cx88-dsp.c 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Stereo and SAP detection for cx88
  4. *
  5. * Copyright (c) 2009 Marton Balint <[email protected]>
  6. */
  7. #include "cx88.h"
  8. #include "cx88-reg.h"
  9. #include <linux/slab.h>
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/jiffies.h>
  13. #include <asm/div64.h>
  14. #define INT_PI ((s32)(3.141592653589 * 32768.0))
  15. #define compat_remainder(a, b) \
  16. ((float)(((s32)((a) * 100)) % ((s32)((b) * 100))) / 100.0)
  17. #define baseband_freq(carrier, srate, tone) ((s32)( \
  18. (compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI))
  19. /*
  20. * We calculate the baseband frequencies of the carrier and the pilot tones
  21. * based on the sampling rate of the audio rds fifo.
  22. */
  23. #define FREQ_A2_CARRIER baseband_freq(54687.5, 2689.36, 0.0)
  24. #define FREQ_A2_DUAL baseband_freq(54687.5, 2689.36, 274.1)
  25. #define FREQ_A2_STEREO baseband_freq(54687.5, 2689.36, 117.5)
  26. /*
  27. * The frequencies below are from the reference driver. They probably need
  28. * further adjustments, because they are not tested at all. You may even need
  29. * to play a bit with the registers of the chip to select the proper signal
  30. * for the input of the audio rds fifo, and measure it's sampling rate to
  31. * calculate the proper baseband frequencies...
  32. */
  33. #define FREQ_A2M_CARRIER ((s32)(2.114516 * 32768.0))
  34. #define FREQ_A2M_DUAL ((s32)(2.754916 * 32768.0))
  35. #define FREQ_A2M_STEREO ((s32)(2.462326 * 32768.0))
  36. #define FREQ_EIAJ_CARRIER ((s32)(1.963495 * 32768.0)) /* 5pi/8 */
  37. #define FREQ_EIAJ_DUAL ((s32)(2.562118 * 32768.0))
  38. #define FREQ_EIAJ_STEREO ((s32)(2.601053 * 32768.0))
  39. #define FREQ_BTSC_DUAL ((s32)(1.963495 * 32768.0)) /* 5pi/8 */
  40. #define FREQ_BTSC_DUAL_REF ((s32)(1.374446 * 32768.0)) /* 7pi/16 */
  41. #define FREQ_BTSC_SAP ((s32)(2.471532 * 32768.0))
  42. #define FREQ_BTSC_SAP_REF ((s32)(1.730072 * 32768.0))
  43. /* The spectrum of the signal should be empty between these frequencies. */
  44. #define FREQ_NOISE_START ((s32)(0.100000 * 32768.0))
  45. #define FREQ_NOISE_END ((s32)(1.200000 * 32768.0))
  46. static unsigned int dsp_debug;
  47. module_param(dsp_debug, int, 0644);
  48. MODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages");
  49. #define dprintk(level, fmt, arg...) do { \
  50. if (dsp_debug >= level) \
  51. printk(KERN_DEBUG pr_fmt("%s: dsp:" fmt), \
  52. __func__, ##arg); \
  53. } while (0)
  54. static s32 int_cos(u32 x)
  55. {
  56. u32 t2, t4, t6, t8;
  57. s32 ret;
  58. u16 period = x / INT_PI;
  59. if (period % 2)
  60. return -int_cos(x - INT_PI);
  61. x = x % INT_PI;
  62. if (x > INT_PI / 2)
  63. return -int_cos(INT_PI / 2 - (x % (INT_PI / 2)));
  64. /*
  65. * Now x is between 0 and INT_PI/2.
  66. * To calculate cos(x) we use it's Taylor polinom.
