dib3000mc.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Driver for DiBcom DiB3000MC/P-demodulator.
  4. *
  5. * Copyright (C) 2004-7 DiBcom (http://www.dibcom.fr/)
  6. * Copyright (C) 2004-5 Patrick Boettcher ([email protected])
  7. *
  8. * This code is partially based on the previous dib3000mc.c .
  9. */
  10. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11. #include <linux/kernel.h>
  12. #include <linux/slab.h>
  13. #include <linux/i2c.h>
  14. #include <media/dvb_frontend.h>
  15. #include "dib3000mc.h"
  16. static int debug;
  17. module_param(debug, int, 0644);
  18. MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
  19. static int buggy_sfn_workaround;
  20. module_param(buggy_sfn_workaround, int, 0644);
  21. MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)");
  22. #define dprintk(fmt, arg...) do { \
  23. if (debug) \
  24. printk(KERN_DEBUG pr_fmt("%s: " fmt), \
  25. __func__, ##arg); \
  26. } while (0)
  27. struct dib3000mc_state {
  28. struct dvb_frontend demod;
  29. struct dib3000mc_config *cfg;
  30. u8 i2c_addr;
  31. struct i2c_adapter *i2c_adap;
  32. struct dibx000_i2c_master i2c_master;
  33. u32 timf;
  34. u32 current_bandwidth;
  35. u16 dev_id;
  36. u8 sfn_workaround_active :1;
  37. };
  38. static u16 dib3000mc_read_word(struct dib3000mc_state *state, u16 reg)
  39. {
  40. struct i2c_msg msg[2] = {
  41. { .addr = state->i2c_addr >> 1, .flags = 0, .len = 2 },
  42. { .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .len = 2 },
  43. };
  44. u16 word;
  45. u8 *b;
  46. b = kmalloc(4, GFP_KERNEL);
  47. if (!b)
  48. return 0;
  49. b[0] = (reg >> 8) | 0x80;
  50. b[1] = reg;
  51. b[2] = 0;
  52. b[3] = 0;
  53. msg[0].buf = b;
  54. msg[1].buf = b + 2;
  55. if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
  56. dprintk("i2c read error on %d\n",reg);
  57. word = (b[2] << 8) | b[3];
  58. kfree(b);
  59. return word;
  60. }
  61. static int dib3000mc_write_word(struct dib3000mc_state *state, u16 reg, u16 val)
  62. {
  63. struct i2c_msg msg = {
  64. .addr = state->i2c_addr >> 1, .flags = 0, .len = 4
  65. };
  66. int rc;
  67. u8 *b;
  68. b = kmalloc(4, GFP_KERNEL);
  69. if (!b)
  70. return -ENOMEM;
  71. b[0] = reg >> 8;
  72. b[1] = reg;
  73. b[2] = val >> 8;
  74. b[3] = val;
  75. msg.buf = b;
  76. rc = i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
  77. kfree(b);
  78. return rc;
  79. }
  80. static int dib3000mc_identify(struct dib3000mc_state *state)
  81. {
  82. u16 value;
  83. if ((value = dib3000mc_read_word(state, 1025)) != 0x01b3) {
  84. dprintk("-E- DiB3000MC/P: wrong Vendor ID (read=0x%x)\n",value);
  85. return -EREMOTEIO;
  86. }
  87. value = dib3000mc_read_word(state, 1026);
  88. if (value != 0x3001 && value != 0x3002) {
  89. dprintk("-E- DiB3000MC/P: wrong Device ID (%x)\n",value);
  90. return -EREMOTEIO;
  91. }
  92. state->dev_id = value;
  93. dprintk("-I- found DiB3000MC/P: %x\n",state->dev_id);
  94. return 0;
  95. }
  96. static int dib3000mc_set_timing(struct dib3000mc_state *state, s16 nfft, u32 bw, u8 update_offset)
  97. {
  98. u32 timf;
  99. if (state->timf == 0) {
  100. timf = 1384402; // default value for 8MHz
  101. if (update_offset)
  102. msleep(200); // first time we do an update
  103. } else
  104. timf = state->timf;
  105. timf *= (bw / 1000);
  106. if (update_offset) {
  107. s16 tim_offs = dib3000mc_read_word(state, 416);
  108. if (tim_offs & 0x2000)
  109. tim_offs -= 0x4000;
  110. if (nfft == TRANSMISSION_MODE_2K)
  111. tim_offs *= 4;
  112. timf += tim_offs;
  113. state->timf = timf / (bw / 1000);
  114. }
  115. dprintk("timf: %d\n", timf);
  116. dib3000mc_write_word(state, 23, (u16) (timf >> 16));
  117. dib3000mc_write_word(state, 24, (u16) (timf ) & 0xffff);
  118. return 0;
  119. }
