af9033.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Afatech AF9033 demodulator driver
  4. *
  5. * Copyright (C) 2009 Antti Palosaari <[email protected]>
  6. * Copyright (C) 2012 Antti Palosaari <[email protected]>
  7. */
  8. #include "af9033_priv.h"
  9. struct af9033_dev {
  10. struct i2c_client *client;
  11. struct regmap *regmap;
  12. struct dvb_frontend fe;
  13. struct af9033_config cfg;
  14. bool is_af9035;
  15. bool is_it9135;
  16. u32 bandwidth_hz;
  17. bool ts_mode_parallel;
  18. bool ts_mode_serial;
  19. enum fe_status fe_status;
  20. u64 post_bit_error_prev; /* for old read_ber we return (curr - prev) */
  21. u64 post_bit_error;
  22. u64 post_bit_count;
  23. u64 error_block_count;
  24. u64 total_block_count;
  25. };
  26. /* Write reg val table using reg addr auto increment */
  27. static int af9033_wr_reg_val_tab(struct af9033_dev *dev,
  28. const struct reg_val *tab, int tab_len)
  29. {
  30. struct i2c_client *client = dev->client;
  31. #define MAX_TAB_LEN 212
  32. int ret, i, j;
  33. u8 buf[1 + MAX_TAB_LEN];
  34. dev_dbg(&client->dev, "tab_len=%d\n", tab_len);
  35. if (tab_len > sizeof(buf)) {
  36. dev_warn(&client->dev, "tab len %d is too big\n", tab_len);
  37. return -EINVAL;
  38. }
  39. for (i = 0, j = 0; i < tab_len; i++) {
  40. buf[j] = tab[i].val;
  41. if (i == tab_len - 1 || tab[i].reg != tab[i + 1].reg - 1) {
  42. ret = regmap_bulk_write(dev->regmap, tab[i].reg - j,
  43. buf, j + 1);
  44. if (ret)
  45. goto err;
  46. j = 0;
  47. } else {
  48. j++;
  49. }
  50. }
  51. return 0;
  52. err:
  53. dev_dbg(&client->dev, "failed=%d\n", ret);
  54. return ret;
  55. }
  56. static int af9033_init(struct dvb_frontend *fe)
  57. {
  58. struct af9033_dev *dev = fe->demodulator_priv;
  59. struct i2c_client *client = dev->client;
  60. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  61. int ret, i, len;
  62. unsigned int utmp;
  63. const struct reg_val *init;
  64. u8 buf[4];
  65. struct reg_val_mask tab[] = {
  66. { 0x80fb24, 0x00, 0x08 },
  67. { 0x80004c, 0x00, 0xff },
  68. { 0x00f641, dev->cfg.tuner, 0xff },
  69. { 0x80f5ca, 0x01, 0x01 },
  70. { 0x80f715, 0x01, 0x01 },
  71. { 0x00f41f, 0x04, 0x04 },
  72. { 0x00f41a, 0x01, 0x01 },
  73. { 0x80f731, 0x00, 0x01 },
  74. { 0x00d91e, 0x00, 0x01 },
  75. { 0x00d919, 0x00, 0x01 },
  76. { 0x80f732, 0x00, 0x01 },
  77. { 0x00d91f, 0x00, 0x01 },
  78. { 0x00d91a, 0x00, 0x01 },
  79. { 0x80f730, 0x00, 0x01 },
  80. { 0x80f778, 0x00, 0xff },
  81. { 0x80f73c, 0x01, 0x01 },
  82. { 0x80f776, 0x00, 0x01 },
  83. { 0x00d8fd, 0x01, 0xff },
  84. { 0x00d830, 0x01, 0xff },
  85. { 0x00d831, 0x00, 0xff },
  86. { 0x00d832, 0x00, 0xff },
  87. { 0x80f985, dev->ts_mode_serial, 0x01 },
  88. { 0x80f986, dev->ts_mode_parallel, 0x01 },
  89. { 0x00d827, 0x00, 0xff },
  90. { 0x00d829, 0x00, 0xff },
  91. { 0x800045, dev->cfg.adc_multiplier, 0xff },
  92. };
  93. dev_dbg(&client->dev, "\n");
  94. /* Main clk control */
