ccs-pll.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * drivers/media/i2c/ccs-pll.c
  4. *
  5. * Generic MIPI CCS/SMIA/SMIA++ PLL calculator
  6. *
  7. * Copyright (C) 2020 Intel Corporation
  8. * Copyright (C) 2011--2012 Nokia Corporation
  9. * Contact: Sakari Ailus <[email protected]>
  10. */
  11. #include <linux/device.h>
  12. #include <linux/gcd.h>
  13. #include <linux/lcm.h>
  14. #include <linux/module.h>
  15. #include "ccs-pll.h"
  16. /* Return an even number or one. */
  17. static inline u32 clk_div_even(u32 a)
  18. {
  19. return max_t(u32, 1, a & ~1);
  20. }
  21. /* Return an even number or one. */
  22. static inline u32 clk_div_even_up(u32 a)
  23. {
  24. if (a == 1)
  25. return 1;
  26. return (a + 1) & ~1;
  27. }
  28. static inline u32 is_one_or_even(u32 a)
  29. {
  30. if (a == 1)
  31. return 1;
  32. if (a & 1)
  33. return 0;
  34. return 1;
  35. }
  36. static inline u32 one_or_more(u32 a)
  37. {
  38. return a ?: 1;
  39. }
  40. static int bounds_check(struct device *dev, u32 val,
  41. u32 min, u32 max, const char *prefix,
  42. char *str)
  43. {
  44. if (val >= min && val <= max)
  45. return 0;
  46. dev_dbg(dev, "%s_%s out of bounds: %d (%d--%d)\n", prefix,
  47. str, val, min, max);
  48. return -EINVAL;
  49. }
  50. #define PLL_OP 1
  51. #define PLL_VT 2
  52. static const char *pll_string(unsigned int which)
  53. {
  54. switch (which) {
  55. case PLL_OP:
  56. return "op";
  57. case PLL_VT:
  58. return "vt";
  59. }
  60. return NULL;
  61. }
  62. #define PLL_FL(f) CCS_PLL_FLAG_##f
  63. static void print_pll(struct device *dev, struct ccs_pll *pll)
  64. {
  65. const struct {
  66. struct ccs_pll_branch_fr *fr;
  67. struct ccs_pll_branch_bk *bk;
  68. unsigned int which;
  69. } branches[] = {
  70. { &pll->vt_fr, &pll->vt_bk, PLL_VT },
  71. { &pll->op_fr, &pll->op_bk, PLL_OP }
  72. }, *br;
  73. unsigned int i;
  74. dev_dbg(dev, "ext_clk_freq_hz\t\t%u\n", pll->ext_clk_freq_hz);
  75. for (i = 0, br = branches; i < ARRAY_SIZE(branches); i++, br++) {
  76. const char *s = pll_string(br->which);
  77. if (pll->flags & CCS_PLL_FLAG_DUAL_PLL ||
  78. br->which == PLL_VT) {
  79. dev_dbg(dev, "%s_pre_pll_clk_div\t\t%u\n", s,
  80. br->fr->pre_pll_clk_div);
  81. dev_dbg(dev, "%s_pll_multiplier\t\t%u\n", s,
  82. br->fr->pll_multiplier);
  83. dev_dbg(dev, "%s_pll_ip_clk_freq_hz\t%u\n", s,
  84. br->fr->pll_ip_clk_freq_hz);
  85. dev_dbg(dev, "%s_pll_op_clk_freq_hz\t%u\n", s,
  86. br->fr->pll_op_clk_freq_hz);
  87. }
  88. if (!(pll->flags & CCS_PLL_FLAG_NO_OP_CLOCKS) ||
  89. br->which == PLL_VT) {
  90. dev_dbg(dev, "%s_sys_clk_div\t\t%u\n", s,
  91. br->bk->sys_clk_div);
  92. dev_dbg(dev, "%s_pix_clk_div\t\t%u\n", s,
  93. br->bk->pix_clk_div);
  94. dev_dbg(dev, "%s_sys_clk_freq_hz\t%u\n", s,
  95. br->bk->sys_clk_freq_hz);
  96. dev_dbg(dev, "%s_pix_clk_freq_hz\t%u\n", s,
  97. br->bk->pix_clk_freq_hz);
  98. }
  99. }
  100. dev_dbg(dev, "pixel rate in pixel array:\t%u\n",
  101. pll->pixel_rate_pixel_array);
  102. dev_dbg(dev, "pixel rate on CSI-2 bus:\t%u\n",
  103. pll->pixel_rate_csi);
  104. dev_dbg(dev, "flags%s%s%s%s%s%s%s%s%s\n",
  105. pll->flags & PLL_FL(LANE_SPEED_MODEL) ? " lane-speed" : "",
  106. pll->flags & PLL_FL(LINK_DECOUPLED) ? " link-decoupled" : "",
  107. pll->flags & PLL_FL(EXT_IP_PLL_DIVIDER) ?
  108. " ext-ip-pll-divider" : "",
  109. pll->flags & PLL_FL(FLEXIBLE_OP_PIX_CLK_DIV) ?
