st-mipid02.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Driver for ST MIPID02 CSI-2 to PARALLEL bridge
  4. *
  5. * Copyright (C) STMicroelectronics SA 2019
  6. * Authors: Mickael Guene <[email protected]>
  7. * for STMicroelectronics.
  8. *
  9. *
  10. */
  11. #include <linux/clk.h>
  12. #include <linux/delay.h>
  13. #include <linux/gpio/consumer.h>
  14. #include <linux/i2c.h>
  15. #include <linux/module.h>
  16. #include <linux/of_graph.h>
  17. #include <linux/regulator/consumer.h>
  18. #include <media/v4l2-async.h>
  19. #include <media/v4l2-ctrls.h>
  20. #include <media/v4l2-device.h>
  21. #include <media/v4l2-fwnode.h>
  22. #include <media/v4l2-subdev.h>
  23. #define MIPID02_CLK_LANE_WR_REG1 0x01
  24. #define MIPID02_CLK_LANE_REG1 0x02
  25. #define MIPID02_CLK_LANE_REG3 0x04
  26. #define MIPID02_DATA_LANE0_REG1 0x05
  27. #define MIPID02_DATA_LANE0_REG2 0x06
  28. #define MIPID02_DATA_LANE1_REG1 0x09
  29. #define MIPID02_DATA_LANE1_REG2 0x0a
  30. #define MIPID02_MODE_REG1 0x14
  31. #define MIPID02_MODE_REG2 0x15
  32. #define MIPID02_DATA_ID_RREG 0x17
  33. #define MIPID02_DATA_SELECTION_CTRL 0x19
  34. #define MIPID02_PIX_WIDTH_CTRL 0x1e
  35. #define MIPID02_PIX_WIDTH_CTRL_EMB 0x1f
  36. /* Bits definition for MIPID02_CLK_LANE_REG1 */
  37. #define CLK_ENABLE BIT(0)
  38. /* Bits definition for MIPID02_CLK_LANE_REG3 */
  39. #define CLK_MIPI_CSI BIT(1)
  40. /* Bits definition for MIPID02_DATA_LANE0_REG1 */
  41. #define DATA_ENABLE BIT(0)
  42. /* Bits definition for MIPID02_DATA_LANEx_REG2 */
  43. #define DATA_MIPI_CSI BIT(0)
  44. /* Bits definition for MIPID02_MODE_REG1 */
  45. #define MODE_DATA_SWAP BIT(2)
  46. #define MODE_NO_BYPASS BIT(6)
  47. /* Bits definition for MIPID02_MODE_REG2 */
  48. #define MODE_HSYNC_ACTIVE_HIGH BIT(1)
  49. #define MODE_VSYNC_ACTIVE_HIGH BIT(2)
  50. #define MODE_PCLK_SAMPLE_RISING BIT(3)
  51. /* Bits definition for MIPID02_DATA_SELECTION_CTRL */
  52. #define SELECTION_MANUAL_DATA BIT(2)
  53. #define SELECTION_MANUAL_WIDTH BIT(3)
  54. static const u32 mipid02_supported_fmt_codes[] = {
  55. MEDIA_BUS_FMT_SBGGR8_1X8, MEDIA_BUS_FMT_SGBRG8_1X8,
  56. MEDIA_BUS_FMT_SGRBG8_1X8, MEDIA_BUS_FMT_SRGGB8_1X8,
  57. MEDIA_BUS_FMT_SBGGR10_1X10, MEDIA_BUS_FMT_SGBRG10_1X10,
  58. MEDIA_BUS_FMT_SGRBG10_1X10, MEDIA_BUS_FMT_SRGGB10_1X10,
  59. MEDIA_BUS_FMT_SBGGR12_1X12, MEDIA_BUS_FMT_SGBRG12_1X12,
  60. MEDIA_BUS_FMT_SGRBG12_1X12, MEDIA_BUS_FMT_SRGGB12_1X12,
  61. MEDIA_BUS_FMT_YUYV8_1X16, MEDIA_BUS_FMT_YVYU8_1X16,
  62. MEDIA_BUS_FMT_UYVY8_1X16, MEDIA_BUS_FMT_VYUY8_1X16,
  63. MEDIA_BUS_FMT_RGB565_1X16, MEDIA_BUS_FMT_BGR888_1X24,
  64. MEDIA_BUS_FMT_RGB565_2X8_LE, MEDIA_BUS_FMT_RGB565_2X8_BE,
  65. MEDIA_BUS_FMT_YUYV8_2X8, MEDIA_BUS_FMT_YVYU8_2X8,
  66. MEDIA_BUS_FMT_UYVY8_2X8, MEDIA_BUS_FMT_VYUY8_2X8,
  67. MEDIA_BUS_FMT_JPEG_1X8
  68. };
  69. /* regulator supplies */
  70. static const char * const mipid02_supply_name[] = {
  71. "VDDE", /* 1.8V digital I/O supply */
  72. "VDDIN", /* 1V8 voltage regulator supply */
  73. };
  74. #define MIPID02_NUM_SUPPLIES ARRAY_SIZE(mipid02_supply_name)
  75. #define MIPID02_SINK_0 0
  76. #define MIPID02_SINK_1 1
  77. #define MIPID02_SOURCE 2
  78. #define MIPID02_PAD_NB 3
  79. struct mipid02_dev {
  80. struct i2c_client *i2c_client;
  81. struct regulator_bulk_data supplies[MIPID02_NUM_SUPPLIES];
  82. struct v4l2_subdev sd;
  83. struct media_pad pad[MIPID02_PAD_NB];
  84. struct clk *xclk;
  85. struct gpio_desc *reset_gpio;
  86. /* endpoints info */
  87. struct v4l2_fwnode_endpoint rx;
  88. u64 link_frequency;
  89. struct v4l2_fwnode_endpoint tx;
  90. /* remote source */
  91. struct v4l2_async_notifier notifier;
  92. struct v4l2_subdev *s_subdev;
  93. /* registers */
  94. struct {
  95. u8 clk_lane_reg1;
