mn88443x.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812
  1. // SPDX-License-Identifier: GPL-2.0
  2. //
  3. // Socionext MN88443x series demodulator driver for ISDB-S/ISDB-T.
  4. //
  5. // Copyright (c) 2018 Socionext Inc.
  6. #include <linux/bitfield.h>
  7. #include <linux/clk.h>
  8. #include <linux/delay.h>
  9. #include <linux/gpio/consumer.h>
  10. #include <linux/of_device.h>
  11. #include <linux/regmap.h>
  12. #include <media/dvb_math.h>
  13. #include "mn88443x.h"
  14. /* ISDB-S registers */
  15. #define ATSIDU_S 0x2f
  16. #define ATSIDL_S 0x30
  17. #define TSSET_S 0x31
  18. #define AGCREAD_S 0x5a
  19. #define CPMON1_S 0x5e
  20. #define CPMON1_S_FSYNC BIT(5)
  21. #define CPMON1_S_ERRMON BIT(4)
  22. #define CPMON1_S_SIGOFF BIT(3)
  23. #define CPMON1_S_W2LOCK BIT(2)
  24. #define CPMON1_S_W1LOCK BIT(1)
  25. #define CPMON1_S_DW1LOCK BIT(0)
  26. #define TRMON_S 0x60
  27. #define BERCNFLG_S 0x68
  28. #define BERCNFLG_S_BERVRDY BIT(5)
  29. #define BERCNFLG_S_BERVCHK BIT(4)
  30. #define BERCNFLG_S_BERDRDY BIT(3)
  31. #define BERCNFLG_S_BERDCHK BIT(2)
  32. #define CNRDXU_S 0x69
  33. #define CNRDXL_S 0x6a
  34. #define CNRDYU_S 0x6b
  35. #define CNRDYL_S 0x6c
  36. #define BERVRDU_S 0x71
  37. #define BERVRDL_S 0x72
  38. #define DOSET1_S 0x73
  39. /* Primary ISDB-T */
  40. #define PLLASET1 0x00
  41. #define PLLASET2 0x01
  42. #define PLLBSET1 0x02
  43. #define PLLBSET2 0x03
  44. #define PLLSET 0x04
  45. #define OUTCSET 0x08
  46. #define OUTCSET_CHDRV_8MA 0xff
  47. #define OUTCSET_CHDRV_4MA 0x00
  48. #define PLDWSET 0x09
  49. #define PLDWSET_NORMAL 0x00
  50. #define PLDWSET_PULLDOWN 0xff
  51. #define HIZSET1 0x0a
  52. #define HIZSET2 0x0b
  53. /* Secondary ISDB-T (for MN884434 only) */
  54. #define RCVSET 0x00
  55. #define TSSET1_M 0x01
  56. #define TSSET2_M 0x02
  57. #define TSSET3_M 0x03
  58. #define INTACSET 0x08
  59. #define HIZSET3 0x0b
  60. /* ISDB-T registers */
  61. #define TSSET1 0x05
  62. #define TSSET1_TSASEL_MASK GENMASK(4, 3)
  63. #define TSSET1_TSASEL_ISDBT (0x0 << 3)
  64. #define TSSET1_TSASEL_ISDBS (0x1 << 3)
  65. #define TSSET1_TSASEL_NONE (0x2 << 3)
  66. #define TSSET1_TSBSEL_MASK GENMASK(2, 1)
  67. #define TSSET1_TSBSEL_ISDBS (0x0 << 1)
  68. #define TSSET1_TSBSEL_ISDBT (0x1 << 1)
  69. #define TSSET1_TSBSEL_NONE (0x2 << 1)
  70. #define TSSET2 0x06
  71. #define TSSET3 0x07
  72. #define TSSET3_INTASEL_MASK GENMASK(7, 6)
  73. #define TSSET3_INTASEL_T (0x0 << 6)
  74. #define TSSET3_INTASEL_S (0x1 << 6)
  75. #define TSSET3_INTASEL_NONE (0x2 << 6)
  76. #define TSSET3_INTBSEL_MASK GENMASK(5, 4)
  77. #define TSSET3_INTBSEL_S (0x0 << 4)
  78. #define TSSET3_INTBSEL_T (0x1 << 4)
  79. #define TSSET3_INTBSEL_NONE (0x2 << 4)
  80. #define OUTSET2 0x0d
  81. #define PWDSET 0x0f
  82. #define PWDSET_OFDMPD_MASK GENMASK(3, 2)
  83. #define PWDSET_OFDMPD_DOWN BIT(3)
  84. #define PWDSET_PSKPD_MASK GENMASK(1, 0)
  85. #define PWDSET_PSKPD_DOWN BIT(1)
  86. #define CLKSET1_T 0x11
  87. #define MDSET_T 0x13
  88. #define MDSET_T_MDAUTO_MASK GENMASK(7, 4)
  89. #define MDSET_T_MDAUTO_AUTO (0xf << 4)
  90. #define MDSET_T_MDAUTO_MANUAL (0x0 << 4)