  120. static int dib3000mc_setup_pwm_state(struct dib3000mc_state *state)
  121. {
  122. u16 reg_51, reg_52 = state->cfg->agc->setup & 0xfefb;
  123. if (state->cfg->pwm3_inversion) {
  124. reg_51 = (2 << 14) | (0 << 10) | (7 << 6) | (2 << 2) | (2 << 0);
  125. reg_52 |= (1 << 2);
  126. } else {
  127. reg_51 = (2 << 14) | (4 << 10) | (7 << 6) | (2 << 2) | (2 << 0);
  128. reg_52 |= (1 << 8);
  129. }
  130. dib3000mc_write_word(state, 51, reg_51);
  131. dib3000mc_write_word(state, 52, reg_52);
  132. if (state->cfg->use_pwm3)
  133. dib3000mc_write_word(state, 245, (1 << 3) | (1 << 0));
  134. else
  135. dib3000mc_write_word(state, 245, 0);
  136. dib3000mc_write_word(state, 1040, 0x3);
  137. return 0;
  138. }
  139. static int dib3000mc_set_output_mode(struct dib3000mc_state *state, int mode)
  140. {
  141. int ret = 0;
  142. u16 fifo_threshold = 1792;
  143. u16 outreg = 0;
  144. u16 outmode = 0;
  145. u16 elecout = 1;
  146. u16 smo_reg = dib3000mc_read_word(state, 206) & 0x0010; /* keep the pid_parse bit */
  147. dprintk("-I- Setting output mode for demod %p to %d\n",
  148. &state->demod, mode);
  149. switch (mode) {
  150. case OUTMODE_HIGH_Z: // disable
  151. elecout = 0;
  152. break;
  153. case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
  154. outmode = 0;
  155. break;
  156. case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
  157. outmode = 1;
  158. break;
  159. case OUTMODE_MPEG2_SERIAL: // STBs with serial input
  160. outmode = 2;
  161. break;
  162. case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
  163. elecout = 3;
  164. /*ADDR @ 206 :
  165. P_smo_error_discard [1;6:6] = 0
  166. P_smo_rs_discard [1;5:5] = 0
  167. P_smo_pid_parse [1;4:4] = 0
  168. P_smo_fifo_flush [1;3:3] = 0
  169. P_smo_mode [2;2:1] = 11
  170. P_smo_ovf_prot [1;0:0] = 0
  171. */
  172. smo_reg |= 3 << 1;
  173. fifo_threshold = 512;
  174. outmode = 5;
  175. break;
  176. case OUTMODE_DIVERSITY:
  177. outmode = 4;
  178. elecout = 1;
  179. break;
  180. default:
  181. dprintk("Unhandled output_mode passed to be set for demod %p\n",&state->demod);
  182. outmode = 0;
  183. break;
  184. }
  185. if ((state->cfg->output_mpeg2_in_188_bytes))
  186. smo_reg |= (1 << 5); // P_smo_rs_discard [1;5:5] = 1
  187. outreg = dib3000mc_read_word(state, 244) & 0x07FF;
  188. outreg |= (outmode << 11);
  189. ret |= dib3000mc_write_word(state, 244, outreg);
  190. ret |= dib3000mc_write_word(state, 206, smo_reg); /*smo_ mode*/
  191. ret |= dib3000mc_write_word(state, 207, fifo_threshold); /* synchronous fread */
  192. ret |= dib3000mc_write_word(state, 1040, elecout); /* P_out_cfg */
  193. return ret;
  194. }
  195. static int dib3000mc_set_bandwidth(struct dib3000mc_state *state, u32 bw)
  196. {
  197. u16 bw_cfg[6] = { 0 };
  198. u16 imp_bw_cfg[3] = { 0 };
  199. u16 reg;
  200. /* settings here are for 27.7MHz */
  201. switch (bw) {
  202. case 8000:
  203. bw_cfg[0] = 0x0019; bw_cfg[1] = 0x5c30; bw_cfg[2] = 0x0054; bw_cfg[3] = 0x88a0; bw_cfg[4] = 0x01a6; bw_cfg[5] = 0xab20;
  204. imp_bw_cfg[0] = 0x04db; imp_bw_cfg[1] = 0x00db; imp_bw_cfg[2] = 0x00b7;
  205. break;
  206. case 7000:
  207. bw_cfg[0] = 0x001c; bw_cfg[1] = 0xfba5; bw_cfg[2] = 0x0060; bw_cfg[3] = 0x9c25; bw_cfg[4] = 0x01e3; bw_cfg[5] = 0x0cb7;
  208. imp_bw_cfg[0] = 0x04c0; imp_bw_cfg[1] = 0x00c0; imp_bw_cfg[2] = 0x00a0;
  209. break;
  210. case 6000:
  211. bw_cfg[0] = 0x0021; bw_cfg[1] = 0xd040; bw_cfg[2] = 0x0070; bw_cfg[3] = 0xb62b; bw_cfg[4] = 0x0233; bw_cfg[5] = 0x8ed5;
  212. imp_bw_cfg[0] = 0x04a5; imp_bw_cfg[1] = 0x00a5; imp_bw_cfg[2] = 0x0089;
  213. break;
  214. case 5000:
  215. bw_cfg[0] = 0x0028; bw_cfg[1] = 0x9380; bw_cfg[2] = 0x0087; bw_cfg[3] = 0x4100; bw_cfg[4] = 0x02a4; bw_cfg[5] = 0x4500;
  216. imp_bw_cfg[0] = 0x0489; imp_bw_cfg[1] = 0x0089; imp_bw_cfg[2] = 0x0072;