  67. */
  68. t2 = x * x / 32768 / 2;
  69. t4 = t2 * x / 32768 * x / 32768 / 3 / 4;
  70. t6 = t4 * x / 32768 * x / 32768 / 5 / 6;
  71. t8 = t6 * x / 32768 * x / 32768 / 7 / 8;
  72. ret = 32768 - t2 + t4 - t6 + t8;
  73. return ret;
  74. }
  75. static u32 int_goertzel(s16 x[], u32 N, u32 freq)
  76. {
  77. /*
  78. * We use the Goertzel algorithm to determine the power of the
  79. * given frequency in the signal
  80. */
  81. s32 s_prev = 0;
  82. s32 s_prev2 = 0;
  83. s32 coeff = 2 * int_cos(freq);
  84. u32 i;
  85. u64 tmp;
  86. u32 divisor;
  87. for (i = 0; i < N; i++) {
  88. s32 s = x[i] + ((s64)coeff * s_prev / 32768) - s_prev2;
  89. s_prev2 = s_prev;
  90. s_prev = s;
  91. }
  92. tmp = (s64)s_prev2 * s_prev2 + (s64)s_prev * s_prev -
  93. (s64)coeff * s_prev2 * s_prev / 32768;
  94. /*
  95. * XXX: N must be low enough so that N*N fits in s32.
  96. * Else we need two divisions.
  97. */
  98. divisor = N * N;
  99. do_div(tmp, divisor);
  100. return (u32)tmp;
  101. }
  102. static u32 freq_magnitude(s16 x[], u32 N, u32 freq)
  103. {
  104. u32 sum = int_goertzel(x, N, freq);
  105. return (u32)int_sqrt(sum);
  106. }
  107. static u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end)
  108. {
  109. int i;
  110. u32 sum = 0;
  111. u32 freq_step;
  112. int samples = 5;
  113. if (N > 192) {
  114. /* The last 192 samples are enough for noise detection */
  115. x += (N - 192);
  116. N = 192;
  117. }
  118. freq_step = (freq_end - freq_start) / (samples - 1);
  119. for (i = 0; i < samples; i++) {
  120. sum += int_goertzel(x, N, freq_start);
  121. freq_start += freq_step;
  122. }
  123. return (u32)int_sqrt(sum / samples);
  124. }
  125. static s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N)
  126. {
  127. s32 carrier, stereo, dual, noise;
  128. s32 carrier_freq, stereo_freq, dual_freq;
  129. s32 ret;
  130. switch (core->tvaudio) {
  131. case WW_BG:
  132. case WW_DK:
  133. carrier_freq = FREQ_A2_CARRIER;
  134. stereo_freq = FREQ_A2_STEREO;
  135. dual_freq = FREQ_A2_DUAL;
  136. break;
  137. case WW_M:
  138. carrier_freq = FREQ_A2M_CARRIER;
  139. stereo_freq = FREQ_A2M_STEREO;
  140. dual_freq = FREQ_A2M_DUAL;
  141. break;
  142. case WW_EIAJ:
  143. carrier_freq = FREQ_EIAJ_CARRIER;
  144. stereo_freq = FREQ_EIAJ_STEREO;
  145. dual_freq = FREQ_EIAJ_DUAL;
  146. break;
  147. default:
  148. pr_warn("unsupported audio mode %d for %s\n",
  149. core->tvaudio, __func__);
  150. return UNSET;
  151. }
  152. carrier = freq_magnitude(x, N, carrier_freq);
  153. stereo = freq_magnitude(x, N, stereo_freq);
  154. dual = freq_magnitude(x, N, dual_freq);
  155. noise = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END);
  156. dprintk(1,
  157. "detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, noise=%d\n",
  158. carrier, stereo, dual, noise);
  159. if (stereo > dual)
  160. ret = V4L2_TUNER_SUB_STEREO;
  161. else
  162. ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
  163. if (core->tvaudio == WW_EIAJ) {
  164. /* EIAJ checks may need adjustments */
  165. if ((carrier > max(stereo, dual) * 2) &&
  166. (carrier < max(stereo, dual) * 6) &&
  167. (carrier > 20 && carrier < 200) &&
  168. (max(stereo, dual) > min(stereo, dual))) {
  169. /*
  170. * For EIAJ the carrier is always present,
  171. * so we probably don't need noise detection