  110. " flexible-op-pix-div" : "",
  111. pll->flags & PLL_FL(FIFO_DERATING) ? " fifo-derating" : "",
  112. pll->flags & PLL_FL(FIFO_OVERRATING) ? " fifo-overrating" : "",
  113. pll->flags & PLL_FL(DUAL_PLL) ? " dual-pll" : "",
  114. pll->flags & PLL_FL(OP_SYS_DDR) ? " op-sys-ddr" : "",
  115. pll->flags & PLL_FL(OP_PIX_DDR) ? " op-pix-ddr" : "");
  116. }
  117. static u32 op_sys_ddr(u32 flags)
  118. {
  119. return flags & CCS_PLL_FLAG_OP_SYS_DDR ? 1 : 0;
  120. }
  121. static u32 op_pix_ddr(u32 flags)
  122. {
  123. return flags & CCS_PLL_FLAG_OP_PIX_DDR ? 1 : 0;
  124. }
  125. static int check_fr_bounds(struct device *dev,
  126. const struct ccs_pll_limits *lim,
  127. struct ccs_pll *pll, unsigned int which)
  128. {
  129. const struct ccs_pll_branch_limits_fr *lim_fr;
  130. struct ccs_pll_branch_fr *pll_fr;
  131. const char *s = pll_string(which);
  132. int rval;
  133. if (which == PLL_OP) {
  134. lim_fr = &lim->op_fr;
  135. pll_fr = &pll->op_fr;
  136. } else {
  137. lim_fr = &lim->vt_fr;
  138. pll_fr = &pll->vt_fr;
  139. }
  140. rval = bounds_check(dev, pll_fr->pre_pll_clk_div,
  141. lim_fr->min_pre_pll_clk_div,
  142. lim_fr->max_pre_pll_clk_div, s, "pre_pll_clk_div");
  143. if (!rval)
  144. rval = bounds_check(dev, pll_fr->pll_ip_clk_freq_hz,
  145. lim_fr->min_pll_ip_clk_freq_hz,
  146. lim_fr->max_pll_ip_clk_freq_hz,
  147. s, "pll_ip_clk_freq_hz");
  148. if (!rval)
  149. rval = bounds_check(dev, pll_fr->pll_multiplier,
  150. lim_fr->min_pll_multiplier,
  151. lim_fr->max_pll_multiplier,
  152. s, "pll_multiplier");
  153. if (!rval)
  154. rval = bounds_check(dev, pll_fr->pll_op_clk_freq_hz,
  155. lim_fr->min_pll_op_clk_freq_hz,
  156. lim_fr->max_pll_op_clk_freq_hz,
  157. s, "pll_op_clk_freq_hz");
  158. return rval;
  159. }
  160. static int check_bk_bounds(struct device *dev,
  161. const struct ccs_pll_limits *lim,
  162. struct ccs_pll *pll, unsigned int which)
  163. {
  164. const struct ccs_pll_branch_limits_bk *lim_bk;
  165. struct ccs_pll_branch_bk *pll_bk;
  166. const char *s = pll_string(which);
  167. int rval;
  168. if (which == PLL_OP) {
  169. if (pll->flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
  170. return 0;
  171. lim_bk = &lim->op_bk;
  172. pll_bk = &pll->op_bk;
  173. } else {
  174. lim_bk = &lim->vt_bk;
  175. pll_bk = &pll->vt_bk;
  176. }
  177. rval = bounds_check(dev, pll_bk->sys_clk_div,
  178. lim_bk->min_sys_clk_div,
  179. lim_bk->max_sys_clk_div, s, "op_sys_clk_div");
  180. if (!rval)
  181. rval = bounds_check(dev, pll_bk->sys_clk_freq_hz,
  182. lim_bk->min_sys_clk_freq_hz,
  183. lim_bk->max_sys_clk_freq_hz,
  184. s, "sys_clk_freq_hz");
  185. if (!rval)
  186. rval = bounds_check(dev, pll_bk->sys_clk_div,
  187. lim_bk->min_sys_clk_div,
  188. lim_bk->max_sys_clk_div,
  189. s, "sys_clk_div");
  190. if (!rval)
  191. rval = bounds_check(dev, pll_bk->pix_clk_freq_hz,
  192. lim_bk->min_pix_clk_freq_hz,
  193. lim_bk->max_pix_clk_freq_hz,
  194. s, "pix_clk_freq_hz");
  195. return rval;
  196. }
  197. static int check_ext_bounds(struct device *dev, struct ccs_pll *pll)
  198. {
  199. if (!(pll->flags & CCS_PLL_FLAG_FIFO_DERATING) &&
  200. pll->pixel_rate_pixel_array > pll->pixel_rate_csi) {
  201. dev_dbg(dev, "device does not support derating\n");
  202. return -EINVAL;
  203. }
  204. if (!(pll->flags & CCS_PLL_FLAG_FIFO_OVERRATING) &&
  205. pll->pixel_rate_pixel_array < pll->pixel_rate_csi) {
  206. dev_dbg(dev, "device does not support overrating\n");
  207. return -EINVAL;
  208. }
  209. return 0;
  210. }
  211. static void
  212. ccs_pll_find_vt_sys_div(struct device *dev, const struct ccs_pll_limits *lim,
  213. struct ccs_pll *pll, struct ccs_pll_branch_fr *pll_fr,
  214. u16 min_vt_div, u16 max_vt_div,
  215. u16 *min_sys_div, u16 *max_sys_div)
  216. {
  217. /*
  218. * Find limits for sys_clk_div. Not all values are possible with all
  219. * values of pix_clk_div.