  217. break;
  218. default: return -EINVAL;
  219. }
  220. for (reg = 6; reg < 12; reg++)
  221. dib3000mc_write_word(state, reg, bw_cfg[reg - 6]);
  222. dib3000mc_write_word(state, 12, 0x0000);
  223. dib3000mc_write_word(state, 13, 0x03e8);
  224. dib3000mc_write_word(state, 14, 0x0000);
  225. dib3000mc_write_word(state, 15, 0x03f2);
  226. dib3000mc_write_word(state, 16, 0x0001);
  227. dib3000mc_write_word(state, 17, 0xb0d0);
  228. // P_sec_len
  229. dib3000mc_write_word(state, 18, 0x0393);
  230. dib3000mc_write_word(state, 19, 0x8700);
  231. for (reg = 55; reg < 58; reg++)
  232. dib3000mc_write_word(state, reg, imp_bw_cfg[reg - 55]);
  233. // Timing configuration
  234. dib3000mc_set_timing(state, TRANSMISSION_MODE_2K, bw, 0);
  235. return 0;
  236. }
  237. static u16 impulse_noise_val[29] =
  238. {
  239. 0x38, 0x6d9, 0x3f28, 0x7a7, 0x3a74, 0x196, 0x32a, 0x48c, 0x3ffe, 0x7f3,
  240. 0x2d94, 0x76, 0x53d, 0x3ff8, 0x7e3, 0x3320, 0x76, 0x5b3, 0x3feb, 0x7d2,
  241. 0x365e, 0x76, 0x48c, 0x3ffe, 0x5b3, 0x3feb, 0x76, 0x0000, 0xd
  242. };
  243. static void dib3000mc_set_impulse_noise(struct dib3000mc_state *state, u8 mode, s16 nfft)
  244. {
  245. u16 i;
  246. for (i = 58; i < 87; i++)
  247. dib3000mc_write_word(state, i, impulse_noise_val[i-58]);
  248. if (nfft == TRANSMISSION_MODE_8K) {
  249. dib3000mc_write_word(state, 58, 0x3b);
  250. dib3000mc_write_word(state, 84, 0x00);
  251. dib3000mc_write_word(state, 85, 0x8200);
  252. }
  253. dib3000mc_write_word(state, 34, 0x1294);
  254. dib3000mc_write_word(state, 35, 0x1ff8);
  255. if (mode == 1)
  256. dib3000mc_write_word(state, 55, dib3000mc_read_word(state, 55) | (1 << 10));
  257. }
  258. static int dib3000mc_init(struct dvb_frontend *demod)
  259. {
  260. struct dib3000mc_state *state = demod->demodulator_priv;
  261. struct dibx000_agc_config *agc = state->cfg->agc;
  262. // Restart Configuration
  263. dib3000mc_write_word(state, 1027, 0x8000);
  264. dib3000mc_write_word(state, 1027, 0x0000);
  265. // power up the demod + mobility configuration
  266. dib3000mc_write_word(state, 140, 0x0000);
  267. dib3000mc_write_word(state, 1031, 0);
  268. if (state->cfg->mobile_mode) {
  269. dib3000mc_write_word(state, 139, 0x0000);
  270. dib3000mc_write_word(state, 141, 0x0000);
  271. dib3000mc_write_word(state, 175, 0x0002);
  272. dib3000mc_write_word(state, 1032, 0x0000);
  273. } else {
  274. dib3000mc_write_word(state, 139, 0x0001);
  275. dib3000mc_write_word(state, 141, 0x0000);
  276. dib3000mc_write_word(state, 175, 0x0000);
  277. dib3000mc_write_word(state, 1032, 0x012C);
  278. }
  279. dib3000mc_write_word(state, 1033, 0x0000);
  280. // P_clk_cfg
  281. dib3000mc_write_word(state, 1037, 0x3130);
  282. // other configurations
  283. // P_ctrl_sfreq
  284. dib3000mc_write_word(state, 33, (5 << 0));
  285. dib3000mc_write_word(state, 88, (1 << 10) | (0x10 << 0));
  286. // Phase noise control
  287. // P_fft_phacor_inh, P_fft_phacor_cpe, P_fft_powrange
  288. dib3000mc_write_word(state, 99, (1 << 9) | (0x20 << 0));
  289. if (state->cfg->phase_noise_mode == 0)
  290. dib3000mc_write_word(state, 111, 0x00);
  291. else
  292. dib3000mc_write_word(state, 111, 0x02);
  293. // P_agc_global
  294. dib3000mc_write_word(state, 50, 0x8000);
  295. // agc setup misc
  296. dib3000mc_setup_pwm_state(state);
  297. // P_agc_counter_lock
  298. dib3000mc_write_word(state, 53, 0x87);
  299. // P_agc_counter_unlock
  300. dib3000mc_write_word(state, 54, 0x87);
  301. /* agc */
  302. dib3000mc_write_word(state, 36, state->cfg->max_time);
  303. dib3000mc_write_word(state, 37, (state->cfg->agc_command1 << 13) | (state->cfg->agc_command2 << 12) | (0x1d << 0));
  304. dib3000mc_write_word(state, 38, state->cfg->pwm3_value);
