123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * This is for all the tests related to logic bugs (e.g. bad dereferences,
- * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
- * lockups) along with other things that don't fit well into existing LKDTM
- * test source files.
- */
- #include "lkdtm.h"
- #include <linux/list.h>
- #include <linux/sched.h>
- #include <linux/sched/signal.h>
- #include <linux/sched/task_stack.h>
- #include <linux/uaccess.h>
- #include <linux/slab.h>
- #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
- #include <asm/desc.h>
- #endif
- struct lkdtm_list {
- struct list_head node;
- };
- /*
- * Make sure our attempts to over run the kernel stack doesn't trigger
- * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
- * recurse past the end of THREAD_SIZE by default.
- */
- #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
- #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
- #else
- #define REC_STACK_SIZE (THREAD_SIZE / 8UL)
- #endif
- #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
- static int recur_count = REC_NUM_DEFAULT;
- static DEFINE_SPINLOCK(lock_me_up);
- /*
- * Make sure compiler does not optimize this function or stack frame away:
- * - function marked noinline
- * - stack variables are marked volatile
- * - stack variables are written (memset()) and read (buf[..] passed as arg)
- * - function may have external effects (memzero_explicit())
- * - no tail recursion possible
- */
- static int noinline recursive_loop(int remaining)
- {
- volatile char buf[REC_STACK_SIZE];
- volatile int ret;
- memset((void *)buf, remaining & 0xFF, sizeof(buf));
- if (!remaining)
- ret = 0;
- else
- ret = recursive_loop((int)buf[remaining % sizeof(buf)] - 1);
- memzero_explicit((void *)buf, sizeof(buf));
- return ret;
- }
- /* If the depth is negative, use the default, otherwise keep parameter. */
- void __init lkdtm_bugs_init(int *recur_param)
- {
- if (*recur_param < 0)
- *recur_param = recur_count;
- else
- recur_count = *recur_param;
- }
- static void lkdtm_PANIC(void)
- {
- panic("dumptest");
- }
- static void lkdtm_BUG(void)
- {
- BUG();
- }
- static int warn_counter;
- static void lkdtm_WARNING(void)
- {
- WARN_ON(++warn_counter);
- }
- static void lkdtm_WARNING_MESSAGE(void)
- {
- WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
- }
- static void lkdtm_EXCEPTION(void)
- {
- *((volatile int *) 0) = 0;
- }
- static void lkdtm_LOOP(void)
- {
- for (;;)
- ;
- }
- static void lkdtm_EXHAUST_STACK(void)
- {
- pr_info("Calling function with %lu frame size to depth %d ...\n",
- REC_STACK_SIZE, recur_count);
- recursive_loop(recur_count);
- pr_info("FAIL: survived without exhausting stack?!\n");
- }
- static noinline void __lkdtm_CORRUPT_STACK(void *stack)
- {
- memset(stack, '\xff', 64);
- }
- /* This should trip the stack canary, not corrupt the return address. */
- static noinline void lkdtm_CORRUPT_STACK(void)
- {
- /* Use default char array length that triggers stack protection. */
- char data[8] __aligned(sizeof(void *));
- pr_info("Corrupting stack containing char array ...\n");
- __lkdtm_CORRUPT_STACK((void *)&data);
- }
- /* Same as above but will only get a canary with -fstack-protector-strong */
- static noinline void lkdtm_CORRUPT_STACK_STRONG(void)
- {
- union {
- unsigned short shorts[4];
- unsigned long *ptr;
- } data __aligned(sizeof(void *));
- pr_info("Corrupting stack containing union ...\n");
- __lkdtm_CORRUPT_STACK((void *)&data);
- }
- static pid_t stack_pid;
- static unsigned long stack_addr;
- static void lkdtm_REPORT_STACK(void)
- {
- volatile uintptr_t magic;
- pid_t pid = task_pid_nr(current);
- if (pid != stack_pid) {
- pr_info("Starting stack offset tracking for pid %d\n", pid);
- stack_pid = pid;
- stack_addr = (uintptr_t)&magic;
- }
- pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic));
- }
- static pid_t stack_canary_pid;
- static unsigned long stack_canary;
- static unsigned long stack_canary_offset;
- static noinline void __lkdtm_REPORT_STACK_CANARY(void *stack)
- {
- int i = 0;
- pid_t pid = task_pid_nr(current);
- unsigned long *canary = (unsigned long *)stack;
- unsigned long current_offset = 0, init_offset = 0;
- /* Do our best to find the canary in a 16 word window ... */
- for (i = 1; i < 16; i++) {
- canary = (unsigned long *)stack + i;
- #ifdef CONFIG_STACKPROTECTOR
- if (*canary == current->stack_canary)
- current_offset = i;
- if (*canary == init_task.stack_canary)
- init_offset = i;
- #endif
- }
- if (current_offset == 0) {
- /*
- * If the canary doesn't match what's in the task_struct,
- * we're either using a global canary or the stack frame
- * layout changed.