  91. #define MDSET_T_FFTS_MASK GENMASK(3, 2)
  92. #define MDSET_T_FFTS_MODE1 (0x0 << 2)
  93. #define MDSET_T_FFTS_MODE2 (0x1 << 2)
  94. #define MDSET_T_FFTS_MODE3 (0x2 << 2)
  95. #define MDSET_T_GI_MASK GENMASK(1, 0)
  96. #define MDSET_T_GI_1_32 (0x0 << 0)
  97. #define MDSET_T_GI_1_16 (0x1 << 0)
  98. #define MDSET_T_GI_1_8 (0x2 << 0)
  99. #define MDSET_T_GI_1_4 (0x3 << 0)
  100. #define MDASET_T 0x14
  101. #define ADCSET1_T 0x20
  102. #define ADCSET1_T_REFSEL_MASK GENMASK(1, 0)
  103. #define ADCSET1_T_REFSEL_2V (0x3 << 0)
  104. #define ADCSET1_T_REFSEL_1_5V (0x2 << 0)
  105. #define ADCSET1_T_REFSEL_1V (0x1 << 0)
  106. #define NCOFREQU_T 0x24
  107. #define NCOFREQM_T 0x25
  108. #define NCOFREQL_T 0x26
  109. #define FADU_T 0x27
  110. #define FADM_T 0x28
  111. #define FADL_T 0x29
  112. #define AGCSET2_T 0x2c
  113. #define AGCSET2_T_IFPOLINV_INC BIT(0)
  114. #define AGCSET2_T_RFPOLINV_INC BIT(1)
  115. #define AGCV3_T 0x3e
  116. #define MDRD_T 0xa2
  117. #define MDRD_T_SEGID_MASK GENMASK(5, 4)
  118. #define MDRD_T_SEGID_13 (0x0 << 4)
  119. #define MDRD_T_SEGID_1 (0x1 << 4)
  120. #define MDRD_T_SEGID_3 (0x2 << 4)
  121. #define MDRD_T_FFTS_MASK GENMASK(3, 2)
  122. #define MDRD_T_FFTS_MODE1 (0x0 << 2)
  123. #define MDRD_T_FFTS_MODE2 (0x1 << 2)
  124. #define MDRD_T_FFTS_MODE3 (0x2 << 2)
  125. #define MDRD_T_GI_MASK GENMASK(1, 0)
  126. #define MDRD_T_GI_1_32 (0x0 << 0)
  127. #define MDRD_T_GI_1_16 (0x1 << 0)
  128. #define MDRD_T_GI_1_8 (0x2 << 0)
  129. #define MDRD_T_GI_1_4 (0x3 << 0)
  130. #define SSEQRD_T 0xa3
  131. #define SSEQRD_T_SSEQSTRD_MASK GENMASK(3, 0)
  132. #define SSEQRD_T_SSEQSTRD_RESET (0x0 << 0)
  133. #define SSEQRD_T_SSEQSTRD_TUNING (0x1 << 0)
  134. #define SSEQRD_T_SSEQSTRD_AGC (0x2 << 0)
  135. #define SSEQRD_T_SSEQSTRD_SEARCH (0x3 << 0)
  136. #define SSEQRD_T_SSEQSTRD_CLOCK_SYNC (0x4 << 0)
  137. #define SSEQRD_T_SSEQSTRD_FREQ_SYNC (0x8 << 0)
  138. #define SSEQRD_T_SSEQSTRD_FRAME_SYNC (0x9 << 0)
  139. #define SSEQRD_T_SSEQSTRD_SYNC (0xa << 0)
  140. #define SSEQRD_T_SSEQSTRD_LOCK (0xb << 0)
  141. #define AGCRDU_T 0xa8
  142. #define AGCRDL_T 0xa9
  143. #define CNRDU_T 0xbe
  144. #define CNRDL_T 0xbf
  145. #define BERFLG_T 0xc0
  146. #define BERFLG_T_BERDRDY BIT(7)
  147. #define BERFLG_T_BERDCHK BIT(6)
  148. #define BERFLG_T_BERVRDYA BIT(5)
  149. #define BERFLG_T_BERVCHKA BIT(4)
  150. #define BERFLG_T_BERVRDYB BIT(3)
  151. #define BERFLG_T_BERVCHKB BIT(2)
  152. #define BERFLG_T_BERVRDYC BIT(1)
  153. #define BERFLG_T_BERVCHKC BIT(0)
  154. #define BERRDU_T 0xc1
  155. #define BERRDM_T 0xc2
  156. #define BERRDL_T 0xc3
  157. #define BERLENRDU_T 0xc4
  158. #define BERLENRDL_T 0xc5
  159. #define ERRFLG_T 0xc6
  160. #define ERRFLG_T_BERDOVF BIT(7)
  161. #define ERRFLG_T_BERVOVFA BIT(6)
  162. #define ERRFLG_T_BERVOVFB BIT(5)
  163. #define ERRFLG_T_BERVOVFC BIT(4)
  164. #define ERRFLG_T_NERRFA BIT(3)
  165. #define ERRFLG_T_NERRFB BIT(2)
  166. #define ERRFLG_T_NERRFC BIT(1)
  167. #define ERRFLG_T_NERRF BIT(0)
  168. #define DOSET1_T 0xcf
  169. #define CLK_LOW 4000000
  170. #define CLK_DIRECT 20200000
  171. #define CLK_MAX 25410000
  172. #define S_T_FREQ 8126984 /* 512 / 63 MHz */
