123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * This is for all the tests relating directly to heap memory, including
- * page allocation and slab allocations.
- */
- #include "lkdtm.h"
- #include <linux/slab.h>
- #include <linux/vmalloc.h>
- #include <linux/sched.h>
- static struct kmem_cache *double_free_cache;
- static struct kmem_cache *a_cache;
- static struct kmem_cache *b_cache;
- /*
- * Using volatile here means the compiler cannot ever make assumptions
- * about this value. This means compile-time length checks involving
- * this variable cannot be performed; only run-time checks.
- */
- static volatile int __offset = 1;
- /*
- * If there aren't guard pages, it's likely that a consecutive allocation will
- * let us overflow into the second allocation without overwriting something real.
- *
- * This should always be caught because there is an unconditional unmapped
- * page after vmap allocations.
- */
- static void lkdtm_VMALLOC_LINEAR_OVERFLOW(void)
- {
- char *one, *two;
- one = vzalloc(PAGE_SIZE);
- two = vzalloc(PAGE_SIZE);
- pr_info("Attempting vmalloc linear overflow ...\n");
- memset(one, 0xAA, PAGE_SIZE + __offset);
- vfree(two);
- vfree(one);
- }
- /*
- * This tries to stay within the next largest power-of-2 kmalloc cache
- * to avoid actually overwriting anything important if it's not detected
- * correctly.
- *
- * This should get caught by either memory tagging, KASan, or by using
- * CONFIG_SLUB_DEBUG=y and slub_debug=ZF (or CONFIG_SLUB_DEBUG_ON=y).
- */
- static void lkdtm_SLAB_LINEAR_OVERFLOW(void)
- {
- size_t len = 1020;
- u32 *data = kmalloc(len, GFP_KERNEL);
- if (!data)
- return;
- pr_info("Attempting slab linear overflow ...\n");
- OPTIMIZER_HIDE_VAR(data);
- data[1024 / sizeof(u32)] = 0x12345678;
- kfree(data);
- }
- static void lkdtm_WRITE_AFTER_FREE(void)
- {
- int *base, *again;
- size_t len = 1024;
- /*
- * The slub allocator uses the first word to store the free
- * pointer in some configurations. Use the middle of the
- * allocation to avoid running into the freelist
- */
- size_t offset = (len / sizeof(*base)) / 2;
- base = kmalloc(len, GFP_KERNEL);
- if (!base)
- return;
- pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
- pr_info("Attempting bad write to freed memory at %p\n",
- &base[offset]);
- kfree(base);
- base[offset] = 0x0abcdef0;
- /* Attempt to notice the overwrite. */
- again = kmalloc(len, GFP_KERNEL);
- kfree(again);
- if (again != base)
- pr_info("Hmm, didn't get the same memory range.\n");
- }
- static void lkdtm_READ_AFTER_FREE(void)
- {
- int *base, *val, saw;
- size_t len = 1024;
- /*
- * The slub allocator will use the either the first word or
- * the middle of the allocation to store the free pointer,
- * depending on configurations. Store in the second word to
- * avoid running into the freelist.
- */
- size_t offset = sizeof(*base);
- base = kmalloc(len, GFP_KERNEL);
- if (!base) {
- pr_info("Unable to allocate base memory.\n");
- return;
- }
- val = kmalloc(len, GFP_KERNEL);
- if (!val) {
- pr_info("Unable to allocate val memory.\n");
- kfree(base);
- return;
- }
- *val = 0x12345678;
- base[offset] = *val;
- pr_info("Value in memory before free: %x\n", base[offset]);
- kfree(base);
- pr_info("Attempting bad read from freed memory\n");
- saw = base[offset];
- if (saw != *val) {
- /* Good! Poisoning happened, so declare a win. */
- pr_info("Memory correctly poisoned (%x)\n", saw);
- } else {
- pr_err("FAIL: Memory was not poisoned!\n");
- pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
- }
- kfree(val);
- }
- static void lkdtm_WRITE_BUDDY_AFTER_FREE(void)
- {
- unsigned long p = __get_free_page(GFP_KERNEL);
- if (!p) {
- pr_info("Unable to allocate free page\n");
- return;
- }
- pr_info("Writing to the buddy page before free\n");
- memset((void *)p, 0x3, PAGE_SIZE);
- free_page(p);
- schedule();
- pr_info("Attempting bad write to the buddy page after free\n");
- memset((void *)p, 0x78, PAGE_SIZE);
- /* Attempt to notice the overwrite. */
- p = __get_free_page(GFP_KERNEL);
- free_page(p);
- schedule();
- }
- static void lkdtm_READ_BUDDY_AFTER_FREE(void)
- {
- unsigned long p = __get_free_page(GFP_KERNEL);
- int saw, *val;
- int *base;
- if (!p) {