  220. */
  221. *min_sys_div = lim->vt_bk.min_sys_clk_div;
  222. dev_dbg(dev, "min_sys_div: %u\n", *min_sys_div);
  223. *min_sys_div = max_t(u16, *min_sys_div,
  224. DIV_ROUND_UP(min_vt_div,
  225. lim->vt_bk.max_pix_clk_div));
  226. dev_dbg(dev, "min_sys_div: max_vt_pix_clk_div: %u\n", *min_sys_div);
  227. *min_sys_div = max_t(u16, *min_sys_div,
  228. pll_fr->pll_op_clk_freq_hz
  229. / lim->vt_bk.max_sys_clk_freq_hz);
  230. dev_dbg(dev, "min_sys_div: max_pll_op_clk_freq_hz: %u\n", *min_sys_div);
  231. *min_sys_div = clk_div_even_up(*min_sys_div);
  232. dev_dbg(dev, "min_sys_div: one or even: %u\n", *min_sys_div);
  233. *max_sys_div = lim->vt_bk.max_sys_clk_div;
  234. dev_dbg(dev, "max_sys_div: %u\n", *max_sys_div);
  235. *max_sys_div = min_t(u16, *max_sys_div,
  236. DIV_ROUND_UP(max_vt_div,
  237. lim->vt_bk.min_pix_clk_div));
  238. dev_dbg(dev, "max_sys_div: min_vt_pix_clk_div: %u\n", *max_sys_div);
  239. *max_sys_div = min_t(u16, *max_sys_div,
  240. DIV_ROUND_UP(pll_fr->pll_op_clk_freq_hz,
  241. lim->vt_bk.min_pix_clk_freq_hz));
  242. dev_dbg(dev, "max_sys_div: min_vt_pix_clk_freq_hz: %u\n", *max_sys_div);
  243. }
  244. #define CPHY_CONST 7
  245. #define DPHY_CONST 16
  246. #define PHY_CONST_DIV 16
  247. static inline int
  248. __ccs_pll_calculate_vt_tree(struct device *dev,
  249. const struct ccs_pll_limits *lim,
  250. struct ccs_pll *pll, u32 mul, u32 div)
  251. {
  252. const struct ccs_pll_branch_limits_fr *lim_fr = &lim->vt_fr;
  253. const struct ccs_pll_branch_limits_bk *lim_bk = &lim->vt_bk;
  254. struct ccs_pll_branch_fr *pll_fr = &pll->vt_fr;
  255. struct ccs_pll_branch_bk *pll_bk = &pll->vt_bk;
  256. u32 more_mul;
  257. u16 best_pix_div = SHRT_MAX >> 1, best_div;
  258. u16 vt_div, min_sys_div, max_sys_div, sys_div;
  259. pll_fr->pll_ip_clk_freq_hz =
  260. pll->ext_clk_freq_hz / pll_fr->pre_pll_clk_div;
  261. dev_dbg(dev, "vt_pll_ip_clk_freq_hz %u\n", pll_fr->pll_ip_clk_freq_hz);
  262. more_mul = one_or_more(DIV_ROUND_UP(lim_fr->min_pll_op_clk_freq_hz,
  263. pll_fr->pll_ip_clk_freq_hz * mul));
  264. dev_dbg(dev, "more_mul: %u\n", more_mul);
  265. more_mul *= DIV_ROUND_UP(lim_fr->min_pll_multiplier, mul * more_mul);
  266. dev_dbg(dev, "more_mul2: %u\n", more_mul);
  267. pll_fr->pll_multiplier = mul * more_mul;
  268. if (pll_fr->pll_multiplier * pll_fr->pll_ip_clk_freq_hz >
  269. lim_fr->max_pll_op_clk_freq_hz)
  270. return -EINVAL;
  271. pll_fr->pll_op_clk_freq_hz =
  272. pll_fr->pll_ip_clk_freq_hz * pll_fr->pll_multiplier;
  273. vt_div = div * more_mul;
  274. ccs_pll_find_vt_sys_div(dev, lim, pll, pll_fr, vt_div, vt_div,
  275. &min_sys_div, &max_sys_div);
  276. max_sys_div = (vt_div & 1) ? 1 : max_sys_div;
  277. dev_dbg(dev, "vt min/max_sys_div: %u,%u\n", min_sys_div, max_sys_div);
  278. for (sys_div = min_sys_div; sys_div <= max_sys_div;
  279. sys_div += 2 - (sys_div & 1)) {
  280. u16 pix_div;
  281. if (vt_div % sys_div)
  282. continue;
  283. pix_div = vt_div / sys_div;
  284. if (pix_div < lim_bk->min_pix_clk_div ||
  285. pix_div > lim_bk->max_pix_clk_div) {
  286. dev_dbg(dev,
  287. "pix_div %u too small or too big (%u--%u)\n",
  288. pix_div,
  289. lim_bk->min_pix_clk_div,
  290. lim_bk->max_pix_clk_div);
  291. continue;
  292. }
  293. dev_dbg(dev, "sys/pix/best_pix: %u,%u,%u\n", sys_div, pix_div,