  305. dib3000mc_write_word(state, 39, state->cfg->ln_adc_level);
  306. // set_agc_loop_Bw
  307. dib3000mc_write_word(state, 40, 0x0179);
  308. dib3000mc_write_word(state, 41, 0x03f0);
  309. dib3000mc_write_word(state, 42, agc->agc1_max);
  310. dib3000mc_write_word(state, 43, agc->agc1_min);
  311. dib3000mc_write_word(state, 44, agc->agc2_max);
  312. dib3000mc_write_word(state, 45, agc->agc2_min);
  313. dib3000mc_write_word(state, 46, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
  314. dib3000mc_write_word(state, 47, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
  315. dib3000mc_write_word(state, 48, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
  316. dib3000mc_write_word(state, 49, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
  317. // Begin: TimeOut registers
  318. // P_pha3_thres
  319. dib3000mc_write_word(state, 110, 3277);
  320. // P_timf_alpha = 6, P_corm_alpha = 6, P_corm_thres = 0x80
  321. dib3000mc_write_word(state, 26, 0x6680);
  322. // lock_mask0
  323. dib3000mc_write_word(state, 1, 4);
  324. // lock_mask1
  325. dib3000mc_write_word(state, 2, 4);
  326. // lock_mask2
  327. dib3000mc_write_word(state, 3, 0x1000);
  328. // P_search_maxtrial=1
  329. dib3000mc_write_word(state, 5, 1);
  330. dib3000mc_set_bandwidth(state, 8000);
  331. // div_lock_mask
  332. dib3000mc_write_word(state, 4, 0x814);
  333. dib3000mc_write_word(state, 21, (1 << 9) | 0x164);
  334. dib3000mc_write_word(state, 22, 0x463d);
  335. // Spurious rm cfg
  336. // P_cspu_regul, P_cspu_win_cut
  337. dib3000mc_write_word(state, 120, 0x200f);
  338. // P_adp_selec_monit
  339. dib3000mc_write_word(state, 134, 0);
  340. // Fec cfg
  341. dib3000mc_write_word(state, 195, 0x10);
  342. // diversity register: P_dvsy_sync_wait..
  343. dib3000mc_write_word(state, 180, 0x2FF0);
  344. // Impulse noise configuration
  345. dib3000mc_set_impulse_noise(state, 0, TRANSMISSION_MODE_8K);
  346. // output mode set-up
  347. dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z);
  348. /* close the i2c-gate */
  349. dib3000mc_write_word(state, 769, (1 << 7) );
  350. return 0;
  351. }
  352. static int dib3000mc_sleep(struct dvb_frontend *demod)
  353. {
  354. struct dib3000mc_state *state = demod->demodulator_priv;
  355. dib3000mc_write_word(state, 1031, 0xFFFF);
  356. dib3000mc_write_word(state, 1032, 0xFFFF);
  357. dib3000mc_write_word(state, 1033, 0xFFF0);
  358. return 0;
  359. }
  360. static void dib3000mc_set_adp_cfg(struct dib3000mc_state *state, s16 qam)
  361. {
  362. u16 cfg[4] = { 0 },reg;
  363. switch (qam) {
  364. case QPSK:
  365. cfg[0] = 0x099a; cfg[1] = 0x7fae; cfg[2] = 0x0333; cfg[3] = 0x7ff0;
  366. break;
  367. case QAM_16:
  368. cfg[0] = 0x023d; cfg[1] = 0x7fdf; cfg[2] = 0x00a4; cfg[3] = 0x7ff0;
  369. break;
  370. case QAM_64:
  371. cfg[0] = 0x0148; cfg[1] = 0x7ff0; cfg[2] = 0x00a4; cfg[3] = 0x7ff8;
  372. break;
  373. }
  374. for (reg = 129; reg < 133; reg++)
  375. dib3000mc_write_word(state, reg, cfg[reg - 129]);
  376. }
  377. static void dib3000mc_set_channel_cfg(struct dib3000mc_state *state,
  378. struct dtv_frontend_properties *ch, u16 seq)
  379. {
  380. u16 value;
  381. u32 bw = BANDWIDTH_TO_KHZ(ch->bandwidth_hz);
  382. dib3000mc_set_bandwidth(state, bw);
  383. dib3000mc_set_timing(state, ch->transmission_mode, bw, 0);
  384. #if 1
  385. dib3000mc_write_word(state, 100, (16 << 6) + 9);
  386. #else
  387. if (boost)
  388. dib3000mc_write_word(state, 100, (11 << 6) + 6);
  389. else
  390. dib3000mc_write_word(state, 100, (16 << 6) + 9);
  391. #endif
  392. dib3000mc_write_word(state, 1027, 0x0800);
  393. dib3000mc_write_word(state, 1027, 0x0000);
  394. //Default cfg isi offset adp
  395. dib3000mc_write_word(state, 26, 0x6680);
  396. dib3000mc_write_word(state, 29, 0x1273);
  397. dib3000mc_write_word(state, 33, 5);