- pr_info("Unable to allocate free page\n");
- return;
- }
- val = kmalloc(1024, GFP_KERNEL);
- if (!val) {
- pr_info("Unable to allocate val memory.\n");
- free_page(p);
- return;
- }
- base = (int *)p;
- *val = 0x12345678;
- base[0] = *val;
- pr_info("Value in memory before free: %x\n", base[0]);
- free_page(p);
- pr_info("Attempting to read from freed memory\n");
- saw = base[0];
- if (saw != *val) {
- /* Good! Poisoning happened, so declare a win. */
- pr_info("Memory correctly poisoned (%x)\n", saw);
- } else {
- pr_err("FAIL: Buddy page was not poisoned!\n");
- pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
- }
- kfree(val);
- }
- static void lkdtm_SLAB_INIT_ON_ALLOC(void)
- {
- u8 *first;
- u8 *val;
- first = kmalloc(512, GFP_KERNEL);
- if (!first) {
- pr_info("Unable to allocate 512 bytes the first time.\n");
- return;
- }
- memset(first, 0xAB, 512);
- kfree(first);
- val = kmalloc(512, GFP_KERNEL);
- if (!val) {
- pr_info("Unable to allocate 512 bytes the second time.\n");
- return;
- }
- if (val != first) {
- pr_warn("Reallocation missed clobbered memory.\n");
- }
- if (memchr(val, 0xAB, 512) == NULL) {
- pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
- } else {
- pr_err("FAIL: Slab was not initialized\n");
- pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
- }
- kfree(val);
- }
- static void lkdtm_BUDDY_INIT_ON_ALLOC(void)
- {
- u8 *first;
- u8 *val;
- first = (u8 *)__get_free_page(GFP_KERNEL);
- if (!first) {
- pr_info("Unable to allocate first free page\n");
- return;
- }
- memset(first, 0xAB, PAGE_SIZE);
- free_page((unsigned long)first);
- val = (u8 *)__get_free_page(GFP_KERNEL);
- if (!val) {
- pr_info("Unable to allocate second free page\n");
- return;
- }
- if (val != first) {
- pr_warn("Reallocation missed clobbered memory.\n");
- }
- if (memchr(val, 0xAB, PAGE_SIZE) == NULL) {
- pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
- } else {
- pr_err("FAIL: Slab was not initialized\n");
- pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
- }
- free_page((unsigned long)val);
- }
- static void lkdtm_SLAB_FREE_DOUBLE(void)
- {
- int *val;
- val = kmem_cache_alloc(double_free_cache, GFP_KERNEL);
- if (!val) {
- pr_info("Unable to allocate double_free_cache memory.\n");
- return;
- }
- /* Just make sure we got real memory. */
- *val = 0x12345678;
- pr_info("Attempting double slab free ...\n");
- kmem_cache_free(double_free_cache, val);
- kmem_cache_free(double_free_cache, val);
- }
- static void lkdtm_SLAB_FREE_CROSS(void)
- {
- int *val;
- val = kmem_cache_alloc(a_cache, GFP_KERNEL);
- if (!val) {
- pr_info("Unable to allocate a_cache memory.\n");
- return;
- }
- /* Just make sure we got real memory. */
- *val = 0x12345679;
- pr_info("Attempting cross-cache slab free ...\n");
- kmem_cache_free(b_cache, val);
- }
- static void lkdtm_SLAB_FREE_PAGE(void)
- {
- unsigned long p = __get_free_page(GFP_KERNEL);
- pr_info("Attempting non-Slab slab free ...\n");
- kmem_cache_free(NULL, (void *)p);
- free_page(p);
- }
- /*
- * We have constructors to keep the caches distinctly separated without
- * needing to boot with "slab_nomerge".
- */
- static void ctor_double_free(void *region)
- { }
- static void ctor_a(void *region)
- { }
- static void ctor_b(void *region)
- { }
- void __init lkdtm_heap_init(void)
- {
- double_free_cache = kmem_cache_create("lkdtm-heap-double_free",
- 64, 0, 0, ctor_double_free);
- a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a);
- b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b);
- }
- void __exit lkdtm_heap_exit(void)
- {
- kmem_cache_destroy(double_free_cache);
- kmem_cache_destroy(a_cache);
- kmem_cache_destroy(b_cache);
- }
- static struct crashtype crashtypes[] = {
- CRASHTYPE(SLAB_LINEAR_OVERFLOW),
- CRASHTYPE(VMALLOC_LINEAR_OVERFLOW),
- CRASHTYPE(WRITE_AFTER_FREE),
- CRASHTYPE(READ_AFTER_FREE),
- CRASHTYPE(WRITE_BUDDY_AFTER_FREE),
- CRASHTYPE(READ_BUDDY_AFTER_FREE),
- CRASHTYPE(SLAB_INIT_ON_ALLOC),
- CRASHTYPE(BUDDY_INIT_ON_ALLOC),
- CRASHTYPE(SLAB_FREE_DOUBLE),
- CRASHTYPE(SLAB_FREE_CROSS),
- CRASHTYPE(SLAB_FREE_PAGE),
- };
- struct crashtype_category heap_crashtypes = {
- .crashtypes = crashtypes,
- .len = ARRAY_SIZE(crashtypes),
- };
|