- */
- if (init_offset != 0) {
- pr_err("FAIL: global stack canary found at offset %ld (canary for pid %d matches init_task's)!\n",
- init_offset, pid);
- } else {
- pr_warn("FAIL: did not correctly locate stack canary :(\n");
- pr_expected_config(CONFIG_STACKPROTECTOR);
- }
- return;
- } else if (init_offset != 0) {
- pr_warn("WARNING: found both current and init_task canaries nearby?!\n");
- }
- canary = (unsigned long *)stack + current_offset;
- if (stack_canary_pid == 0) {
- stack_canary = *canary;
- stack_canary_pid = pid;
- stack_canary_offset = current_offset;
- pr_info("Recorded stack canary for pid %d at offset %ld\n",
- stack_canary_pid, stack_canary_offset);
- } else if (pid == stack_canary_pid) {
- pr_warn("ERROR: saw pid %d again -- please use a new pid\n", pid);
- } else {
- if (current_offset != stack_canary_offset) {
- pr_warn("ERROR: canary offset changed from %ld to %ld!?\n",
- stack_canary_offset, current_offset);
- return;
- }
- if (*canary == stack_canary) {
- pr_warn("FAIL: canary identical for pid %d and pid %d at offset %ld!\n",
- stack_canary_pid, pid, current_offset);
- } else {
- pr_info("ok: stack canaries differ between pid %d and pid %d at offset %ld.\n",
- stack_canary_pid, pid, current_offset);
- /* Reset the test. */
- stack_canary_pid = 0;
- }
- }
- }
- static void lkdtm_REPORT_STACK_CANARY(void)
- {
- /* Use default char array length that triggers stack protection. */
- char data[8] __aligned(sizeof(void *)) = { };
- __lkdtm_REPORT_STACK_CANARY((void *)&data);
- }
- static void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
- {
- static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
- u32 *p;
- u32 val = 0x12345678;
- p = (u32 *)(data + 1);
- if (*p == 0)
- val = 0x87654321;
- *p = val;
- if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
- pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n");
- }
- static void lkdtm_SOFTLOCKUP(void)
- {
- preempt_disable();
- for (;;)
- cpu_relax();
- }
- static void lkdtm_HARDLOCKUP(void)
- {
- local_irq_disable();
- for (;;)
- cpu_relax();
- }
- static void lkdtm_SPINLOCKUP(void)
- {
- /* Must be called twice to trigger. */
- spin_lock(&lock_me_up);
- /* Let sparse know we intended to exit holding the lock. */
- __release(&lock_me_up);
- }
- static void lkdtm_HUNG_TASK(void)
- {
- set_current_state(TASK_UNINTERRUPTIBLE);
- schedule();
- }
- volatile unsigned int huge = INT_MAX - 2;
- volatile unsigned int ignored;
- static void lkdtm_OVERFLOW_SIGNED(void)
- {
- int value;
- value = huge;
- pr_info("Normal signed addition ...\n");
- value += 1;
- ignored = value;
- pr_info("Overflowing signed addition ...\n");
- value += 4;
- ignored = value;
- }
- static void lkdtm_OVERFLOW_UNSIGNED(void)
- {
- unsigned int value;
- value = huge;
- pr_info("Normal unsigned addition ...\n");
- value += 1;
- ignored = value;
- pr_info("Overflowing unsigned addition ...\n");
- value += 4;
- ignored = value;
- }
- /* Intentionally using old-style flex array definition of 1 byte. */
- struct array_bounds_flex_array {
- int one;
- int two;
- char data[1];
- };
- struct array_bounds {
- int one;
- int two;
- char data[8];
- int three;
- };
- static void lkdtm_ARRAY_BOUNDS(void)
- {
- struct array_bounds_flex_array *not_checked;
- struct array_bounds *checked;
- volatile int i;
- not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
- checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
- if (!not_checked || !checked) {
- kfree(not_checked);
- kfree(checked);
- return;
- }
- pr_info("Array access within bounds ...\n");
- /* For both, touch all bytes in the actual member size. */
- for (i = 0; i < sizeof(checked->data); i++)
- checked->data[i] = 'A';
- /*
- * For the uninstrumented flex array member, also touch 1 byte
- * beyond to verify it is correctly uninstrumented.