  173. struct mn88443x_spec {
  174. bool primary;
  175. };
  176. struct mn88443x_priv {
  177. const struct mn88443x_spec *spec;
  178. struct dvb_frontend fe;
  179. struct clk *mclk;
  180. struct gpio_desc *reset_gpio;
  181. u32 clk_freq;
  182. u32 if_freq;
  183. /* Common */
  184. bool use_clkbuf;
  185. /* ISDB-S */
  186. struct i2c_client *client_s;
  187. struct regmap *regmap_s;
  188. /* ISDB-T */
  189. struct i2c_client *client_t;
  190. struct regmap *regmap_t;
  191. };
  192. static int mn88443x_cmn_power_on(struct mn88443x_priv *chip)
  193. {
  194. struct device *dev = &chip->client_s->dev;
  195. struct regmap *r_t = chip->regmap_t;
  196. int ret;
  197. ret = clk_prepare_enable(chip->mclk);
  198. if (ret) {
  199. dev_err(dev, "Failed to prepare and enable mclk: %d\n",
  200. ret);
  201. return ret;
  202. }
  203. gpiod_set_value_cansleep(chip->reset_gpio, 1);
  204. usleep_range(100, 1000);
  205. gpiod_set_value_cansleep(chip->reset_gpio, 0);
  206. if (chip->spec->primary) {
  207. regmap_write(r_t, OUTCSET, OUTCSET_CHDRV_8MA);
  208. regmap_write(r_t, PLDWSET, PLDWSET_NORMAL);
  209. regmap_write(r_t, HIZSET1, 0x80);
  210. regmap_write(r_t, HIZSET2, 0xe0);
  211. } else {
  212. regmap_write(r_t, HIZSET3, 0x8f);
  213. }
  214. return 0;
  215. }
  216. static void mn88443x_cmn_power_off(struct mn88443x_priv *chip)
  217. {
  218. gpiod_set_value_cansleep(chip->reset_gpio, 1);
  219. clk_disable_unprepare(chip->mclk);
  220. }
  221. static void mn88443x_s_sleep(struct mn88443x_priv *chip)
  222. {
  223. struct regmap *r_t = chip->regmap_t;
  224. regmap_update_bits(r_t, PWDSET, PWDSET_PSKPD_MASK,
  225. PWDSET_PSKPD_DOWN);
  226. }
  227. static void mn88443x_s_wake(struct mn88443x_priv *chip)
  228. {
  229. struct regmap *r_t = chip->regmap_t;
  230. regmap_update_bits(r_t, PWDSET, PWDSET_PSKPD_MASK, 0);
  231. }
  232. static void mn88443x_s_tune(struct mn88443x_priv *chip,
  233. struct dtv_frontend_properties *c)
  234. {
  235. struct regmap *r_s = chip->regmap_s;
  236. regmap_write(r_s, ATSIDU_S, c->stream_id >> 8);
  237. regmap_write(r_s, ATSIDL_S, c->stream_id);
  238. regmap_write(r_s, TSSET_S, 0);
  239. }
  240. static int mn88443x_s_read_status(struct mn88443x_priv *chip,
  241. struct dtv_frontend_properties *c,
  242. enum fe_status *status)
  243. {
  244. struct regmap *r_s = chip->regmap_s;
  245. u32 cpmon, tmpu, tmpl, flg;
  246. u64 tmp;
  247. /* Sync detection */
  248. regmap_read(r_s, CPMON1_S, &cpmon);
  249. *status = 0;
  250. if (cpmon & CPMON1_S_FSYNC)
  251. *status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
  252. if (cpmon & CPMON1_S_W2LOCK)
  253. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER;
  254. /* Signal strength */
  255. c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  256. if (*status & FE_HAS_SIGNAL) {
  257. u32 agc;
  258. regmap_read(r_s, AGCREAD_S, &tmpu);
  259. agc = tmpu << 8;
  260. c->strength.len = 1;
  261. c->strength.stat[0].scale = FE_SCALE_RELATIVE;
  262. c->strength.stat[0].uvalue = agc;
  263. }
  264. /* C/N rate */
  265. c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  266. if (*status & FE_HAS_VITERBI) {