  96. u8 data_lane0_reg1;
  97. u8 data_lane1_reg1;
  98. u8 mode_reg1;
  99. u8 mode_reg2;
  100. u8 data_selection_ctrl;
  101. u8 data_id_rreg;
  102. u8 pix_width_ctrl;
  103. u8 pix_width_ctrl_emb;
  104. } r;
  105. /* lock to protect all members below */
  106. struct mutex lock;
  107. bool streaming;
  108. struct v4l2_mbus_framefmt fmt;
  109. };
  110. static int bpp_from_code(__u32 code)
  111. {
  112. switch (code) {
  113. case MEDIA_BUS_FMT_SBGGR8_1X8:
  114. case MEDIA_BUS_FMT_SGBRG8_1X8:
  115. case MEDIA_BUS_FMT_SGRBG8_1X8:
  116. case MEDIA_BUS_FMT_SRGGB8_1X8:
  117. return 8;
  118. case MEDIA_BUS_FMT_SBGGR10_1X10:
  119. case MEDIA_BUS_FMT_SGBRG10_1X10:
  120. case MEDIA_BUS_FMT_SGRBG10_1X10:
  121. case MEDIA_BUS_FMT_SRGGB10_1X10:
  122. return 10;
  123. case MEDIA_BUS_FMT_SBGGR12_1X12:
  124. case MEDIA_BUS_FMT_SGBRG12_1X12:
  125. case MEDIA_BUS_FMT_SGRBG12_1X12:
  126. case MEDIA_BUS_FMT_SRGGB12_1X12:
  127. return 12;
  128. case MEDIA_BUS_FMT_YUYV8_1X16:
  129. case MEDIA_BUS_FMT_YVYU8_1X16:
  130. case MEDIA_BUS_FMT_UYVY8_1X16:
  131. case MEDIA_BUS_FMT_VYUY8_1X16:
  132. case MEDIA_BUS_FMT_RGB565_1X16:
  133. case MEDIA_BUS_FMT_YUYV8_2X8:
  134. case MEDIA_BUS_FMT_YVYU8_2X8:
  135. case MEDIA_BUS_FMT_UYVY8_2X8:
  136. case MEDIA_BUS_FMT_VYUY8_2X8:
  137. case MEDIA_BUS_FMT_RGB565_2X8_LE:
  138. case MEDIA_BUS_FMT_RGB565_2X8_BE:
  139. return 16;
  140. case MEDIA_BUS_FMT_BGR888_1X24:
  141. return 24;
  142. default:
  143. return 0;
  144. }
  145. }
  146. static u8 data_type_from_code(__u32 code)
  147. {
  148. switch (code) {
  149. case MEDIA_BUS_FMT_SBGGR8_1X8:
  150. case MEDIA_BUS_FMT_SGBRG8_1X8:
  151. case MEDIA_BUS_FMT_SGRBG8_1X8:
  152. case MEDIA_BUS_FMT_SRGGB8_1X8:
  153. return 0x2a;
  154. case MEDIA_BUS_FMT_SBGGR10_1X10:
  155. case MEDIA_BUS_FMT_SGBRG10_1X10:
  156. case MEDIA_BUS_FMT_SGRBG10_1X10:
  157. case MEDIA_BUS_FMT_SRGGB10_1X10:
  158. return 0x2b;
  159. case MEDIA_BUS_FMT_SBGGR12_1X12:
  160. case MEDIA_BUS_FMT_SGBRG12_1X12:
  161. case MEDIA_BUS_FMT_SGRBG12_1X12:
  162. case MEDIA_BUS_FMT_SRGGB12_1X12:
  163. return 0x2c;
  164. case MEDIA_BUS_FMT_YUYV8_1X16:
  165. case MEDIA_BUS_FMT_YVYU8_1X16:
  166. case MEDIA_BUS_FMT_UYVY8_1X16:
  167. case MEDIA_BUS_FMT_VYUY8_1X16:
  168. case MEDIA_BUS_FMT_YUYV8_2X8:
  169. case MEDIA_BUS_FMT_YVYU8_2X8:
  170. case MEDIA_BUS_FMT_UYVY8_2X8:
  171. case MEDIA_BUS_FMT_VYUY8_2X8:
  172. return 0x1e;
  173. case MEDIA_BUS_FMT_BGR888_1X24:
  174. return 0x24;
  175. case MEDIA_BUS_FMT_RGB565_1X16:
  176. case MEDIA_BUS_FMT_RGB565_2X8_LE:
  177. case MEDIA_BUS_FMT_RGB565_2X8_BE:
  178. return 0x22;
  179. default:
  180. return 0;
  181. }
  182. }
  183. static void init_format(struct v4l2_mbus_framefmt *fmt)
  184. {
  185. fmt->code = MEDIA_BUS_FMT_SBGGR8_1X8;
  186. fmt->field = V4L2_FIELD_NONE;
  187. fmt->colorspace = V4L2_COLORSPACE_SRGB;
  188. fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(V4L2_COLORSPACE_SRGB);
  189. fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
  190. fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(V4L2_COLORSPACE_SRGB);
  191. fmt->width = 640;
  192. fmt->height = 480;
  193. }
  194. static __u32 get_fmt_code(__u32 code)
  195. {
  196. unsigned int i;
  197. for (i = 0; i < ARRAY_SIZE(mipid02_supported_fmt_codes); i++) {
  198. if (code == mipid02_supported_fmt_codes[i])
  199. return code;
  200. }
  201. return mipid02_supported_fmt_codes[0];
  202. }
  203. static __u32 serial_to_parallel_code(__u32 serial)
  204. {
  205. if (serial == MEDIA_BUS_FMT_RGB565_1X16)
  206. return MEDIA_BUS_FMT_RGB565_2X8_LE;
  207. if (serial == MEDIA_BUS_FMT_YUYV8_1X16)
  208. return MEDIA_BUS_FMT_YUYV8_2X8;
  209. if (serial == MEDIA_BUS_FMT_YVYU8_1X16)
  210. return MEDIA_BUS_FMT_YVYU8_2X8;