- */
- for (i = 0; i < sizeof(not_checked->data) + 1; i++)
- not_checked->data[i] = 'A';
- pr_info("Array access beyond bounds ...\n");
- for (i = 0; i < sizeof(checked->data) + 1; i++)
- checked->data[i] = 'B';
- kfree(not_checked);
- kfree(checked);
- pr_err("FAIL: survived array bounds overflow!\n");
- if (IS_ENABLED(CONFIG_UBSAN_BOUNDS))
- pr_expected_config(CONFIG_UBSAN_TRAP);
- else
- pr_expected_config(CONFIG_UBSAN_BOUNDS);
- }
- static void lkdtm_CORRUPT_LIST_ADD(void)
- {
- /*
- * Initially, an empty list via LIST_HEAD:
- * test_head.next = &test_head
- * test_head.prev = &test_head
- */
- LIST_HEAD(test_head);
- struct lkdtm_list good, bad;
- void *target[2] = { };
- void *redirection = ⌖
- pr_info("attempting good list addition\n");
- /*
- * Adding to the list performs these actions:
- * test_head.next->prev = &good.node
- * good.node.next = test_head.next
- * good.node.prev = test_head
- * test_head.next = good.node
- */
- list_add(&good.node, &test_head);
- pr_info("attempting corrupted list addition\n");
- /*
- * In simulating this "write what where" primitive, the "what" is
- * the address of &bad.node, and the "where" is the address held
- * by "redirection".
- */
- test_head.next = redirection;
- list_add(&bad.node, &test_head);
- if (target[0] == NULL && target[1] == NULL)
- pr_err("Overwrite did not happen, but no BUG?!\n");
- else {
- pr_err("list_add() corruption not detected!\n");
- pr_expected_config(CONFIG_DEBUG_LIST);
- }
- }
- static void lkdtm_CORRUPT_LIST_DEL(void)
- {
- LIST_HEAD(test_head);
- struct lkdtm_list item;
- void *target[2] = { };
- void *redirection = ⌖
- list_add(&item.node, &test_head);
- pr_info("attempting good list removal\n");
- list_del(&item.node);
- pr_info("attempting corrupted list removal\n");
- list_add(&item.node, &test_head);
- /* As with the list_add() test above, this corrupts "next". */
- item.node.next = redirection;
- list_del(&item.node);
- if (target[0] == NULL && target[1] == NULL)
- pr_err("Overwrite did not happen, but no BUG?!\n");
- else {
- pr_err("list_del() corruption not detected!\n");
- pr_expected_config(CONFIG_DEBUG_LIST);
- }
- }
- /* Test that VMAP_STACK is actually allocating with a leading guard page */
- static void lkdtm_STACK_GUARD_PAGE_LEADING(void)
- {
- const unsigned char *stack = task_stack_page(current);
- const unsigned char *ptr = stack - 1;
- volatile unsigned char byte;
- pr_info("attempting bad read from page below current stack\n");
- byte = *ptr;
- pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
- }
- /* Test that VMAP_STACK is actually allocating with a trailing guard page */
- static void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
- {
- const unsigned char *stack = task_stack_page(current);
- const unsigned char *ptr = stack + THREAD_SIZE;
- volatile unsigned char byte;
- pr_info("attempting bad read from page above current stack\n");
- byte = *ptr;
- pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
- }
- static void lkdtm_UNSET_SMEP(void)
- {
- #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
- #define MOV_CR4_DEPTH 64
- void (*direct_write_cr4)(unsigned long val);
- unsigned char *insn;
- unsigned long cr4;
- int i;
- cr4 = native_read_cr4();
- if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
- pr_err("FAIL: SMEP not in use\n");
- return;
- }
- cr4 &= ~(X86_CR4_SMEP);
- pr_info("trying to clear SMEP normally\n");
- native_write_cr4(cr4);
- if (cr4 == native_read_cr4()) {
- pr_err("FAIL: pinning SMEP failed!\n");
- cr4 |= X86_CR4_SMEP;
- pr_info("restoring SMEP\n");
- native_write_cr4(cr4);
- return;
- }
- pr_info("ok: SMEP did not get cleared\n");
- /*
- * To test the post-write pinning verification we need to call
- * directly into the middle of native_write_cr4() where the
- * cr4 write happens, skipping any pinning. This searches for
- * the cr4 writing instruction.