  267. u32 cnr = 0, x, y, d;
  268. u64 d_3 = 0;
  269. regmap_read(r_s, CNRDXU_S, &tmpu);
  270. regmap_read(r_s, CNRDXL_S, &tmpl);
  271. x = (tmpu << 8) | tmpl;
  272. regmap_read(r_s, CNRDYU_S, &tmpu);
  273. regmap_read(r_s, CNRDYL_S, &tmpl);
  274. y = (tmpu << 8) | tmpl;
  275. /* CNR[dB]: 10 * log10(D) - 30.74 / D^3 - 3 */
  276. /* D = x^2 / (2^15 * y - x^2) */
  277. d = (y << 15) - x * x;
  278. if (d > 0) {
  279. /* (2^4 * D)^3 = 2^12 * D^3 */
  280. /* 3.074 * 2^(12 + 24) = 211243671486 */
  281. d_3 = div_u64(16 * x * x, d);
  282. d_3 = d_3 * d_3 * d_3;
  283. if (d_3)
  284. d_3 = div_u64(211243671486ULL, d_3);
  285. }
  286. if (d_3) {
  287. /* 0.3 * 2^24 = 5033164 */
  288. tmp = (s64)2 * intlog10(x) - intlog10(abs(d)) - d_3
  289. - 5033164;
  290. cnr = div_u64(tmp * 10000, 1 << 24);
  291. }
  292. if (cnr) {
  293. c->cnr.len = 1;
  294. c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
  295. c->cnr.stat[0].uvalue = cnr;
  296. }
  297. }
  298. /* BER */
  299. c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  300. c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  301. regmap_read(r_s, BERCNFLG_S, &flg);
  302. if ((*status & FE_HAS_VITERBI) && (flg & BERCNFLG_S_BERVRDY)) {
  303. u32 bit_err, bit_cnt;
  304. regmap_read(r_s, BERVRDU_S, &tmpu);
  305. regmap_read(r_s, BERVRDL_S, &tmpl);
  306. bit_err = (tmpu << 8) | tmpl;
  307. bit_cnt = (1 << 13) * 204;
  308. if (bit_cnt) {
  309. c->post_bit_error.len = 1;
  310. c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
  311. c->post_bit_error.stat[0].uvalue = bit_err;
  312. c->post_bit_count.len = 1;
  313. c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
  314. c->post_bit_count.stat[0].uvalue = bit_cnt;
  315. }
  316. }
  317. return 0;
  318. }
  319. static void mn88443x_t_sleep(struct mn88443x_priv *chip)
  320. {
  321. struct regmap *r_t = chip->regmap_t;
  322. regmap_update_bits(r_t, PWDSET, PWDSET_OFDMPD_MASK,
  323. PWDSET_OFDMPD_DOWN);
  324. }
  325. static void mn88443x_t_wake(struct mn88443x_priv *chip)
  326. {
  327. struct regmap *r_t = chip->regmap_t;
  328. regmap_update_bits(r_t, PWDSET, PWDSET_OFDMPD_MASK, 0);
  329. }
  330. static bool mn88443x_t_is_valid_clk(u32 adckt, u32 if_freq)
  331. {
  332. if (if_freq == DIRECT_IF_57MHZ) {
  333. if (adckt >= CLK_DIRECT && adckt <= 21000000)
  334. return true;
  335. if (adckt >= 25300000 && adckt <= CLK_MAX)
  336. return true;
  337. } else if (if_freq == DIRECT_IF_44MHZ) {
  338. if (adckt >= 25000000 && adckt <= CLK_MAX)
  339. return true;
  340. } else if (if_freq >= LOW_IF_4MHZ && if_freq < DIRECT_IF_44MHZ) {
  341. if (adckt >= CLK_DIRECT && adckt <= CLK_MAX)
  342. return true;
  343. }
  344. return false;
  345. }
  346. static int mn88443x_t_set_freq(struct mn88443x_priv *chip)
  347. {
  348. struct device *dev = &chip->client_s->dev;
  349. struct regmap *r_t = chip->regmap_t;
  350. s64 adckt, nco, ad_t;
  351. u32 m, v;
  352. /* Clock buffer (but not supported) or XTAL */
  353. if (chip->clk_freq >= CLK_LOW && chip->clk_freq < CLK_DIRECT) {
  354. chip->use_clkbuf = true;
  355. regmap_write(r_t, CLKSET1_T, 0x07);