  211. if (serial == MEDIA_BUS_FMT_UYVY8_1X16)
  212. return MEDIA_BUS_FMT_UYVY8_2X8;
  213. if (serial == MEDIA_BUS_FMT_VYUY8_1X16)
  214. return MEDIA_BUS_FMT_VYUY8_2X8;
  215. if (serial == MEDIA_BUS_FMT_BGR888_1X24)
  216. return MEDIA_BUS_FMT_BGR888_3X8;
  217. return serial;
  218. }
  219. static inline struct mipid02_dev *to_mipid02_dev(struct v4l2_subdev *sd)
  220. {
  221. return container_of(sd, struct mipid02_dev, sd);
  222. }
  223. static int mipid02_read_reg(struct mipid02_dev *bridge, u16 reg, u8 *val)
  224. {
  225. struct i2c_client *client = bridge->i2c_client;
  226. struct i2c_msg msg[2];
  227. u8 buf[2];
  228. int ret;
  229. buf[0] = reg >> 8;
  230. buf[1] = reg & 0xff;
  231. msg[0].addr = client->addr;
  232. msg[0].flags = client->flags;
  233. msg[0].buf = buf;
  234. msg[0].len = sizeof(buf);
  235. msg[1].addr = client->addr;
  236. msg[1].flags = client->flags | I2C_M_RD;
  237. msg[1].buf = val;
  238. msg[1].len = 1;
  239. ret = i2c_transfer(client->adapter, msg, 2);
  240. if (ret < 0) {
  241. dev_dbg(&client->dev, "%s: %x i2c_transfer, reg: %x => %d\n",
  242. __func__, client->addr, reg, ret);
  243. return ret;
  244. }
  245. return 0;
  246. }
  247. static int mipid02_write_reg(struct mipid02_dev *bridge, u16 reg, u8 val)
  248. {
  249. struct i2c_client *client = bridge->i2c_client;
  250. struct i2c_msg msg;
  251. u8 buf[3];
  252. int ret;
  253. buf[0] = reg >> 8;
  254. buf[1] = reg & 0xff;
  255. buf[2] = val;
  256. msg.addr = client->addr;
  257. msg.flags = client->flags;
  258. msg.buf = buf;
  259. msg.len = sizeof(buf);
  260. ret = i2c_transfer(client->adapter, &msg, 1);
  261. if (ret < 0) {
  262. dev_dbg(&client->dev, "%s: i2c_transfer, reg: %x => %d\n",
  263. __func__, reg, ret);
  264. return ret;
  265. }
  266. return 0;
  267. }
  268. static int mipid02_get_regulators(struct mipid02_dev *bridge)
  269. {
  270. unsigned int i;
  271. for (i = 0; i < MIPID02_NUM_SUPPLIES; i++)
  272. bridge->supplies[i].supply = mipid02_supply_name[i];
  273. return devm_regulator_bulk_get(&bridge->i2c_client->dev,
  274. MIPID02_NUM_SUPPLIES,
  275. bridge->supplies);
  276. }
  277. static void mipid02_apply_reset(struct mipid02_dev *bridge)
  278. {
  279. gpiod_set_value_cansleep(bridge->reset_gpio, 0);
  280. usleep_range(5000, 10000);
  281. gpiod_set_value_cansleep(bridge->reset_gpio, 1);
  282. usleep_range(5000, 10000);
  283. gpiod_set_value_cansleep(bridge->reset_gpio, 0);
  284. usleep_range(5000, 10000);
  285. }
  286. static int mipid02_set_power_on(struct mipid02_dev *bridge)
  287. {
  288. struct i2c_client *client = bridge->i2c_client;
  289. int ret;
  290. ret = clk_prepare_enable(bridge->xclk);
  291. if (ret) {
  292. dev_err(&client->dev, "%s: failed to enable clock\n", __func__);
  293. return ret;
  294. }
  295. ret = regulator_bulk_enable(MIPID02_NUM_SUPPLIES,
  296. bridge->supplies);
  297. if (ret) {
  298. dev_err(&client->dev, "%s: failed to enable regulators\n",
  299. __func__);
  300. goto xclk_off;
  301. }
  302. if (bridge->reset_gpio) {
  303. dev_dbg(&client->dev, "apply reset");
  304. mipid02_apply_reset(bridge);
  305. } else {
  306. dev_dbg(&client->dev, "don't apply reset");
  307. usleep_range(5000, 10000);
  308. }
  309. return 0;
  310. xclk_off:
  311. clk_disable_unprepare(bridge->xclk);
  312. return ret;
  313. }
  314. static void mipid02_set_power_off(struct mipid02_dev *bridge)
  315. {
  316. regulator_bulk_disable(MIPID02_NUM_SUPPLIES, bridge->supplies);
  317. clk_disable_unprepare(bridge->xclk);
  318. }
  319. static int mipid02_detect(struct mipid02_dev *bridge)
  320. {
  321. u8 reg;
  322. /*
  323. * There is no version registers. Just try to read register
  324. * MIPID02_CLK_LANE_WR_REG1.