  398. dib3000mc_set_adp_cfg(state, QAM_16);
  399. dib3000mc_write_word(state, 133, 15564);
  400. dib3000mc_write_word(state, 12 , 0x0);
  401. dib3000mc_write_word(state, 13 , 0x3e8);
  402. dib3000mc_write_word(state, 14 , 0x0);
  403. dib3000mc_write_word(state, 15 , 0x3f2);
  404. dib3000mc_write_word(state, 93,0);
  405. dib3000mc_write_word(state, 94,0);
  406. dib3000mc_write_word(state, 95,0);
  407. dib3000mc_write_word(state, 96,0);
  408. dib3000mc_write_word(state, 97,0);
  409. dib3000mc_write_word(state, 98,0);
  410. dib3000mc_set_impulse_noise(state, 0, ch->transmission_mode);
  411. value = 0;
  412. switch (ch->transmission_mode) {
  413. case TRANSMISSION_MODE_2K: value |= (0 << 7); break;
  414. default:
  415. case TRANSMISSION_MODE_8K: value |= (1 << 7); break;
  416. }
  417. switch (ch->guard_interval) {
  418. case GUARD_INTERVAL_1_32: value |= (0 << 5); break;
  419. case GUARD_INTERVAL_1_16: value |= (1 << 5); break;
  420. case GUARD_INTERVAL_1_4: value |= (3 << 5); break;
  421. default:
  422. case GUARD_INTERVAL_1_8: value |= (2 << 5); break;
  423. }
  424. switch (ch->modulation) {
  425. case QPSK: value |= (0 << 3); break;
  426. case QAM_16: value |= (1 << 3); break;
  427. default:
  428. case QAM_64: value |= (2 << 3); break;
  429. }
  430. switch (HIERARCHY_1) {
  431. case HIERARCHY_2: value |= 2; break;
  432. case HIERARCHY_4: value |= 4; break;
  433. default:
  434. case HIERARCHY_1: value |= 1; break;
  435. }
  436. dib3000mc_write_word(state, 0, value);
  437. dib3000mc_write_word(state, 5, (1 << 8) | ((seq & 0xf) << 4));
  438. value = 0;
  439. if (ch->hierarchy == 1)
  440. value |= (1 << 4);
  441. if (1 == 1)
  442. value |= 1;
  443. switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) {
  444. case FEC_2_3: value |= (2 << 1); break;
  445. case FEC_3_4: value |= (3 << 1); break;
  446. case FEC_5_6: value |= (5 << 1); break;
  447. case FEC_7_8: value |= (7 << 1); break;
  448. default:
  449. case FEC_1_2: value |= (1 << 1); break;
  450. }
  451. dib3000mc_write_word(state, 181, value);
  452. // diversity synchro delay add 50% SFN margin
  453. switch (ch->transmission_mode) {
  454. case TRANSMISSION_MODE_8K: value = 256; break;
  455. case TRANSMISSION_MODE_2K:
  456. default: value = 64; break;
  457. }
  458. switch (ch->guard_interval) {
  459. case GUARD_INTERVAL_1_16: value *= 2; break;
  460. case GUARD_INTERVAL_1_8: value *= 4; break;
  461. case GUARD_INTERVAL_1_4: value *= 8; break;
  462. default:
  463. case GUARD_INTERVAL_1_32: value *= 1; break;
  464. }
  465. value <<= 4;
  466. value |= dib3000mc_read_word(state, 180) & 0x000f;
  467. dib3000mc_write_word(state, 180, value);
  468. // restart demod
  469. value = dib3000mc_read_word(state, 0);
  470. dib3000mc_write_word(state, 0, value | (1 << 9));
  471. dib3000mc_write_word(state, 0, value);
  472. msleep(30);
  473. dib3000mc_set_impulse_noise(state, state->cfg->impulse_noise_mode, ch->transmission_mode);
  474. }
  475. static int dib3000mc_autosearch_start(struct dvb_frontend *demod)
  476. {
  477. struct dtv_frontend_properties *chan = &demod->dtv_property_cache;
  478. struct dib3000mc_state *state = demod->demodulator_priv;
  479. u16 reg;
  480. // u32 val;
  481. struct dtv_frontend_properties schan;
  482. schan = *chan;
  483. /* TODO what is that ? */
  484. /* a channel for autosearch */
  485. schan.transmission_mode = TRANSMISSION_MODE_8K;
  486. schan.guard_interval = GUARD_INTERVAL_1_32;
  487. schan.modulation = QAM_64;
  488. schan.code_rate_HP = FEC_2_3;
  489. schan.code_rate_LP = FEC_2_3;
  490. schan.hierarchy = 0;
  491. dib3000mc_set_channel_cfg(state, &schan, 11);
  492. reg = dib3000mc_read_word(state, 0);
  493. dib3000mc_write_word(state, 0, reg | (1 << 8));