  356. adckt = 0;
  357. } else {
  358. chip->use_clkbuf = false;
  359. regmap_write(r_t, CLKSET1_T, 0x00);
  360. adckt = chip->clk_freq;
  361. }
  362. if (!mn88443x_t_is_valid_clk(adckt, chip->if_freq)) {
  363. dev_err(dev, "Invalid clock, CLK:%d, ADCKT:%lld, IF:%d\n",
  364. chip->clk_freq, adckt, chip->if_freq);
  365. return -EINVAL;
  366. }
  367. /* Direct IF or Low IF */
  368. if (chip->if_freq == DIRECT_IF_57MHZ ||
  369. chip->if_freq == DIRECT_IF_44MHZ)
  370. nco = adckt * 2 - chip->if_freq;
  371. else
  372. nco = -((s64)chip->if_freq);
  373. nco = div_s64(nco << 24, adckt);
  374. ad_t = div_s64(adckt << 22, S_T_FREQ);
  375. regmap_write(r_t, NCOFREQU_T, nco >> 16);
  376. regmap_write(r_t, NCOFREQM_T, nco >> 8);
  377. regmap_write(r_t, NCOFREQL_T, nco);
  378. regmap_write(r_t, FADU_T, ad_t >> 16);
  379. regmap_write(r_t, FADM_T, ad_t >> 8);
  380. regmap_write(r_t, FADL_T, ad_t);
  381. /* Level of IF */
  382. m = ADCSET1_T_REFSEL_MASK;
  383. v = ADCSET1_T_REFSEL_1_5V;
  384. regmap_update_bits(r_t, ADCSET1_T, m, v);
  385. /* Polarity of AGC */
  386. v = AGCSET2_T_IFPOLINV_INC | AGCSET2_T_RFPOLINV_INC;
  387. regmap_update_bits(r_t, AGCSET2_T, v, v);
  388. /* Lower output level of AGC */
  389. regmap_write(r_t, AGCV3_T, 0x00);
  390. regmap_write(r_t, MDSET_T, 0xfa);
  391. return 0;
  392. }
  393. static void mn88443x_t_tune(struct mn88443x_priv *chip,
  394. struct dtv_frontend_properties *c)
  395. {
  396. struct regmap *r_t = chip->regmap_t;
  397. u32 m, v;
  398. m = MDSET_T_MDAUTO_MASK | MDSET_T_FFTS_MASK | MDSET_T_GI_MASK;
  399. v = MDSET_T_MDAUTO_AUTO | MDSET_T_FFTS_MODE3 | MDSET_T_GI_1_8;
  400. regmap_update_bits(r_t, MDSET_T, m, v);
  401. regmap_write(r_t, MDASET_T, 0);
  402. }
  403. static int mn88443x_t_read_status(struct mn88443x_priv *chip,
  404. struct dtv_frontend_properties *c,
  405. enum fe_status *status)
  406. {
  407. struct regmap *r_t = chip->regmap_t;
  408. u32 seqrd, st, flg, tmpu, tmpm, tmpl;
  409. u64 tmp;
  410. /* Sync detection */
  411. regmap_read(r_t, SSEQRD_T, &seqrd);
  412. st = seqrd & SSEQRD_T_SSEQSTRD_MASK;
  413. *status = 0;
  414. if (st >= SSEQRD_T_SSEQSTRD_SYNC)
  415. *status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
  416. if (st >= SSEQRD_T_SSEQSTRD_FRAME_SYNC)
  417. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER;
  418. /* Signal strength */
  419. c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  420. if (*status & FE_HAS_SIGNAL) {
  421. u32 agc;
  422. regmap_read(r_t, AGCRDU_T, &tmpu);
  423. regmap_read(r_t, AGCRDL_T, &tmpl);
  424. agc = (tmpu << 8) | tmpl;
  425. c->strength.len = 1;
  426. c->strength.stat[0].scale = FE_SCALE_RELATIVE;
  427. c->strength.stat[0].uvalue = agc;
  428. }
  429. /* C/N rate */
  430. c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  431. if (*status & FE_HAS_VITERBI) {
  432. u32 cnr;
  433. regmap_read(r_t, CNRDU_T, &tmpu);
  434. regmap_read(r_t, CNRDL_T, &tmpl);
  435. if (tmpu || tmpl) {
  436. /* CNR[dB]: 10 * (log10(65536 / value) + 0.2) */
  437. /* intlog10(65536) = 80807124, 0.2 * 2^24 = 3355443 */
  438. tmp = (u64)80807124 - intlog10((tmpu << 8) | tmpl)
  439. + 3355443;