  294. best_pix_div);
  295. if (pix_div * sys_div <= best_pix_div) {
  296. best_pix_div = pix_div;
  297. best_div = pix_div * sys_div;
  298. }
  299. }
  300. if (best_pix_div == SHRT_MAX >> 1)
  301. return -EINVAL;
  302. pll_bk->sys_clk_div = best_div / best_pix_div;
  303. pll_bk->pix_clk_div = best_pix_div;
  304. pll_bk->sys_clk_freq_hz =
  305. pll_fr->pll_op_clk_freq_hz / pll_bk->sys_clk_div;
  306. pll_bk->pix_clk_freq_hz =
  307. pll_bk->sys_clk_freq_hz / pll_bk->pix_clk_div;
  308. pll->pixel_rate_pixel_array =
  309. pll_bk->pix_clk_freq_hz * pll->vt_lanes;
  310. return 0;
  311. }
  312. static int ccs_pll_calculate_vt_tree(struct device *dev,
  313. const struct ccs_pll_limits *lim,
  314. struct ccs_pll *pll)
  315. {
  316. const struct ccs_pll_branch_limits_fr *lim_fr = &lim->vt_fr;
  317. struct ccs_pll_branch_fr *pll_fr = &pll->vt_fr;
  318. u16 min_pre_pll_clk_div = lim_fr->min_pre_pll_clk_div;
  319. u16 max_pre_pll_clk_div = lim_fr->max_pre_pll_clk_div;
  320. u32 pre_mul, pre_div;
  321. pre_div = gcd(pll->pixel_rate_csi,
  322. pll->ext_clk_freq_hz * pll->vt_lanes);
  323. pre_mul = pll->pixel_rate_csi / pre_div;
  324. pre_div = pll->ext_clk_freq_hz * pll->vt_lanes / pre_div;
  325. /* Make sure PLL input frequency is within limits */
  326. max_pre_pll_clk_div =
  327. min_t(u16, max_pre_pll_clk_div,
  328. DIV_ROUND_UP(pll->ext_clk_freq_hz,
  329. lim_fr->min_pll_ip_clk_freq_hz));
  330. min_pre_pll_clk_div = max_t(u16, min_pre_pll_clk_div,
  331. pll->ext_clk_freq_hz /
  332. lim_fr->max_pll_ip_clk_freq_hz);
  333. dev_dbg(dev, "vt min/max_pre_pll_clk_div: %u,%u\n",
  334. min_pre_pll_clk_div, max_pre_pll_clk_div);
  335. for (pll_fr->pre_pll_clk_div = min_pre_pll_clk_div;
  336. pll_fr->pre_pll_clk_div <= max_pre_pll_clk_div;
  337. pll_fr->pre_pll_clk_div +=
  338. (pll->flags & CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER) ? 1 :
  339. 2 - (pll_fr->pre_pll_clk_div & 1)) {
  340. u32 mul, div;
  341. int rval;
  342. div = gcd(pre_mul * pll_fr->pre_pll_clk_div, pre_div);
  343. mul = pre_mul * pll_fr->pre_pll_clk_div / div;
  344. div = pre_div / div;
  345. dev_dbg(dev, "vt pre-div/mul/div: %u,%u,%u\n",
  346. pll_fr->pre_pll_clk_div, mul, div);
  347. rval = __ccs_pll_calculate_vt_tree(dev, lim, pll,
  348. mul, div);
  349. if (rval)
  350. continue;
  351. rval = check_fr_bounds(dev, lim, pll, PLL_VT);
  352. if (rval)
  353. continue;
  354. rval = check_bk_bounds(dev, lim, pll, PLL_VT);
  355. if (rval)
  356. continue;
  357. return 0;
  358. }
  359. return -EINVAL;
  360. }
  361. static void
  362. ccs_pll_calculate_vt(struct device *dev, const struct ccs_pll_limits *lim,
  363. const struct ccs_pll_branch_limits_bk *op_lim_bk,
  364. struct ccs_pll *pll, struct ccs_pll_branch_fr *pll_fr,
  365. struct ccs_pll_branch_bk *op_pll_bk, bool cphy,
  366. u32 phy_const)
  367. {
  368. u16 sys_div;
  369. u16 best_pix_div = SHRT_MAX >> 1;
  370. u16 vt_op_binning_div;
  371. u16 min_vt_div, max_vt_div, vt_div;
  372. u16 min_sys_div, max_sys_div;
  373. if (pll->flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
  374. goto out_calc_pixel_rate;
  375. /*
  376. * Find out whether a sensor supports derating. If it does not, VT and
  377. * OP domains are required to run at the same pixel rate.