  325. */
  326. return mipid02_read_reg(bridge, MIPID02_CLK_LANE_WR_REG1, &reg);
  327. }
  328. static u32 mipid02_get_link_freq_from_cid_link_freq(struct mipid02_dev *bridge,
  329. struct v4l2_subdev *subdev)
  330. {
  331. struct v4l2_querymenu qm = {.id = V4L2_CID_LINK_FREQ, };
  332. struct v4l2_ctrl *ctrl;
  333. int ret;
  334. ctrl = v4l2_ctrl_find(subdev->ctrl_handler, V4L2_CID_LINK_FREQ);
  335. if (!ctrl)
  336. return 0;
  337. qm.index = v4l2_ctrl_g_ctrl(ctrl);
  338. ret = v4l2_querymenu(subdev->ctrl_handler, &qm);
  339. if (ret)
  340. return 0;
  341. return qm.value;
  342. }
  343. static u32 mipid02_get_link_freq_from_cid_pixel_rate(struct mipid02_dev *bridge,
  344. struct v4l2_subdev *subdev)
  345. {
  346. struct v4l2_fwnode_endpoint *ep = &bridge->rx;
  347. struct v4l2_ctrl *ctrl;
  348. u32 pixel_clock;
  349. u32 bpp = bpp_from_code(bridge->fmt.code);
  350. ctrl = v4l2_ctrl_find(subdev->ctrl_handler, V4L2_CID_PIXEL_RATE);
  351. if (!ctrl)
  352. return 0;
  353. pixel_clock = v4l2_ctrl_g_ctrl_int64(ctrl);
  354. return pixel_clock * bpp / (2 * ep->bus.mipi_csi2.num_data_lanes);
  355. }
  356. /*
  357. * We need to know link frequency to setup clk_lane_reg1 timings. Link frequency
  358. * will be computed using connected device V4L2_CID_PIXEL_RATE, bit per pixel
  359. * and number of lanes.
  360. */
  361. static int mipid02_configure_from_rx_speed(struct mipid02_dev *bridge)
  362. {
  363. struct i2c_client *client = bridge->i2c_client;
  364. struct v4l2_subdev *subdev = bridge->s_subdev;
  365. u32 link_freq;
  366. link_freq = mipid02_get_link_freq_from_cid_link_freq(bridge, subdev);
  367. if (!link_freq) {
  368. link_freq = mipid02_get_link_freq_from_cid_pixel_rate(bridge,
  369. subdev);
  370. if (!link_freq) {
  371. dev_err(&client->dev, "Failed to get link frequency");
  372. return -EINVAL;
  373. }
  374. }
  375. dev_dbg(&client->dev, "detect link_freq = %d Hz", link_freq);
  376. bridge->r.clk_lane_reg1 |= (2000000000 / link_freq) << 2;
  377. return 0;
  378. }
  379. static int mipid02_configure_clk_lane(struct mipid02_dev *bridge)
  380. {
  381. struct i2c_client *client = bridge->i2c_client;
  382. struct v4l2_fwnode_endpoint *ep = &bridge->rx;
  383. bool *polarities = ep->bus.mipi_csi2.lane_polarities;
  384. /* midid02 doesn't support clock lane remapping */
  385. if (ep->bus.mipi_csi2.clock_lane != 0) {
  386. dev_err(&client->dev, "clk lane must be map to lane 0\n");
  387. return -EINVAL;
  388. }
  389. bridge->r.clk_lane_reg1 |= (polarities[0] << 1) | CLK_ENABLE;
  390. return 0;
  391. }
  392. static int mipid02_configure_data0_lane(struct mipid02_dev *bridge, int nb,
  393. bool are_lanes_swap, bool *polarities)
  394. {
  395. bool are_pin_swap = are_lanes_swap ? polarities[2] : polarities[1];
  396. if (nb == 1 && are_lanes_swap)
  397. return 0;
  398. /*
  399. * data lane 0 as pin swap polarity reversed compared to clock and
  400. * data lane 1
  401. */
  402. if (!are_pin_swap)
  403. bridge->r.data_lane0_reg1 = 1 << 1;
  404. bridge->r.data_lane0_reg1 |= DATA_ENABLE;
  405. return 0;
  406. }
  407. static int mipid02_configure_data1_lane(struct mipid02_dev *bridge, int nb,
  408. bool are_lanes_swap, bool *polarities)
  409. {
  410. bool are_pin_swap = are_lanes_swap ? polarities[1] : polarities[2];
  411. if (nb == 1 && !are_lanes_swap)
  412. return 0;
  413. if (are_pin_swap)
  414. bridge->r.data_lane1_reg1 = 1 << 1;
  415. bridge->r.data_lane1_reg1 |= DATA_ENABLE;
  416. return 0;
  417. }
  418. static int mipid02_configure_from_rx(struct mipid02_dev *bridge)
  419. {
  420. struct v4l2_fwnode_endpoint *ep = &bridge->rx;
  421. bool are_lanes_swap = ep->bus.mipi_csi2.data_lanes[0] == 2;
  422. bool *polarities = ep->bus.mipi_csi2.lane_polarities;
  423. int nb = ep->bus.mipi_csi2.num_data_lanes;
  424. int ret;
  425. ret = mipid02_configure_clk_lane(bridge);
  426. if (ret)
  427. return ret;
  428. ret = mipid02_configure_data0_lane(bridge, nb, are_lanes_swap,
  429. polarities);
  430. if (ret)
  431. return ret;
  432. ret = mipid02_configure_data1_lane(bridge, nb, are_lanes_swap,
  433. polarities);
  434. if (ret)
  435. return ret;
  436. bridge->r.mode_reg1 |= are_lanes_swap ? MODE_DATA_SWAP : 0;
  437. bridge->r.mode_reg1 |= (nb - 1) << 1;
  438. return mipid02_configure_from_rx_speed(bridge);
  439. }
  440. static int mipid02_configure_from_tx(struct mipid02_dev *bridge)