  440. cnr = div_u64(tmp * 10000, 1 << 24);
  441. } else {
  442. cnr = 0;
  443. }
  444. c->cnr.len = 1;
  445. c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
  446. c->cnr.stat[0].uvalue = cnr;
  447. }
  448. /* BER */
  449. c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  450. c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  451. regmap_read(r_t, BERFLG_T, &flg);
  452. if ((*status & FE_HAS_VITERBI) && (flg & BERFLG_T_BERVRDYA)) {
  453. u32 bit_err, bit_cnt;
  454. regmap_read(r_t, BERRDU_T, &tmpu);
  455. regmap_read(r_t, BERRDM_T, &tmpm);
  456. regmap_read(r_t, BERRDL_T, &tmpl);
  457. bit_err = (tmpu << 16) | (tmpm << 8) | tmpl;
  458. regmap_read(r_t, BERLENRDU_T, &tmpu);
  459. regmap_read(r_t, BERLENRDL_T, &tmpl);
  460. bit_cnt = ((tmpu << 8) | tmpl) * 203 * 8;
  461. if (bit_cnt) {
  462. c->post_bit_error.len = 1;
  463. c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
  464. c->post_bit_error.stat[0].uvalue = bit_err;
  465. c->post_bit_count.len = 1;
  466. c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
  467. c->post_bit_count.stat[0].uvalue = bit_cnt;
  468. }
  469. }
  470. return 0;
  471. }
  472. static int mn88443x_sleep(struct dvb_frontend *fe)
  473. {
  474. struct mn88443x_priv *chip = fe->demodulator_priv;
  475. mn88443x_s_sleep(chip);
  476. mn88443x_t_sleep(chip);
  477. return 0;
  478. }
  479. static int mn88443x_set_frontend(struct dvb_frontend *fe)
  480. {
  481. struct mn88443x_priv *chip = fe->demodulator_priv;
  482. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  483. struct regmap *r_s = chip->regmap_s;
  484. struct regmap *r_t = chip->regmap_t;
  485. u8 tssel = 0, intsel = 0;
  486. if (c->delivery_system == SYS_ISDBS) {
  487. mn88443x_s_wake(chip);
  488. mn88443x_t_sleep(chip);
  489. tssel = TSSET1_TSASEL_ISDBS;
  490. intsel = TSSET3_INTASEL_S;
  491. } else if (c->delivery_system == SYS_ISDBT) {
  492. mn88443x_s_sleep(chip);
  493. mn88443x_t_wake(chip);
  494. mn88443x_t_set_freq(chip);
  495. tssel = TSSET1_TSASEL_ISDBT;
  496. intsel = TSSET3_INTASEL_T;
  497. }
  498. regmap_update_bits(r_t, TSSET1,
  499. TSSET1_TSASEL_MASK | TSSET1_TSBSEL_MASK,
  500. tssel | TSSET1_TSBSEL_NONE);
  501. regmap_write(r_t, TSSET2, 0);
  502. regmap_update_bits(r_t, TSSET3,
  503. TSSET3_INTASEL_MASK | TSSET3_INTBSEL_MASK,
  504. intsel | TSSET3_INTBSEL_NONE);
  505. regmap_write(r_t, DOSET1_T, 0x95);
  506. regmap_write(r_s, DOSET1_S, 0x80);
  507. if (c->delivery_system == SYS_ISDBS)
  508. mn88443x_s_tune(chip, c);
  509. else if (c->delivery_system == SYS_ISDBT)
  510. mn88443x_t_tune(chip, c);
  511. if (fe->ops.tuner_ops.set_params) {
  512. if (fe->ops.i2c_gate_ctrl)
  513. fe->ops.i2c_gate_ctrl(fe, 1);
  514. fe->ops.tuner_ops.set_params(fe);
  515. if (fe->ops.i2c_gate_ctrl)
  516. fe->ops.i2c_gate_ctrl(fe, 0);
  517. }
  518. return 0;
  519. }
  520. static int mn88443x_get_tune_settings(struct dvb_frontend *fe,
  521. struct dvb_frontend_tune_settings *s)
  522. {
  523. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  524. s->min_delay_ms = 850;
  525. if (c->delivery_system == SYS_ISDBS) {
  526. s->max_drift = 30000 * 2 + 1;