  172. */
  173. return ret;
  174. }
  175. } else {
  176. if ((carrier > max(stereo, dual) * 2) &&
  177. (carrier < max(stereo, dual) * 8) &&
  178. (carrier > 20 && carrier < 200) &&
  179. (noise < 10) &&
  180. (max(stereo, dual) > min(stereo, dual) * 2)) {
  181. return ret;
  182. }
  183. }
  184. return V4L2_TUNER_SUB_MONO;
  185. }
  186. static s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N)
  187. {
  188. s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF);
  189. s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP);
  190. s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF);
  191. s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL);
  192. dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d\n",
  193. dual_ref, dual, sap_ref, sap);
  194. /* FIXME: Currently not supported */
  195. return UNSET;
  196. }
  197. static s16 *read_rds_samples(struct cx88_core *core, u32 *N)
  198. {
  199. const struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27];
  200. s16 *samples;
  201. unsigned int i;
  202. unsigned int bpl = srch->fifo_size / AUD_RDS_LINES;
  203. unsigned int spl = bpl / 4;
  204. unsigned int sample_count = spl * (AUD_RDS_LINES - 1);
  205. u32 current_address = cx_read(srch->ptr1_reg);
  206. u32 offset = (current_address - srch->fifo_start + bpl);
  207. dprintk(1,
  208. "read RDS samples: current_address=%08x (offset=%08x), sample_count=%d, aud_intstat=%08x\n",
  209. current_address,
  210. current_address - srch->fifo_start, sample_count,
  211. cx_read(MO_AUD_INTSTAT));
  212. samples = kmalloc_array(sample_count, sizeof(*samples), GFP_KERNEL);
  213. if (!samples)
  214. return NULL;
  215. *N = sample_count;
  216. for (i = 0; i < sample_count; i++) {
  217. offset = offset % (AUD_RDS_LINES * bpl);
  218. samples[i] = cx_read(srch->fifo_start + offset);
  219. offset += 4;
  220. }
  221. dprintk(2, "RDS samples dump: %*ph\n", sample_count, samples);
  222. return samples;
  223. }
  224. s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core)
  225. {
  226. s16 *samples;
  227. u32 N = 0;
  228. s32 ret = UNSET;
  229. /* If audio RDS fifo is disabled, we can't read the samples */
  230. if (!(cx_read(MO_AUD_DMACNTRL) & 0x04))
  231. return ret;
  232. if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS))
  233. return ret;
  234. /* Wait at least 500 ms after an audio standard change */
  235. if (time_before(jiffies, core->last_change + msecs_to_jiffies(500)))
  236. return ret;
  237. samples = read_rds_samples(core, &N);
  238. if (!samples)
  239. return ret;
  240. switch (core->tvaudio) {
  241. case WW_BG:
  242. case WW_DK:
  243. case WW_EIAJ:
  244. case WW_M:
  245. ret = detect_a2_a2m_eiaj(core, samples, N);
  246. break;
  247. case WW_BTSC:
  248. ret = detect_btsc(core, samples, N);
  249. break;
  250. case WW_NONE:
  251. case WW_I:
  252. case WW_L:
  253. case WW_I2SPT:
  254. case WW_FM:
  255. case WW_I2SADC:
  256. break;
  257. }
  258. kfree(samples);
  259. if (ret != UNSET)
  260. dprintk(1, "stereo/sap detection result:%s%s%s\n",
  261. (ret & V4L2_TUNER_SUB_MONO) ? " mono" : "",
  262. (ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "",
  263. (ret & V4L2_TUNER_SUB_LANG2) ? " dual" : "");
  264. return ret;
  265. }
  266. EXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);