  378. */
  379. if (!(pll->flags & CCS_PLL_FLAG_FIFO_DERATING)) {
  380. min_vt_div =
  381. op_pll_bk->sys_clk_div * op_pll_bk->pix_clk_div
  382. * pll->vt_lanes * phy_const / pll->op_lanes
  383. / (PHY_CONST_DIV << op_pix_ddr(pll->flags));
  384. } else {
  385. /*
  386. * Some sensors perform analogue binning and some do this
  387. * digitally. The ones doing this digitally can be roughly be
  388. * found out using this formula. The ones doing this digitally
  389. * should run at higher clock rate, so smaller divisor is used
  390. * on video timing side.
  391. */
  392. if (lim->min_line_length_pck_bin > lim->min_line_length_pck
  393. / pll->binning_horizontal)
  394. vt_op_binning_div = pll->binning_horizontal;
  395. else
  396. vt_op_binning_div = 1;
  397. dev_dbg(dev, "vt_op_binning_div: %u\n", vt_op_binning_div);
  398. /*
  399. * Profile 2 supports vt_pix_clk_div E [4, 10]
  400. *
  401. * Horizontal binning can be used as a base for difference in
  402. * divisors. One must make sure that horizontal blanking is
  403. * enough to accommodate the CSI-2 sync codes.
  404. *
  405. * Take scaling factor and number of VT lanes into account as well.
  406. *
  407. * Find absolute limits for the factor of vt divider.
  408. */
  409. dev_dbg(dev, "scale_m: %u\n", pll->scale_m);
  410. min_vt_div =
  411. DIV_ROUND_UP(pll->bits_per_pixel
  412. * op_pll_bk->sys_clk_div * pll->scale_n
  413. * pll->vt_lanes * phy_const,
  414. (pll->flags &
  415. CCS_PLL_FLAG_LANE_SPEED_MODEL ?
  416. pll->csi2.lanes : 1)
  417. * vt_op_binning_div * pll->scale_m
  418. * PHY_CONST_DIV << op_pix_ddr(pll->flags));
  419. }
  420. /* Find smallest and biggest allowed vt divisor. */
  421. dev_dbg(dev, "min_vt_div: %u\n", min_vt_div);
  422. min_vt_div = max_t(u16, min_vt_div,
  423. DIV_ROUND_UP(pll_fr->pll_op_clk_freq_hz,
  424. lim->vt_bk.max_pix_clk_freq_hz));
  425. dev_dbg(dev, "min_vt_div: max_vt_pix_clk_freq_hz: %u\n",
  426. min_vt_div);
  427. min_vt_div = max_t(u16, min_vt_div, lim->vt_bk.min_pix_clk_div
  428. * lim->vt_bk.min_sys_clk_div);
  429. dev_dbg(dev, "min_vt_div: min_vt_clk_div: %u\n", min_vt_div);
  430. max_vt_div = lim->vt_bk.max_sys_clk_div * lim->vt_bk.max_pix_clk_div;
  431. dev_dbg(dev, "max_vt_div: %u\n", max_vt_div);
  432. max_vt_div = min_t(u16, max_vt_div,
  433. DIV_ROUND_UP(pll_fr->pll_op_clk_freq_hz,
  434. lim->vt_bk.min_pix_clk_freq_hz));
  435. dev_dbg(dev, "max_vt_div: min_vt_pix_clk_freq_hz: %u\n",
  436. max_vt_div);
  437. ccs_pll_find_vt_sys_div(dev, lim, pll, pll_fr, min_vt_div,
  438. max_vt_div, &min_sys_div, &max_sys_div);
  439. /*
  440. * Find pix_div such that a legal pix_div * sys_div results
  441. * into a value which is not smaller than div, the desired
  442. * divisor.
  443. */
  444. for (vt_div = min_vt_div; vt_div <= max_vt_div; vt_div++) {
  445. u16 __max_sys_div = vt_div & 1 ? 1 : max_sys_div;
  446. for (sys_div = min_sys_div; sys_div <= __max_sys_div;
  447. sys_div += 2 - (sys_div & 1)) {
  448. u16 pix_div;
  449. u16 rounded_div;
  450. pix_div = DIV_ROUND_UP(vt_div, sys_div);
  451. if (pix_div < lim->vt_bk.min_pix_clk_div
  452. || pix_div > lim->vt_bk.max_pix_clk_div) {
  453. dev_dbg(dev,
  454. "pix_div %u too small or too big (%u--%u)\n",
  455. pix_div,
  456. lim->vt_bk.min_pix_clk_div,
  457. lim->vt_bk.max_pix_clk_div);
  458. continue;
  459. }
  460. rounded_div = roundup(vt_div, best_pix_div);
  461. /* Check if this one is better. */
  462. if (pix_div * sys_div <= rounded_div)
  463. best_pix_div = pix_div;
  464. /* Bail out if we've already found the best value. */
  465. if (vt_div == rounded_div)
  466. break;
  467. }
  468. if (best_pix_div < SHRT_MAX >> 1)
  469. break;
  470. }
  471. pll->vt_bk.sys_clk_div = DIV_ROUND_UP(vt_div, best_pix_div);
  472. pll->vt_bk.pix_clk_div = best_pix_div;
  473. pll->vt_bk.sys_clk_freq_hz =
  474. pll_fr->pll_op_clk_freq_hz / pll->vt_bk.sys_clk_div;
  475. pll->vt_bk.pix_clk_freq_hz =
  476. pll->vt_bk.sys_clk_freq_hz / pll->vt_bk.pix_clk_div;
  477. out_calc_pixel_rate:
  478. pll->pixel_rate_pixel_array =
  479. pll->vt_bk.pix_clk_freq_hz * pll->vt_lanes;
  480. }
  481. /*
  482. * Heuristically guess the PLL tree for a given common multiplier and
  483. * divisor. Begin with the operational timing and continue to video
  484. * timing once operational timing has been verified.