  527. s->step_size = 30000;
  528. } else if (c->delivery_system == SYS_ISDBT) {
  529. s->max_drift = 142857 * 2 + 1;
  530. s->step_size = 142857 * 2;
  531. }
  532. return 0;
  533. }
  534. static int mn88443x_read_status(struct dvb_frontend *fe, enum fe_status *status)
  535. {
  536. struct mn88443x_priv *chip = fe->demodulator_priv;
  537. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  538. if (c->delivery_system == SYS_ISDBS)
  539. return mn88443x_s_read_status(chip, c, status);
  540. if (c->delivery_system == SYS_ISDBT)
  541. return mn88443x_t_read_status(chip, c, status);
  542. return -EINVAL;
  543. }
  544. static const struct dvb_frontend_ops mn88443x_ops = {
  545. .delsys = { SYS_ISDBS, SYS_ISDBT },
  546. .info = {
  547. .name = "Socionext MN88443x",
  548. .frequency_min_hz = 470 * MHz,
  549. .frequency_max_hz = 2071 * MHz,
  550. .symbol_rate_min = 28860000,
  551. .symbol_rate_max = 28860000,
  552. .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_AUTO |
  553. FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO |
  554. FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO,
  555. },
  556. .sleep = mn88443x_sleep,
  557. .set_frontend = mn88443x_set_frontend,
  558. .get_tune_settings = mn88443x_get_tune_settings,
  559. .read_status = mn88443x_read_status,
  560. };
  561. static const struct regmap_config regmap_config = {
  562. .reg_bits = 8,
  563. .val_bits = 8,
  564. .cache_type = REGCACHE_NONE,
  565. };
  566. static int mn88443x_probe(struct i2c_client *client,
  567. const struct i2c_device_id *id)
  568. {
  569. struct mn88443x_config *conf = client->dev.platform_data;
  570. struct mn88443x_priv *chip;
  571. struct device *dev = &client->dev;
  572. int ret;
  573. chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
  574. if (!chip)
  575. return -ENOMEM;
  576. if (dev->of_node)
  577. chip->spec = of_device_get_match_data(dev);
  578. else
  579. chip->spec = (struct mn88443x_spec *)id->driver_data;
  580. if (!chip->spec)
  581. return -EINVAL;
  582. chip->mclk = devm_clk_get(dev, "mclk");
  583. if (IS_ERR(chip->mclk) && !conf) {
  584. dev_err(dev, "Failed to request mclk: %ld\n",
  585. PTR_ERR(chip->mclk));
  586. return PTR_ERR(chip->mclk);
  587. }
  588. ret = of_property_read_u32(dev->of_node, "if-frequency",
  589. &chip->if_freq);
  590. if (ret && !conf) {
  591. dev_err(dev, "Failed to load IF frequency: %d.\n", ret);
  592. return ret;
  593. }
  594. chip->reset_gpio = devm_gpiod_get_optional(dev, "reset",
  595. GPIOD_OUT_HIGH);
  596. if (IS_ERR(chip->reset_gpio)) {
  597. dev_err(dev, "Failed to request reset_gpio: %ld\n",
  598. PTR_ERR(chip->reset_gpio));
  599. return PTR_ERR(chip->reset_gpio);
  600. }
  601. if (conf) {
  602. chip->mclk = conf->mclk;
  603. chip->if_freq = conf->if_freq;
  604. chip->reset_gpio = conf->reset_gpio;
  605. *conf->fe = &chip->fe;
  606. }
  607. chip->client_s = client;
  608. chip->regmap_s = devm_regmap_init_i2c(chip->client_s, &regmap_config);
  609. if (IS_ERR(chip->regmap_s))
  610. return PTR_ERR(chip->regmap_s);
  611. /*
  612. * Chip has two I2C addresses for each satellite/terrestrial system.