  494. dib3000mc_read_word(state, 511);
  495. dib3000mc_write_word(state, 0, reg);
  496. return 0;
  497. }
  498. static int dib3000mc_autosearch_is_irq(struct dvb_frontend *demod)
  499. {
  500. struct dib3000mc_state *state = demod->demodulator_priv;
  501. u16 irq_pending = dib3000mc_read_word(state, 511);
  502. if (irq_pending & 0x1) // failed
  503. return 1;
  504. if (irq_pending & 0x2) // succeeded
  505. return 2;
  506. return 0; // still pending
  507. }
  508. static int dib3000mc_tune(struct dvb_frontend *demod)
  509. {
  510. struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
  511. struct dib3000mc_state *state = demod->demodulator_priv;
  512. // ** configure demod **
  513. dib3000mc_set_channel_cfg(state, ch, 0);
  514. // activates isi
  515. if (state->sfn_workaround_active) {
  516. dprintk("SFN workaround is active\n");
  517. dib3000mc_write_word(state, 29, 0x1273);
  518. dib3000mc_write_word(state, 108, 0x4000); // P_pha3_force_pha_shift
  519. } else {
  520. dib3000mc_write_word(state, 29, 0x1073);
  521. dib3000mc_write_word(state, 108, 0x0000); // P_pha3_force_pha_shift
  522. }
  523. dib3000mc_set_adp_cfg(state, (u8)ch->modulation);
  524. if (ch->transmission_mode == TRANSMISSION_MODE_8K) {
  525. dib3000mc_write_word(state, 26, 38528);
  526. dib3000mc_write_word(state, 33, 8);
  527. } else {
  528. dib3000mc_write_word(state, 26, 30336);
  529. dib3000mc_write_word(state, 33, 6);
  530. }
  531. if (dib3000mc_read_word(state, 509) & 0x80)
  532. dib3000mc_set_timing(state, ch->transmission_mode,
  533. BANDWIDTH_TO_KHZ(ch->bandwidth_hz), 1);
  534. return 0;
  535. }
  536. struct i2c_adapter * dib3000mc_get_tuner_i2c_master(struct dvb_frontend *demod, int gating)
  537. {
  538. struct dib3000mc_state *st = demod->demodulator_priv;
  539. return dibx000_get_i2c_adapter(&st->i2c_master, DIBX000_I2C_INTERFACE_TUNER, gating);
  540. }
  541. EXPORT_SYMBOL(dib3000mc_get_tuner_i2c_master);
  542. static int dib3000mc_get_frontend(struct dvb_frontend* fe,
  543. struct dtv_frontend_properties *fep)
  544. {
  545. struct dib3000mc_state *state = fe->demodulator_priv;
  546. u16 tps = dib3000mc_read_word(state,458);
  547. fep->inversion = INVERSION_AUTO;
  548. fep->bandwidth_hz = state->current_bandwidth;
  549. switch ((tps >> 8) & 0x1) {
  550. case 0: fep->transmission_mode = TRANSMISSION_MODE_2K; break;
  551. case 1: fep->transmission_mode = TRANSMISSION_MODE_8K; break;
  552. }
  553. switch (tps & 0x3) {
  554. case 0: fep->guard_interval = GUARD_INTERVAL_1_32; break;
  555. case 1: fep->guard_interval = GUARD_INTERVAL_1_16; break;
  556. case 2: fep->guard_interval = GUARD_INTERVAL_1_8; break;
  557. case 3: fep->guard_interval = GUARD_INTERVAL_1_4; break;
  558. }
  559. switch ((tps >> 13) & 0x3) {
  560. case 0: fep->modulation = QPSK; break;
  561. case 1: fep->modulation = QAM_16; break;
  562. case 2:
  563. default: fep->modulation = QAM_64; break;
  564. }
  565. /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
  566. /* (tps >> 12) & 0x1 == hrch is used, (tps >> 9) & 0x7 == alpha */
  567. fep->hierarchy = HIERARCHY_NONE;
  568. switch ((tps >> 5) & 0x7) {
  569. case 1: fep->code_rate_HP = FEC_1_2; break;
  570. case 2: fep->code_rate_HP = FEC_2_3; break;
  571. case 3: fep->code_rate_HP = FEC_3_4; break;
  572. case 5: fep->code_rate_HP = FEC_5_6; break;
  573. case 7:
  574. default: fep->code_rate_HP = FEC_7_8; break;
  575. }
  576. switch ((tps >> 2) & 0x7) {
  577. case 1: fep->code_rate_LP = FEC_1_2; break;
  578. case 2: fep->code_rate_LP = FEC_2_3; break;
  579. case 3: fep->code_rate_LP = FEC_3_4; break;
  580. case 5: fep->code_rate_LP = FEC_5_6; break;
  581. case 7:
  582. default: fep->code_rate_LP = FEC_7_8; break;
  583. }
  584. return 0;
  585. }
  586. static int dib3000mc_set_frontend(struct dvb_frontend *fe)