  441. {
  442. struct v4l2_fwnode_endpoint *ep = &bridge->tx;
  443. bridge->r.data_selection_ctrl = SELECTION_MANUAL_WIDTH;
  444. bridge->r.pix_width_ctrl = ep->bus.parallel.bus_width;
  445. bridge->r.pix_width_ctrl_emb = ep->bus.parallel.bus_width;
  446. if (ep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
  447. bridge->r.mode_reg2 |= MODE_HSYNC_ACTIVE_HIGH;
  448. if (ep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
  449. bridge->r.mode_reg2 |= MODE_VSYNC_ACTIVE_HIGH;
  450. if (ep->bus.parallel.flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
  451. bridge->r.mode_reg2 |= MODE_PCLK_SAMPLE_RISING;
  452. return 0;
  453. }
  454. static int mipid02_configure_from_code(struct mipid02_dev *bridge)
  455. {
  456. u8 data_type;
  457. bridge->r.data_id_rreg = 0;
  458. if (bridge->fmt.code != MEDIA_BUS_FMT_JPEG_1X8) {
  459. bridge->r.data_selection_ctrl |= SELECTION_MANUAL_DATA;
  460. data_type = data_type_from_code(bridge->fmt.code);
  461. if (!data_type)
  462. return -EINVAL;
  463. bridge->r.data_id_rreg = data_type;
  464. }
  465. return 0;
  466. }
  467. static int mipid02_stream_disable(struct mipid02_dev *bridge)
  468. {
  469. struct i2c_client *client = bridge->i2c_client;
  470. int ret;
  471. /* Disable all lanes */
  472. ret = mipid02_write_reg(bridge, MIPID02_CLK_LANE_REG1, 0);
  473. if (ret)
  474. goto error;
  475. ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE0_REG1, 0);
  476. if (ret)
  477. goto error;
  478. ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE1_REG1, 0);
  479. if (ret)
  480. goto error;
  481. error:
  482. if (ret)
  483. dev_err(&client->dev, "failed to stream off %d", ret);
  484. return ret;
  485. }
  486. static int mipid02_stream_enable(struct mipid02_dev *bridge)
  487. {
  488. struct i2c_client *client = bridge->i2c_client;
  489. int ret = -EINVAL;
  490. if (!bridge->s_subdev)
  491. goto error;
  492. memset(&bridge->r, 0, sizeof(bridge->r));
  493. /* build registers content */
  494. ret = mipid02_configure_from_rx(bridge);
  495. if (ret)
  496. goto error;
  497. ret = mipid02_configure_from_tx(bridge);
  498. if (ret)
  499. goto error;
  500. ret = mipid02_configure_from_code(bridge);
  501. if (ret)
  502. goto error;
  503. /* write mipi registers */
  504. ret = mipid02_write_reg(bridge, MIPID02_CLK_LANE_REG1,
  505. bridge->r.clk_lane_reg1);
  506. if (ret)
  507. goto error;
  508. ret = mipid02_write_reg(bridge, MIPID02_CLK_LANE_REG3, CLK_MIPI_CSI);
  509. if (ret)
  510. goto error;
  511. ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE0_REG1,
  512. bridge->r.data_lane0_reg1);
  513. if (ret)
  514. goto error;
  515. ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE0_REG2,
  516. DATA_MIPI_CSI);
  517. if (ret)
  518. goto error;
  519. ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE1_REG1,
  520. bridge->r.data_lane1_reg1);
  521. if (ret)
  522. goto error;
  523. ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE1_REG2,
  524. DATA_MIPI_CSI);
  525. if (ret)
  526. goto error;
  527. ret = mipid02_write_reg(bridge, MIPID02_MODE_REG1,
  528. MODE_NO_BYPASS | bridge->r.mode_reg1);
  529. if (ret)
  530. goto error;
  531. ret = mipid02_write_reg(bridge, MIPID02_MODE_REG2,
  532. bridge->r.mode_reg2);
  533. if (ret)
  534. goto error;
  535. ret = mipid02_write_reg(bridge, MIPID02_DATA_ID_RREG,
  536. bridge->r.data_id_rreg);
  537. if (ret)
  538. goto error;
  539. ret = mipid02_write_reg(bridge, MIPID02_DATA_SELECTION_CTRL,
  540. bridge->r.data_selection_ctrl);
  541. if (ret)
  542. goto error;
  543. ret = mipid02_write_reg(bridge, MIPID02_PIX_WIDTH_CTRL,
  544. bridge->r.pix_width_ctrl);
  545. if (ret)
  546. goto error;
  547. ret = mipid02_write_reg(bridge, MIPID02_PIX_WIDTH_CTRL_EMB,
  548. bridge->r.pix_width_ctrl_emb);
  549. if (ret)
  550. goto error;
  551. return 0;
  552. error:
  553. dev_err(&client->dev, "failed to stream on %d", ret);
  554. mipid02_stream_disable(bridge);
  555. return ret;
  556. }
  557. static int mipid02_s_stream(struct v4l2_subdev *sd, int enable)
  558. {
  559. struct mipid02_dev *bridge = to_mipid02_dev(sd);
  560. struct i2c_client *client = bridge->i2c_client;
  561. int ret = 0;
  562. dev_dbg(&client->dev, "%s : requested %d / current = %d", __func__,
  563. enable, bridge->streaming);
  564. mutex_lock(&bridge->lock);