  485. *
  486. * @mul is the PLL multiplier and @div is the common divisor
  487. * (pre_pll_clk_div and op_sys_clk_div combined). The final PLL
  488. * multiplier will be a multiple of @mul.
  489. *
  490. * @return Zero on success, error code on error.
  491. */
  492. static int
  493. ccs_pll_calculate_op(struct device *dev, const struct ccs_pll_limits *lim,
  494. const struct ccs_pll_branch_limits_fr *op_lim_fr,
  495. const struct ccs_pll_branch_limits_bk *op_lim_bk,
  496. struct ccs_pll *pll, struct ccs_pll_branch_fr *op_pll_fr,
  497. struct ccs_pll_branch_bk *op_pll_bk, u32 mul,
  498. u32 div, u32 op_sys_clk_freq_hz_sdr, u32 l,
  499. bool cphy, u32 phy_const)
  500. {
  501. /*
  502. * Higher multipliers (and divisors) are often required than
  503. * necessitated by the external clock and the output clocks.
  504. * There are limits for all values in the clock tree. These
  505. * are the minimum and maximum multiplier for mul.
  506. */
  507. u32 more_mul_min, more_mul_max;
  508. u32 more_mul_factor;
  509. u32 i;
  510. /*
  511. * Get pre_pll_clk_div so that our pll_op_clk_freq_hz won't be
  512. * too high.
  513. */
  514. dev_dbg(dev, "op_pre_pll_clk_div %u\n", op_pll_fr->pre_pll_clk_div);
  515. /* Don't go above max pll multiplier. */
  516. more_mul_max = op_lim_fr->max_pll_multiplier / mul;
  517. dev_dbg(dev, "more_mul_max: max_op_pll_multiplier check: %u\n",
  518. more_mul_max);
  519. /* Don't go above max pll op frequency. */
  520. more_mul_max =
  521. min_t(u32,
  522. more_mul_max,
  523. op_lim_fr->max_pll_op_clk_freq_hz
  524. / (pll->ext_clk_freq_hz /
  525. op_pll_fr->pre_pll_clk_div * mul));
  526. dev_dbg(dev, "more_mul_max: max_pll_op_clk_freq_hz check: %u\n",
  527. more_mul_max);
  528. /* Don't go above the division capability of op sys clock divider. */
  529. more_mul_max = min(more_mul_max,
  530. op_lim_bk->max_sys_clk_div * op_pll_fr->pre_pll_clk_div
  531. / div);
  532. dev_dbg(dev, "more_mul_max: max_op_sys_clk_div check: %u\n",
  533. more_mul_max);
  534. /* Ensure we won't go above max_pll_multiplier. */
  535. more_mul_max = min(more_mul_max, op_lim_fr->max_pll_multiplier / mul);
  536. dev_dbg(dev, "more_mul_max: min_pll_multiplier check: %u\n",
  537. more_mul_max);
  538. /* Ensure we won't go below min_pll_op_clk_freq_hz. */
  539. more_mul_min = DIV_ROUND_UP(op_lim_fr->min_pll_op_clk_freq_hz,
  540. pll->ext_clk_freq_hz /
  541. op_pll_fr->pre_pll_clk_div * mul);
  542. dev_dbg(dev, "more_mul_min: min_op_pll_op_clk_freq_hz check: %u\n",
  543. more_mul_min);
  544. /* Ensure we won't go below min_pll_multiplier. */
  545. more_mul_min = max(more_mul_min,
  546. DIV_ROUND_UP(op_lim_fr->min_pll_multiplier, mul));
  547. dev_dbg(dev, "more_mul_min: min_op_pll_multiplier check: %u\n",
  548. more_mul_min);
  549. if (more_mul_min > more_mul_max) {
  550. dev_dbg(dev,
  551. "unable to compute more_mul_min and more_mul_max\n");
  552. return -EINVAL;
  553. }
  554. more_mul_factor = lcm(div, op_pll_fr->pre_pll_clk_div) / div;
  555. dev_dbg(dev, "more_mul_factor: %u\n", more_mul_factor);
  556. more_mul_factor = lcm(more_mul_factor, op_lim_bk->min_sys_clk_div);
  557. dev_dbg(dev, "more_mul_factor: min_op_sys_clk_div: %d\n",
  558. more_mul_factor);
  559. i = roundup(more_mul_min, more_mul_factor);
  560. if (!is_one_or_even(i))
  561. i <<= 1;
  562. dev_dbg(dev, "final more_mul: %u\n", i);
  563. if (i > more_mul_max) {
  564. dev_dbg(dev, "final more_mul is bad, max %u\n", more_mul_max);
  565. return -EINVAL;
  566. }
  567. op_pll_fr->pll_multiplier = mul * i;