- */
- insn = (unsigned char *)native_write_cr4;
- for (i = 0; i < MOV_CR4_DEPTH; i++) {
- /* mov %rdi, %cr4 */
- if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
- break;
- /* mov %rdi,%rax; mov %rax, %cr4 */
- if (insn[i] == 0x48 && insn[i+1] == 0x89 &&
- insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
- insn[i+4] == 0x22 && insn[i+5] == 0xe0)
- break;
- }
- if (i >= MOV_CR4_DEPTH) {
- pr_info("ok: cannot locate cr4 writing call gadget\n");
- return;
- }
- direct_write_cr4 = (void *)(insn + i);
- pr_info("trying to clear SMEP with call gadget\n");
- direct_write_cr4(cr4);
- if (native_read_cr4() & X86_CR4_SMEP) {
- pr_info("ok: SMEP removal was reverted\n");
- } else {
- pr_err("FAIL: cleared SMEP not detected!\n");
- cr4 |= X86_CR4_SMEP;
- pr_info("restoring SMEP\n");
- native_write_cr4(cr4);
- }
- #else
- pr_err("XFAIL: this test is x86_64-only\n");
- #endif
- }
- static void lkdtm_DOUBLE_FAULT(void)
- {
- #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
- /*
- * Trigger #DF by setting the stack limit to zero. This clobbers
- * a GDT TLS slot, which is okay because the current task will die
- * anyway due to the double fault.
- */
- struct desc_struct d = {
- .type = 3, /* expand-up, writable, accessed data */
- .p = 1, /* present */
- .d = 1, /* 32-bit */
- .g = 0, /* limit in bytes */
- .s = 1, /* not system */
- };
- local_irq_disable();
- write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
- GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
- /*
- * Put our zero-limit segment in SS and then trigger a fault. The
- * 4-byte access to (%esp) will fault with #SS, and the attempt to
- * deliver the fault will recursively cause #SS and result in #DF.
- * This whole process happens while NMIs and MCEs are blocked by the
- * MOV SS window. This is nice because an NMI with an invalid SS
- * would also double-fault, resulting in the NMI or MCE being lost.
- */
- asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
- "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
- pr_err("FAIL: tried to double fault but didn't die\n");
- #else
- pr_err("XFAIL: this test is ia32-only\n");
- #endif
- }
- #ifdef CONFIG_ARM64
- static noinline void change_pac_parameters(void)
- {
- if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) {
- /* Reset the keys of current task */
- ptrauth_thread_init_kernel(current);
- ptrauth_thread_switch_kernel(current);
- }
- }
- #endif
- static noinline void lkdtm_CORRUPT_PAC(void)
- {
- #ifdef CONFIG_ARM64
- #define CORRUPT_PAC_ITERATE 10
- int i;
- if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
- pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH_KERNEL\n");
- if (!system_supports_address_auth()) {
- pr_err("FAIL: CPU lacks pointer authentication feature\n");
- return;
- }
- pr_info("changing PAC parameters to force function return failure...\n");
- /*
- * PAC is a hash value computed from input keys, return address and
- * stack pointer. As pac has fewer bits so there is a chance of
- * collision, so iterate few times to reduce the collision probability.
- */
- for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
- change_pac_parameters();
- pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
- #else
- pr_err("XFAIL: this test is arm64-only\n");
- #endif
- }
- static struct crashtype crashtypes[] = {
- CRASHTYPE(PANIC),
- CRASHTYPE(BUG),
- CRASHTYPE(WARNING),
- CRASHTYPE(WARNING_MESSAGE),
- CRASHTYPE(EXCEPTION),
- CRASHTYPE(LOOP),
- CRASHTYPE(EXHAUST_STACK),
- CRASHTYPE(CORRUPT_STACK),
- CRASHTYPE(CORRUPT_STACK_STRONG),
- CRASHTYPE(REPORT_STACK),
- CRASHTYPE(REPORT_STACK_CANARY),
- CRASHTYPE(UNALIGNED_LOAD_STORE_WRITE),
- CRASHTYPE(SOFTLOCKUP),
- CRASHTYPE(HARDLOCKUP),
- CRASHTYPE(SPINLOCKUP),
- CRASHTYPE(HUNG_TASK),
- CRASHTYPE(OVERFLOW_SIGNED),
- CRASHTYPE(OVERFLOW_UNSIGNED),
- CRASHTYPE(ARRAY_BOUNDS),
- CRASHTYPE(CORRUPT_LIST_ADD),
- CRASHTYPE(CORRUPT_LIST_DEL),
- CRASHTYPE(STACK_GUARD_PAGE_LEADING),
- CRASHTYPE(STACK_GUARD_PAGE_TRAILING),
- CRASHTYPE(UNSET_SMEP),
- CRASHTYPE(DOUBLE_FAULT),
- CRASHTYPE(CORRUPT_PAC),
- };
- struct crashtype_category bugs_crashtypes = {
- .crashtypes = crashtypes,
- .len = ARRAY_SIZE(crashtypes),
- };
|