  565. if (bridge->streaming == enable)
  566. goto out;
  567. ret = enable ? mipid02_stream_enable(bridge) :
  568. mipid02_stream_disable(bridge);
  569. if (!ret)
  570. bridge->streaming = enable;
  571. out:
  572. dev_dbg(&client->dev, "%s current now = %d / %d", __func__,
  573. bridge->streaming, ret);
  574. mutex_unlock(&bridge->lock);
  575. return ret;
  576. }
  577. static int mipid02_enum_mbus_code(struct v4l2_subdev *sd,
  578. struct v4l2_subdev_state *sd_state,
  579. struct v4l2_subdev_mbus_code_enum *code)
  580. {
  581. struct mipid02_dev *bridge = to_mipid02_dev(sd);
  582. int ret = 0;
  583. switch (code->pad) {
  584. case MIPID02_SINK_0:
  585. if (code->index >= ARRAY_SIZE(mipid02_supported_fmt_codes))
  586. ret = -EINVAL;
  587. else
  588. code->code = mipid02_supported_fmt_codes[code->index];
  589. break;
  590. case MIPID02_SOURCE:
  591. if (code->index == 0)
  592. code->code = serial_to_parallel_code(bridge->fmt.code);
  593. else
  594. ret = -EINVAL;
  595. break;
  596. default:
  597. ret = -EINVAL;
  598. }
  599. return ret;
  600. }
  601. static int mipid02_get_fmt(struct v4l2_subdev *sd,
  602. struct v4l2_subdev_state *sd_state,
  603. struct v4l2_subdev_format *format)
  604. {
  605. struct v4l2_mbus_framefmt *mbus_fmt = &format->format;
  606. struct mipid02_dev *bridge = to_mipid02_dev(sd);
  607. struct i2c_client *client = bridge->i2c_client;
  608. struct v4l2_mbus_framefmt *fmt;
  609. dev_dbg(&client->dev, "%s probe %d", __func__, format->pad);
  610. if (format->pad >= MIPID02_PAD_NB)
  611. return -EINVAL;
  612. /* second CSI-2 pad not yet supported */
  613. if (format->pad == MIPID02_SINK_1)
  614. return -EINVAL;
  615. if (format->which == V4L2_SUBDEV_FORMAT_TRY)
  616. fmt = v4l2_subdev_get_try_format(&bridge->sd, sd_state,
  617. format->pad);
  618. else
  619. fmt = &bridge->fmt;
  620. mutex_lock(&bridge->lock);
  621. *mbus_fmt = *fmt;
  622. /* code may need to be converted for source */
  623. if (format->pad == MIPID02_SOURCE)
  624. mbus_fmt->code = serial_to_parallel_code(mbus_fmt->code);
  625. mutex_unlock(&bridge->lock);
  626. return 0;
  627. }
  628. static void mipid02_set_fmt_source(struct v4l2_subdev *sd,
  629. struct v4l2_subdev_state *sd_state,
  630. struct v4l2_subdev_format *format)
  631. {
  632. struct mipid02_dev *bridge = to_mipid02_dev(sd);
  633. /* source pad mirror sink pad */
  634. if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
  635. format->format = bridge->fmt;
  636. else
  637. format->format = *v4l2_subdev_get_try_format(sd, sd_state,
  638. MIPID02_SINK_0);
  639. /* but code may need to be converted */
  640. format->format.code = serial_to_parallel_code(format->format.code);
  641. /* only apply format for V4L2_SUBDEV_FORMAT_TRY case */
  642. if (format->which != V4L2_SUBDEV_FORMAT_TRY)
  643. return;
  644. *v4l2_subdev_get_try_format(sd, sd_state, format->pad) = format->format;
  645. }
  646. static void mipid02_set_fmt_sink(struct v4l2_subdev *sd,
  647. struct v4l2_subdev_state *sd_state,
  648. struct v4l2_subdev_format *format)
  649. {
  650. struct mipid02_dev *bridge = to_mipid02_dev(sd);
  651. struct v4l2_mbus_framefmt *fmt;
  652. format->format.code = get_fmt_code(format->format.code);
  653. if (format->which == V4L2_SUBDEV_FORMAT_TRY)
  654. fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
  655. else
  656. fmt = &bridge->fmt;
  657. *fmt = format->format;
  658. }
  659. static int mipid02_set_fmt(struct v4l2_subdev *sd,
  660. struct v4l2_subdev_state *sd_state,
  661. struct v4l2_subdev_format *format)
  662. {
  663. struct mipid02_dev *bridge = to_mipid02_dev(sd);
  664. struct i2c_client *client = bridge->i2c_client;
  665. int ret = 0;
  666. dev_dbg(&client->dev, "%s for %d", __func__, format->pad);
  667. if (format->pad >= MIPID02_PAD_NB)
  668. return -EINVAL;
  669. /* second CSI-2 pad not yet supported */
  670. if (format->pad == MIPID02_SINK_1)
  671. return -EINVAL;
  672. mutex_lock(&bridge->lock);
  673. if (bridge->streaming) {
  674. ret = -EBUSY;
  675. goto error;
  676. }
  677. if (format->pad == MIPID02_SOURCE)
  678. mipid02_set_fmt_source(sd, sd_state, format);
  679. else
  680. mipid02_set_fmt_sink(sd, sd_state, format);
  681. error:
  682. mutex_unlock(&bridge->lock);
  683. return ret;
  684. }
  685. static const struct v4l2_subdev_video_ops mipid02_video_ops = {