  613. * ISDB-T uses address ISDB-S + 4, so we register a dummy client.
  614. */
  615. chip->client_t = i2c_new_dummy_device(client->adapter, client->addr + 4);
  616. if (IS_ERR(chip->client_t))
  617. return PTR_ERR(chip->client_t);
  618. chip->regmap_t = devm_regmap_init_i2c(chip->client_t, &regmap_config);
  619. if (IS_ERR(chip->regmap_t)) {
  620. ret = PTR_ERR(chip->regmap_t);
  621. goto err_i2c_t;
  622. }
  623. chip->clk_freq = clk_get_rate(chip->mclk);
  624. memcpy(&chip->fe.ops, &mn88443x_ops, sizeof(mn88443x_ops));
  625. chip->fe.demodulator_priv = chip;
  626. i2c_set_clientdata(client, chip);
  627. ret = mn88443x_cmn_power_on(chip);
  628. if (ret)
  629. goto err_i2c_t;
  630. mn88443x_s_sleep(chip);
  631. mn88443x_t_sleep(chip);
  632. return 0;
  633. err_i2c_t:
  634. i2c_unregister_device(chip->client_t);
  635. return ret;
  636. }
  637. static void mn88443x_remove(struct i2c_client *client)
  638. {
  639. struct mn88443x_priv *chip = i2c_get_clientdata(client);
  640. mn88443x_cmn_power_off(chip);
  641. i2c_unregister_device(chip->client_t);
  642. }
  643. static const struct mn88443x_spec mn88443x_spec_pri = {
  644. .primary = true,
  645. };
  646. static const struct mn88443x_spec mn88443x_spec_sec = {
  647. .primary = false,
  648. };
  649. static const struct of_device_id mn88443x_of_match[] = {
  650. { .compatible = "socionext,mn884433", .data = &mn88443x_spec_pri, },
  651. { .compatible = "socionext,mn884434-0", .data = &mn88443x_spec_pri, },
  652. { .compatible = "socionext,mn884434-1", .data = &mn88443x_spec_sec, },
  653. {}
  654. };
  655. MODULE_DEVICE_TABLE(of, mn88443x_of_match);
  656. static const struct i2c_device_id mn88443x_i2c_id[] = {
  657. { "mn884433", (kernel_ulong_t)&mn88443x_spec_pri },
  658. { "mn884434-0", (kernel_ulong_t)&mn88443x_spec_pri },
  659. { "mn884434-1", (kernel_ulong_t)&mn88443x_spec_sec },
  660. {}
  661. };
  662. MODULE_DEVICE_TABLE(i2c, mn88443x_i2c_id);
  663. static struct i2c_driver mn88443x_driver = {
  664. .driver = {
  665. .name = "mn88443x",
  666. .of_match_table = mn88443x_of_match,
  667. },
  668. .probe = mn88443x_probe,
  669. .remove = mn88443x_remove,
  670. .id_table = mn88443x_i2c_id,
  671. };
  672. module_i2c_driver(mn88443x_driver);
  673. MODULE_AUTHOR("Katsuhiro Suzuki <[email protected]>");
  674. MODULE_DESCRIPTION("Socionext MN88443x series demodulator driver.");
  675. MODULE_LICENSE("GPL v2");