  568. op_pll_bk->sys_clk_div = div * i / op_pll_fr->pre_pll_clk_div;
  569. dev_dbg(dev, "op_sys_clk_div: %u\n", op_pll_bk->sys_clk_div);
  570. op_pll_fr->pll_ip_clk_freq_hz = pll->ext_clk_freq_hz
  571. / op_pll_fr->pre_pll_clk_div;
  572. op_pll_fr->pll_op_clk_freq_hz = op_pll_fr->pll_ip_clk_freq_hz
  573. * op_pll_fr->pll_multiplier;
  574. if (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL)
  575. op_pll_bk->pix_clk_div =
  576. (pll->bits_per_pixel
  577. * pll->op_lanes * (phy_const << op_sys_ddr(pll->flags))
  578. / PHY_CONST_DIV / pll->csi2.lanes / l)
  579. >> op_pix_ddr(pll->flags);
  580. else
  581. op_pll_bk->pix_clk_div =
  582. (pll->bits_per_pixel
  583. * (phy_const << op_sys_ddr(pll->flags))
  584. / PHY_CONST_DIV / l) >> op_pix_ddr(pll->flags);
  585. op_pll_bk->pix_clk_freq_hz =
  586. (op_sys_clk_freq_hz_sdr >> op_pix_ddr(pll->flags))
  587. / op_pll_bk->pix_clk_div;
  588. op_pll_bk->sys_clk_freq_hz =
  589. op_sys_clk_freq_hz_sdr >> op_sys_ddr(pll->flags);
  590. dev_dbg(dev, "op_pix_clk_div: %u\n", op_pll_bk->pix_clk_div);
  591. return 0;
  592. }
  593. int ccs_pll_calculate(struct device *dev, const struct ccs_pll_limits *lim,
  594. struct ccs_pll *pll)
  595. {
  596. const struct ccs_pll_branch_limits_fr *op_lim_fr;
  597. const struct ccs_pll_branch_limits_bk *op_lim_bk;
  598. struct ccs_pll_branch_fr *op_pll_fr;
  599. struct ccs_pll_branch_bk *op_pll_bk;
  600. bool cphy = pll->bus_type == CCS_PLL_BUS_TYPE_CSI2_CPHY;
  601. u32 phy_const = cphy ? CPHY_CONST : DPHY_CONST;
  602. u32 op_sys_clk_freq_hz_sdr;
  603. u16 min_op_pre_pll_clk_div;
  604. u16 max_op_pre_pll_clk_div;
  605. u32 mul, div;
  606. u32 l = (!pll->op_bits_per_lane ||
  607. pll->op_bits_per_lane >= pll->bits_per_pixel) ? 1 : 2;
  608. u32 i;
  609. int rval = -EINVAL;
  610. if (!(pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL)) {
  611. pll->op_lanes = 1;
  612. pll->vt_lanes = 1;
  613. }
  614. if (pll->flags & CCS_PLL_FLAG_DUAL_PLL) {
  615. op_lim_fr = &lim->op_fr;
  616. op_lim_bk = &lim->op_bk;
  617. op_pll_fr = &pll->op_fr;
  618. op_pll_bk = &pll->op_bk;
  619. } else if (pll->flags & CCS_PLL_FLAG_NO_OP_CLOCKS) {
  620. /*
  621. * If there's no OP PLL at all, use the VT values
  622. * instead. The OP values are ignored for the rest of
  623. * the PLL calculation.
  624. */
  625. op_lim_fr = &lim->vt_fr;
  626. op_lim_bk = &lim->vt_bk;
  627. op_pll_fr = &pll->vt_fr;
  628. op_pll_bk = &pll->vt_bk;
  629. } else {
  630. op_lim_fr = &lim->vt_fr;
  631. op_lim_bk = &lim->op_bk;
  632. op_pll_fr = &pll->vt_fr;
  633. op_pll_bk = &pll->op_bk;
  634. }
  635. if (!pll->op_lanes || !pll->vt_lanes || !pll->bits_per_pixel ||
  636. !pll->ext_clk_freq_hz || !pll->link_freq || !pll->scale_m ||
  637. !op_lim_fr->min_pll_ip_clk_freq_hz ||
  638. !op_lim_fr->max_pll_ip_clk_freq_hz ||
  639. !op_lim_fr->min_pll_op_clk_freq_hz ||
  640. !op_lim_fr->max_pll_op_clk_freq_hz ||
  641. !op_lim_bk->max_sys_clk_div || !op_lim_fr->max_pll_multiplier)
  642. return -EINVAL;
  643. /*
  644. * Make sure op_pix_clk_div will be integer --- unless flexible
  645. * op_pix_clk_div is supported
  646. */
  647. if (!(pll->flags & CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV) &&
  648. (pll->bits_per_pixel * pll->op_lanes) %
  649. (pll->csi2.lanes * l << op_pix_ddr(pll->flags))) {
  650. dev_dbg(dev, "op_pix_clk_div not an integer (bpp %u, op lanes %u, lanes %u, l %u)\n",
  651. pll->bits_per_pixel, pll->op_lanes, pll->csi2.lanes, l);
  652. return -EINVAL;
  653. }
  654. dev_dbg(dev, "vt_lanes: %u\n", pll->vt_lanes);