  686. .s_stream = mipid02_s_stream,
  687. };
  688. static const struct v4l2_subdev_pad_ops mipid02_pad_ops = {
  689. .enum_mbus_code = mipid02_enum_mbus_code,
  690. .get_fmt = mipid02_get_fmt,
  691. .set_fmt = mipid02_set_fmt,
  692. };
  693. static const struct v4l2_subdev_ops mipid02_subdev_ops = {
  694. .video = &mipid02_video_ops,
  695. .pad = &mipid02_pad_ops,
  696. };
  697. static const struct media_entity_operations mipid02_subdev_entity_ops = {
  698. .link_validate = v4l2_subdev_link_validate,
  699. };
  700. static int mipid02_async_bound(struct v4l2_async_notifier *notifier,
  701. struct v4l2_subdev *s_subdev,
  702. struct v4l2_async_subdev *asd)
  703. {
  704. struct mipid02_dev *bridge = to_mipid02_dev(notifier->sd);
  705. struct i2c_client *client = bridge->i2c_client;
  706. int source_pad;
  707. int ret;
  708. dev_dbg(&client->dev, "sensor_async_bound call %p", s_subdev);
  709. source_pad = media_entity_get_fwnode_pad(&s_subdev->entity,
  710. s_subdev->fwnode,
  711. MEDIA_PAD_FL_SOURCE);
  712. if (source_pad < 0) {
  713. dev_err(&client->dev, "Couldn't find output pad for subdev %s\n",
  714. s_subdev->name);
  715. return source_pad;
  716. }
  717. ret = media_create_pad_link(&s_subdev->entity, source_pad,
  718. &bridge->sd.entity, 0,
  719. MEDIA_LNK_FL_ENABLED |
  720. MEDIA_LNK_FL_IMMUTABLE);
  721. if (ret) {
  722. dev_err(&client->dev, "Couldn't create media link %d", ret);
  723. return ret;
  724. }
  725. bridge->s_subdev = s_subdev;
  726. return 0;
  727. }
  728. static void mipid02_async_unbind(struct v4l2_async_notifier *notifier,
  729. struct v4l2_subdev *s_subdev,
  730. struct v4l2_async_subdev *asd)
  731. {
  732. struct mipid02_dev *bridge = to_mipid02_dev(notifier->sd);
  733. bridge->s_subdev = NULL;
  734. }
  735. static const struct v4l2_async_notifier_operations mipid02_notifier_ops = {
  736. .bound = mipid02_async_bound,
  737. .unbind = mipid02_async_unbind,
  738. };
  739. static int mipid02_parse_rx_ep(struct mipid02_dev *bridge)
  740. {
  741. struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_CSI2_DPHY };
  742. struct i2c_client *client = bridge->i2c_client;
  743. struct v4l2_async_subdev *asd;
  744. struct device_node *ep_node;
  745. int ret;
  746. /* parse rx (endpoint 0) */
  747. ep_node = of_graph_get_endpoint_by_regs(bridge->i2c_client->dev.of_node,
  748. 0, 0);
  749. if (!ep_node) {
  750. dev_err(&client->dev, "unable to find port0 ep");
  751. ret = -EINVAL;
  752. goto error;
  753. }
  754. ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), &ep);
  755. if (ret) {
  756. dev_err(&client->dev, "Could not parse v4l2 endpoint %d\n",
  757. ret);
  758. goto error_of_node_put;
  759. }
  760. /* do some sanity checks */
  761. if (ep.bus.mipi_csi2.num_data_lanes > 2) {
  762. dev_err(&client->dev, "max supported data lanes is 2 / got %d",
  763. ep.bus.mipi_csi2.num_data_lanes);
  764. ret = -EINVAL;
  765. goto error_of_node_put;
  766. }
  767. /* register it for later use */
  768. bridge->rx = ep;
  769. /* register async notifier so we get noticed when sensor is connected */
  770. v4l2_async_nf_init(&bridge->notifier);
  771. asd = v4l2_async_nf_add_fwnode_remote(&bridge->notifier,
  772. of_fwnode_handle(ep_node),
  773. struct v4l2_async_subdev);
  774. of_node_put(ep_node);
  775. if (IS_ERR(asd)) {
  776. dev_err(&client->dev, "fail to register asd to notifier %ld",
  777. PTR_ERR(asd));
  778. return PTR_ERR(asd);
  779. }
  780. bridge->notifier.ops = &mipid02_notifier_ops;
  781. ret = v4l2_async_subdev_nf_register(&bridge->sd, &bridge->notifier);
  782. if (ret)
  783. v4l2_async_nf_cleanup(&bridge->notifier);
  784. return ret;
  785. error_of_node_put:
  786. of_node_put(ep_node);
  787. error:
  788. return ret;
  789. }
  790. static int mipid02_parse_tx_ep(struct mipid02_dev *bridge)
  791. {
  792. struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_PARALLEL };
  793. struct i2c_client *client = bridge->i2c_client;
  794. struct device_node *ep_node;
  795. int ret;
  796. /* parse tx (endpoint 2) */
  797. ep_node = of_graph_get_endpoint_by_regs(bridge->i2c_client->dev.of_node,
  798. 2, 0);
  799. if (!ep_node) {
  800. dev_err(&client->dev, "unable to find port1 ep");
  801. ret = -EINVAL;
  802. goto error;
  803. }
  804. ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), &ep);
  805. if (ret) {