  587. {
  588. struct dtv_frontend_properties *fep = &fe->dtv_property_cache;
  589. struct dib3000mc_state *state = fe->demodulator_priv;
  590. int ret;
  591. dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z);
  592. state->current_bandwidth = fep->bandwidth_hz;
  593. dib3000mc_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->bandwidth_hz));
  594. /* maybe the parameter has been changed */
  595. state->sfn_workaround_active = buggy_sfn_workaround;
  596. if (fe->ops.tuner_ops.set_params) {
  597. fe->ops.tuner_ops.set_params(fe);
  598. msleep(100);
  599. }
  600. if (fep->transmission_mode == TRANSMISSION_MODE_AUTO ||
  601. fep->guard_interval == GUARD_INTERVAL_AUTO ||
  602. fep->modulation == QAM_AUTO ||
  603. fep->code_rate_HP == FEC_AUTO) {
  604. int i = 1000, found;
  605. dib3000mc_autosearch_start(fe);
  606. do {
  607. msleep(1);
  608. found = dib3000mc_autosearch_is_irq(fe);
  609. } while (found == 0 && i--);
  610. dprintk("autosearch returns: %d\n",found);
  611. if (found == 0 || found == 1)
  612. return 0; // no channel found
  613. dib3000mc_get_frontend(fe, fep);
  614. }
  615. ret = dib3000mc_tune(fe);
  616. /* make this a config parameter */
  617. dib3000mc_set_output_mode(state, OUTMODE_MPEG2_FIFO);
  618. return ret;
  619. }
  620. static int dib3000mc_read_status(struct dvb_frontend *fe, enum fe_status *stat)
  621. {
  622. struct dib3000mc_state *state = fe->demodulator_priv;
  623. u16 lock = dib3000mc_read_word(state, 509);
  624. *stat = 0;
  625. if (lock & 0x8000)
  626. *stat |= FE_HAS_SIGNAL;
  627. if (lock & 0x3000)
  628. *stat |= FE_HAS_CARRIER;
  629. if (lock & 0x0100)
  630. *stat |= FE_HAS_VITERBI;
  631. if (lock & 0x0010)
  632. *stat |= FE_HAS_SYNC;
  633. if (lock & 0x0008)
  634. *stat |= FE_HAS_LOCK;
  635. return 0;
  636. }
  637. static int dib3000mc_read_ber(struct dvb_frontend *fe, u32 *ber)
  638. {
  639. struct dib3000mc_state *state = fe->demodulator_priv;
  640. *ber = (dib3000mc_read_word(state, 500) << 16) | dib3000mc_read_word(state, 501);
  641. return 0;
  642. }
  643. static int dib3000mc_read_unc_blocks(struct dvb_frontend *fe, u32 *unc)
  644. {
  645. struct dib3000mc_state *state = fe->demodulator_priv;
  646. *unc = dib3000mc_read_word(state, 508);
  647. return 0;
  648. }
  649. static int dib3000mc_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  650. {
  651. struct dib3000mc_state *state = fe->demodulator_priv;
  652. u16 val = dib3000mc_read_word(state, 392);
  653. *strength = 65535 - val;
  654. return 0;
  655. }
  656. static int dib3000mc_read_snr(struct dvb_frontend* fe, u16 *snr)
  657. {
  658. *snr = 0x0000;
  659. return 0;
  660. }
  661. static int dib3000mc_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
  662. {
  663. tune->min_delay_ms = 1000;
  664. return 0;
  665. }
  666. static void dib3000mc_release(struct dvb_frontend *fe)
  667. {
  668. struct dib3000mc_state *state = fe->demodulator_priv;
  669. dibx000_exit_i2c_master(&state->i2c_master);
  670. kfree(state);
  671. }
  672. int dib3000mc_pid_control(struct dvb_frontend *fe, int index, int pid,int onoff)
  673. {
  674. struct dib3000mc_state *state = fe->demodulator_priv;
  675. dib3000mc_write_word(state, 212 + index, onoff ? (1 << 13) | pid : 0);
  676. return 0;
  677. }
  678. EXPORT_SYMBOL(dib3000mc_pid_control);
  679. int dib3000mc_pid_parse(struct dvb_frontend *fe, int onoff)
  680. {
  681. struct dib3000mc_state *state = fe->demodulator_priv;
  682. u16 tmp = dib3000mc_read_word(state, 206) & ~(1 << 4);
  683. tmp |= (onoff << 4);
  684. return dib3000mc_write_word(state, 206, tmp);
  685. }
  686. EXPORT_SYMBOL(dib3000mc_pid_parse);
  687. void dib3000mc_set_config(struct dvb_frontend *fe, struct dib3000mc_config *cfg)