  655. dev_dbg(dev, "op_lanes: %u\n", pll->op_lanes);
  656. dev_dbg(dev, "binning: %ux%u\n", pll->binning_horizontal,
  657. pll->binning_vertical);
  658. switch (pll->bus_type) {
  659. case CCS_PLL_BUS_TYPE_CSI2_DPHY:
  660. case CCS_PLL_BUS_TYPE_CSI2_CPHY:
  661. op_sys_clk_freq_hz_sdr = pll->link_freq * 2
  662. * (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
  663. 1 : pll->csi2.lanes);
  664. break;
  665. default:
  666. return -EINVAL;
  667. }
  668. pll->pixel_rate_csi =
  669. div_u64((uint64_t)op_sys_clk_freq_hz_sdr
  670. * (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
  671. pll->csi2.lanes : 1) * PHY_CONST_DIV,
  672. phy_const * pll->bits_per_pixel * l);
  673. /* Figure out limits for OP pre-pll divider based on extclk */
  674. dev_dbg(dev, "min / max op_pre_pll_clk_div: %u / %u\n",
  675. op_lim_fr->min_pre_pll_clk_div, op_lim_fr->max_pre_pll_clk_div);
  676. max_op_pre_pll_clk_div =
  677. min_t(u16, op_lim_fr->max_pre_pll_clk_div,
  678. clk_div_even(pll->ext_clk_freq_hz /
  679. op_lim_fr->min_pll_ip_clk_freq_hz));
  680. min_op_pre_pll_clk_div =
  681. max_t(u16, op_lim_fr->min_pre_pll_clk_div,
  682. clk_div_even_up(
  683. DIV_ROUND_UP(pll->ext_clk_freq_hz,
  684. op_lim_fr->max_pll_ip_clk_freq_hz)));
  685. dev_dbg(dev, "pre-pll check: min / max op_pre_pll_clk_div: %u / %u\n",
  686. min_op_pre_pll_clk_div, max_op_pre_pll_clk_div);
  687. i = gcd(op_sys_clk_freq_hz_sdr,
  688. pll->ext_clk_freq_hz << op_pix_ddr(pll->flags));
  689. mul = op_sys_clk_freq_hz_sdr / i;
  690. div = (pll->ext_clk_freq_hz << op_pix_ddr(pll->flags)) / i;
  691. dev_dbg(dev, "mul %u / div %u\n", mul, div);
  692. min_op_pre_pll_clk_div =
  693. max_t(u16, min_op_pre_pll_clk_div,
  694. clk_div_even_up(
  695. mul /
  696. one_or_more(
  697. DIV_ROUND_UP(op_lim_fr->max_pll_op_clk_freq_hz,
  698. pll->ext_clk_freq_hz))));
  699. dev_dbg(dev, "pll_op check: min / max op_pre_pll_clk_div: %u / %u\n",
  700. min_op_pre_pll_clk_div, max_op_pre_pll_clk_div);
  701. for (op_pll_fr->pre_pll_clk_div = min_op_pre_pll_clk_div;
  702. op_pll_fr->pre_pll_clk_div <= max_op_pre_pll_clk_div;
  703. op_pll_fr->pre_pll_clk_div +=
  704. (pll->flags & CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER) ? 1 :
  705. 2 - (op_pll_fr->pre_pll_clk_div & 1)) {
  706. rval = ccs_pll_calculate_op(dev, lim, op_lim_fr, op_lim_bk, pll,
  707. op_pll_fr, op_pll_bk, mul, div,
  708. op_sys_clk_freq_hz_sdr, l, cphy,
  709. phy_const);
  710. if (rval)
  711. continue;
  712. rval = check_fr_bounds(dev, lim, pll,
  713. pll->flags & CCS_PLL_FLAG_DUAL_PLL ?
  714. PLL_OP : PLL_VT);
  715. if (rval)
  716. continue;
  717. rval = check_bk_bounds(dev, lim, pll, PLL_OP);
  718. if (rval)
  719. continue;
  720. if (pll->flags & CCS_PLL_FLAG_DUAL_PLL)
  721. break;
  722. ccs_pll_calculate_vt(dev, lim, op_lim_bk, pll, op_pll_fr,
  723. op_pll_bk, cphy, phy_const);
  724. rval = check_bk_bounds(dev, lim, pll, PLL_VT);
  725. if (rval)
  726. continue;
  727. rval = check_ext_bounds(dev, pll);
  728. if (rval)
  729. continue;
  730. break;
  731. }
  732. if (rval) {
  733. dev_dbg(dev, "unable to compute pre_pll divisor\n");
  734. return rval;
  735. }
  736. if (pll->flags & CCS_PLL_FLAG_DUAL_PLL) {
  737. rval = ccs_pll_calculate_vt_tree(dev, lim, pll);
  738. if (rval)
  739. return rval;
  740. }
  741. print_pll(dev, pll);
  742. return 0;
  743. }
  744. EXPORT_SYMBOL_GPL(ccs_pll_calculate);
  745. MODULE_AUTHOR("Sakari Ailus <[email protected]>");
  746. MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ PLL calculator");
  747. MODULE_LICENSE("GPL");