  806. dev_err(&client->dev, "Could not parse v4l2 endpoint\n");
  807. goto error_of_node_put;
  808. }
  809. of_node_put(ep_node);
  810. bridge->tx = ep;
  811. return 0;
  812. error_of_node_put:
  813. of_node_put(ep_node);
  814. error:
  815. return -EINVAL;
  816. }
  817. static int mipid02_probe(struct i2c_client *client)
  818. {
  819. struct device *dev = &client->dev;
  820. struct mipid02_dev *bridge;
  821. u32 clk_freq;
  822. int ret;
  823. bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL);
  824. if (!bridge)
  825. return -ENOMEM;
  826. init_format(&bridge->fmt);
  827. bridge->i2c_client = client;
  828. v4l2_i2c_subdev_init(&bridge->sd, client, &mipid02_subdev_ops);
  829. /* got and check clock */
  830. bridge->xclk = devm_clk_get(dev, "xclk");
  831. if (IS_ERR(bridge->xclk)) {
  832. dev_err(dev, "failed to get xclk\n");
  833. return PTR_ERR(bridge->xclk);
  834. }
  835. clk_freq = clk_get_rate(bridge->xclk);
  836. if (clk_freq < 6000000 || clk_freq > 27000000) {
  837. dev_err(dev, "xclk freq must be in 6-27 Mhz range. got %d Hz\n",
  838. clk_freq);
  839. return -EINVAL;
  840. }
  841. bridge->reset_gpio = devm_gpiod_get_optional(dev, "reset",
  842. GPIOD_OUT_HIGH);
  843. if (IS_ERR(bridge->reset_gpio)) {
  844. dev_err(dev, "failed to get reset GPIO\n");
  845. return PTR_ERR(bridge->reset_gpio);
  846. }
  847. ret = mipid02_get_regulators(bridge);
  848. if (ret) {
  849. dev_err(dev, "failed to get regulators %d", ret);
  850. return ret;
  851. }
  852. mutex_init(&bridge->lock);
  853. bridge->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
  854. bridge->sd.entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
  855. bridge->sd.entity.ops = &mipid02_subdev_entity_ops;
  856. bridge->pad[0].flags = MEDIA_PAD_FL_SINK;
  857. bridge->pad[1].flags = MEDIA_PAD_FL_SINK;
  858. bridge->pad[2].flags = MEDIA_PAD_FL_SOURCE;
  859. ret = media_entity_pads_init(&bridge->sd.entity, MIPID02_PAD_NB,
  860. bridge->pad);
  861. if (ret) {
  862. dev_err(&client->dev, "pads init failed %d", ret);
  863. goto mutex_cleanup;
  864. }
  865. /* enable clock, power and reset device if available */
  866. ret = mipid02_set_power_on(bridge);
  867. if (ret)
  868. goto entity_cleanup;
  869. ret = mipid02_detect(bridge);
  870. if (ret) {
  871. dev_err(&client->dev, "failed to detect mipid02 %d", ret);
  872. goto power_off;
  873. }
  874. ret = mipid02_parse_tx_ep(bridge);
  875. if (ret) {
  876. dev_err(&client->dev, "failed to parse tx %d", ret);
  877. goto power_off;
  878. }
  879. ret = mipid02_parse_rx_ep(bridge);
  880. if (ret) {
  881. dev_err(&client->dev, "failed to parse rx %d", ret);
  882. goto power_off;
  883. }
  884. ret = v4l2_async_register_subdev(&bridge->sd);
  885. if (ret < 0) {
  886. dev_err(&client->dev, "v4l2_async_register_subdev failed %d",
  887. ret);
  888. goto unregister_notifier;
  889. }
  890. dev_info(&client->dev, "mipid02 device probe successfully");
  891. return 0;
  892. unregister_notifier:
  893. v4l2_async_nf_unregister(&bridge->notifier);
  894. v4l2_async_nf_cleanup(&bridge->notifier);
  895. power_off:
  896. mipid02_set_power_off(bridge);
  897. entity_cleanup:
  898. media_entity_cleanup(&bridge->sd.entity);
  899. mutex_cleanup:
  900. mutex_destroy(&bridge->lock);
  901. return ret;
  902. }
  903. static void mipid02_remove(struct i2c_client *client)
  904. {
  905. struct v4l2_subdev *sd = i2c_get_clientdata(client);
  906. struct mipid02_dev *bridge = to_mipid02_dev(sd);
  907. v4l2_async_nf_unregister(&bridge->notifier);
  908. v4l2_async_nf_cleanup(&bridge->notifier);
  909. v4l2_async_unregister_subdev(&bridge->sd);
  910. mipid02_set_power_off(bridge);
  911. media_entity_cleanup(&bridge->sd.entity);
  912. mutex_destroy(&bridge->lock);
  913. }
  914. static const struct of_device_id mipid02_dt_ids[] = {
  915. { .compatible = "st,st-mipid02" },
  916. { /* sentinel */ }
  917. };
  918. MODULE_DEVICE_TABLE(of, mipid02_dt_ids);
  919. static struct i2c_driver mipid02_i2c_driver = {
  920. .driver = {
  921. .name = "st-mipid02",
  922. .of_match_table = mipid02_dt_ids,
  923. },
  924. .probe_new = mipid02_probe,
  925. .remove = mipid02_remove,
  926. };
  927. module_i2c_driver(mipid02_i2c_driver);
  928. MODULE_AUTHOR("Mickael Guene <[email protected]>");
  929. MODULE_DESCRIPTION("STMicroelectronics MIPID02 CSI-2 bridge driver");
  930. MODULE_LICENSE("GPL v2");