  688. {
  689. struct dib3000mc_state *state = fe->demodulator_priv;
  690. state->cfg = cfg;
  691. }
  692. EXPORT_SYMBOL(dib3000mc_set_config);
  693. int dib3000mc_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib3000mc_config cfg[])
  694. {
  695. struct dib3000mc_state *dmcst;
  696. int k;
  697. u8 new_addr;
  698. static const u8 DIB3000MC_I2C_ADDRESS[] = { 20, 22, 24, 26 };
  699. dmcst = kzalloc(sizeof(struct dib3000mc_state), GFP_KERNEL);
  700. if (dmcst == NULL)
  701. return -ENOMEM;
  702. dmcst->i2c_adap = i2c;
  703. for (k = no_of_demods-1; k >= 0; k--) {
  704. dmcst->cfg = &cfg[k];
  705. /* designated i2c address */
  706. new_addr = DIB3000MC_I2C_ADDRESS[k];
  707. dmcst->i2c_addr = new_addr;
  708. if (dib3000mc_identify(dmcst) != 0) {
  709. dmcst->i2c_addr = default_addr;
  710. if (dib3000mc_identify(dmcst) != 0) {
  711. dprintk("-E- DiB3000P/MC #%d: not identified\n", k);
  712. kfree(dmcst);
  713. return -ENODEV;
  714. }
  715. }
  716. dib3000mc_set_output_mode(dmcst, OUTMODE_MPEG2_PAR_CONT_CLK);
  717. // set new i2c address and force divstr (Bit 1) to value 0 (Bit 0)
  718. dib3000mc_write_word(dmcst, 1024, (new_addr << 3) | 0x1);
  719. dmcst->i2c_addr = new_addr;
  720. }
  721. for (k = 0; k < no_of_demods; k++) {
  722. dmcst->cfg = &cfg[k];
  723. dmcst->i2c_addr = DIB3000MC_I2C_ADDRESS[k];
  724. dib3000mc_write_word(dmcst, 1024, dmcst->i2c_addr << 3);
  725. /* turn off data output */
  726. dib3000mc_set_output_mode(dmcst, OUTMODE_HIGH_Z);
  727. }
  728. kfree(dmcst);
  729. return 0;
  730. }
  731. EXPORT_SYMBOL(dib3000mc_i2c_enumeration);
  732. static const struct dvb_frontend_ops dib3000mc_ops;
  733. struct dvb_frontend * dib3000mc_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib3000mc_config *cfg)
  734. {
  735. struct dvb_frontend *demod;
  736. struct dib3000mc_state *st;
  737. st = kzalloc(sizeof(struct dib3000mc_state), GFP_KERNEL);
  738. if (st == NULL)
  739. return NULL;
  740. st->cfg = cfg;
  741. st->i2c_adap = i2c_adap;
  742. st->i2c_addr = i2c_addr;
  743. demod = &st->demod;
  744. demod->demodulator_priv = st;
  745. memcpy(&st->demod.ops, &dib3000mc_ops, sizeof(struct dvb_frontend_ops));
  746. if (dib3000mc_identify(st) != 0)
  747. goto error;
  748. dibx000_init_i2c_master(&st->i2c_master, DIB3000MC, st->i2c_adap, st->i2c_addr);
  749. dib3000mc_write_word(st, 1037, 0x3130);
  750. return demod;
  751. error:
  752. kfree(st);
  753. return NULL;
  754. }
  755. EXPORT_SYMBOL_GPL(dib3000mc_attach);
  756. static const struct dvb_frontend_ops dib3000mc_ops = {
  757. .delsys = { SYS_DVBT },
  758. .info = {
  759. .name = "DiBcom 3000MC/P",
  760. .frequency_min_hz = 44250 * kHz,
  761. .frequency_max_hz = 867250 * kHz,
  762. .frequency_stepsize_hz = 62500,
  763. .caps = FE_CAN_INVERSION_AUTO |
  764. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  765. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  766. FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
  767. FE_CAN_TRANSMISSION_MODE_AUTO |
  768. FE_CAN_GUARD_INTERVAL_AUTO |
  769. FE_CAN_RECOVER |
  770. FE_CAN_HIERARCHY_AUTO,
  771. },
  772. .release = dib3000mc_release,
  773. .init = dib3000mc_init,
  774. .sleep = dib3000mc_sleep,
  775. .set_frontend = dib3000mc_set_frontend,
  776. .get_tune_settings = dib3000mc_fe_get_tune_settings,
  777. .get_frontend = dib3000mc_get_frontend,
  778. .read_status = dib3000mc_read_status,
  779. .read_ber = dib3000mc_read_ber,
  780. .read_signal_strength = dib3000mc_read_signal_strength,
  781. .read_snr = dib3000mc_read_snr,
  782. .read_ucblocks = dib3000mc_read_unc_blocks,
  783. };
  784. MODULE_AUTHOR("Patrick Boettcher <[email protected]>");
  785. MODULE_DESCRIPTION("Driver for the DiBcom 3000MC/P COFDM demodulator");
  786. MODULE_LICENSE("GPL");