows that.
- */
- static const struct blk_crypto_ll_ops cqhci_crypto_ops = {
- .keyslot_program = cqhci_crypto_keyslot_program,
- .keyslot_evict = cqhci_crypto_keyslot_evict,
- };
- static enum blk_crypto_mode_num
- cqhci_find_blk_crypto_mode(union cqhci_crypto_cap_entry cap)
- {
- int i;
- for (i = 0; i < ARRAY_SIZE(cqhci_crypto_algs); i++) {
- BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0);
- if (cqhci_crypto_algs[i].alg == cap.algorithm_id &&
- cqhci_crypto_algs[i].key_size == cap.key_size)
- return i;
- }
- return BLK_ENCRYPTION_MODE_INVALID;
- }
- /**
- * cqhci_crypto_init - initialize CQHCI crypto support
- * @cq_host: a cqhci host
- *
- * If the driver previously set MMC_CAP2_CRYPTO and the CQE declares
- * CQHCI_CAP_CS, initialize the crypto support. This involves reading the
- * crypto capability registers, initializing the blk_crypto_profile, clearing
- * all keyslots, and enabling 128-bit task descriptors.
- *
- * Return: 0 if crypto was initialized or isn't supported; whether
- * MMC_CAP2_CRYPTO remains set indicates which one of those cases it is.
- * Also can return a negative errno value on unexpected error.
- */
- int cqhci_crypto_init(struct cqhci_host *cq_host)
- {
- struct mmc_host *mmc = cq_host->mmc;
- struct device *dev = mmc_dev(mmc);
- struct blk_crypto_profile *profile = &mmc->crypto_profile;
- unsigned int num_keyslots;
- unsigned int cap_idx;
- enum blk_crypto_mode_num blk_mode_num;
- unsigned int slot;
- int err = 0;
- if (!(mmc->caps2 & MMC_CAP2_CRYPTO) ||
- !(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
- goto out;
- cq_host->crypto_capabilities.reg_val =
- cpu_to_le32(cqhci_readl(cq_host, CQHCI_CCAP));
- cq_host->crypto_cfg_register =
- (u32)cq_host->crypto_capabilities.config_array_ptr * 0x100;
- cq_host->crypto_cap_array =
- devm_kcalloc(dev, cq_host->crypto_capabilities.num_crypto_cap,
- sizeof(cq_host->crypto_cap_array[0]), GFP_KERNEL);
- if (!cq_host->crypto_cap_array) {
- err = -ENOMEM;
- goto out;
- }
- /*
- * CCAP.CFGC is off by one, so the actual number of crypto
- * configurations (a.k.a. keyslots) is CCAP.CFGC + 1.
- */
- num_keyslots = cq_host->crypto_capabilities.config_count + 1;
- err = devm_blk_crypto_profile_init(dev, profile, num_keyslots);
- if (err)
- goto out;
- profile->ll_ops = cqhci_crypto_ops;
- profile->dev = dev;
- /* Unfortunately, CQHCI crypto only supports 32 DUN bits. */
- profile->max_dun_bytes_supported = 4;
- profile->key_types_supported = BLK_CRYPTO_KEY_TYPE_STANDARD;
- /*
- * Cache all the crypto capabilities and advertise the supported crypto
- * modes and data unit sizes to the block layer.
- */
- for (cap_idx = 0; cap_idx < cq_host->crypto_capabilities.num_crypto_cap;
- cap_idx++) {
- cq_host->crypto_cap_array[cap_idx].reg_val =
- cpu_to_le32(cqhci_readl(cq_host,
- CQHCI_CRYPTOCAP +
- cap_idx * sizeof(__le32)));
- blk_mode_num = cqhci_find_blk_crypto_mode(
- cq_host->crypto_cap_array[cap_idx]);
- if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID)
- continue;
- profile->modes_supported[blk_mode_num] |=
- cq_host->crypto_cap_array[cap_idx].sdus_mask * 512;
- }
- /* Clear all the keyslots so that we start in a known state. */
- for (slot = 0; slot < num_keyslots; slot++)
- cqhci_crypto_clear_keyslot(cq_host, slot);
- /* CQHCI crypto requires the use of 128-bit task descriptors. */
- cq_host->caps |= CQHCI_TASK_DESC_SZ_128;
- return 0;
- out:
- mmc->caps2 &= ~MMC_CAP2_CRYPTO;
- return err;
- }
|