  95. utmp = div_u64((u64)dev->cfg.clock * 0x80000, 1000000);
  96. buf[0] = (utmp >> 0) & 0xff;
  97. buf[1] = (utmp >> 8) & 0xff;
  98. buf[2] = (utmp >> 16) & 0xff;
  99. buf[3] = (utmp >> 24) & 0xff;
  100. ret = regmap_bulk_write(dev->regmap, 0x800025, buf, 4);
  101. if (ret)
  102. goto err;
  103. dev_dbg(&client->dev, "clk=%u clk_cw=%08x\n", dev->cfg.clock, utmp);
  104. /* ADC clk control */
  105. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  106. if (clock_adc_lut[i].clock == dev->cfg.clock)
  107. break;
  108. }
  109. if (i == ARRAY_SIZE(clock_adc_lut)) {
  110. dev_err(&client->dev, "Couldn't find ADC config for clock %d\n",
  111. dev->cfg.clock);
  112. ret = -ENODEV;
  113. goto err;
  114. }
  115. utmp = div_u64((u64)clock_adc_lut[i].adc * 0x80000, 1000000);
  116. buf[0] = (utmp >> 0) & 0xff;
  117. buf[1] = (utmp >> 8) & 0xff;
  118. buf[2] = (utmp >> 16) & 0xff;
  119. ret = regmap_bulk_write(dev->regmap, 0x80f1cd, buf, 3);
  120. if (ret)
  121. goto err;
  122. dev_dbg(&client->dev, "adc=%u adc_cw=%06x\n",
  123. clock_adc_lut[i].adc, utmp);
  124. /* Config register table */
  125. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  126. ret = regmap_update_bits(dev->regmap, tab[i].reg, tab[i].mask,
  127. tab[i].val);
  128. if (ret)
  129. goto err;
  130. }
  131. /* Demod clk output */
  132. if (dev->cfg.dyn0_clk) {
  133. ret = regmap_write(dev->regmap, 0x80fba8, 0x00);
  134. if (ret)
  135. goto err;
  136. }
  137. /* TS interface */
  138. if (dev->cfg.ts_mode == AF9033_TS_MODE_USB) {
  139. ret = regmap_update_bits(dev->regmap, 0x80f9a5, 0x01, 0x00);
  140. if (ret)
  141. goto err;
  142. ret = regmap_update_bits(dev->regmap, 0x80f9b5, 0x01, 0x01);
  143. if (ret)
  144. goto err;
  145. } else {
  146. ret = regmap_update_bits(dev->regmap, 0x80f990, 0x01, 0x00);
  147. if (ret)
  148. goto err;
  149. ret = regmap_update_bits(dev->regmap, 0x80f9b5, 0x01, 0x00);
  150. if (ret)
  151. goto err;
  152. }
  153. /* Demod core settings */
  154. dev_dbg(&client->dev, "load ofsm settings\n");
  155. switch (dev->cfg.tuner) {
  156. case AF9033_TUNER_IT9135_38:
  157. case AF9033_TUNER_IT9135_51:
  158. case AF9033_TUNER_IT9135_52:
  159. len = ARRAY_SIZE(ofsm_init_it9135_v1);
  160. init = ofsm_init_it9135_v1;
  161. break;
  162. case AF9033_TUNER_IT9135_60:
  163. case AF9033_TUNER_IT9135_61:
  164. case AF9033_TUNER_IT9135_62:
  165. len = ARRAY_SIZE(ofsm_init_it9135_v2);
  166. init = ofsm_init_it9135_v2;
  167. break;
  168. default:
  169. len = ARRAY_SIZE(ofsm_init);
  170. init = ofsm_init;
  171. break;
  172. }
  173. ret = af9033_wr_reg_val_tab(dev, init, len);
  174. if (ret)
  175. goto err;
  176. /* Demod tuner specific settings */
  177. dev_dbg(&client->dev, "load tuner specific settings\n");
  178. switch (dev->cfg.tuner) {
  179. case AF9033_TUNER_TUA9001:
  180. len = ARRAY_SIZE(tuner_init_tua9001);
  181. init = tuner_init_tua9001;
  182. break;
  183. case AF9033_TUNER_FC0011:
  184. len = ARRAY_SIZE(tuner_init_fc0011);
  185. init = tuner_init_fc0011;
  186. break;
  187. case AF9033_TUNER_MXL5007T:
  188. len = ARRAY_SIZE(tuner_init_mxl5007t);
  189. init = tuner_init_mxl5007t;
  190. break;
  191. case AF9033_TUNER_TDA18218:
  192. len = ARRAY_SIZE(tuner_init_tda18218);
  193. init = tuner_init_tda18218;
  194. break;
  195. case AF9033_TUNER_FC2580:
  196. len = ARRAY_SIZE(tuner_init_fc2580);
  197. init = tuner_init_fc2580;
  198. break;
  199. case AF9033_TUNER_FC0012:
  200. len = ARRAY_SIZE(tuner_init_fc0012);
  201. init = tuner_init_fc0012;
  202. break;
  203. case AF9033_TUNER_IT9135_38:
  204. len = ARRAY_SIZE(tuner_init_it9135_38);
  205. init = tuner_init_it9135_38;
  206. break;
  207. case AF9033_TUNER_IT9135_51:
  208. len = ARRAY_SIZE(tuner_init_it9135_51);
  209. init = tuner_init_it9135_51;
  210. break;
  211. case AF9033_TUNER_IT9135_52:
  212. len = ARRAY_SIZE(tuner_init_it9135_52);
  213. init = tuner_init_it9135_52;
  214. break;
  215. case AF9033_TUNER_IT9135_60:
  216. len = ARRAY_SIZE(tuner_init_it9135_60);
  217. init = tuner_init_it9135_60;
  218. break;
  219. case AF9033_TUNER_IT9135_61:
  220. len = ARRAY_SIZE(tuner_init_it9135_61);
  221. init = tuner_init_it9135_61;
  222. break;
  223. case AF9033_TUNER_IT9135_62:
  224. len = ARRAY_SIZE(tuner_init_it9135_62);
  225. init = tuner_init_it9135_62;
  226. break;
  227. default:
  228. dev_dbg(&client->dev, "unsupported tuner ID=%d\n",
  229. dev->cfg.tuner);
  230. ret = -ENODEV;
  231. goto err;
  232. }
  233. ret = af9033_wr_reg_val_tab(dev, init, len);
  234. if (ret)
  235. goto err;
  236. if (dev->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  237. ret = regmap_update_bits(dev->regmap, 0x00d91c, 0x01, 0x01);
  238. if (ret)
  239. goto err;
  240. ret = regmap_update_bits(dev->regmap, 0x00d917, 0x01, 0x00);
  241. if (ret)
  242. goto err;
  243. ret = regmap_update_bits(dev->regmap, 0x00d916, 0x01, 0x00);
  244. if (ret)
  245. goto err;
  246. }
  247. switch (dev->cfg.tuner) {
  248. case AF9033_TUNER_IT9135_60:
  249. case AF9033_TUNER_IT9135_61:
  250. case AF9033_TUNER_IT9135_62:
  251. ret = regmap_write(dev->regmap, 0x800000, 0x01);
  252. if (ret)
  253. goto err;
  254. }
  255. dev->bandwidth_hz = 0; /* Force to program all parameters */
  256. /* Init stats here in order signal app which stats are supported */
  257. c->strength.len = 1;
  258. c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  259. c->cnr.len = 1;
  260. c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  261. c->block_count.len = 1;
  262. c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  263. c->block_error.len = 1;
  264. c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  265. c->post_bit_count.len = 1;
  266. c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  267. c->post_bit_error.len = 1;
  268. c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  269. return 0;
  270. err:
  271. dev_dbg(&client->dev, "failed=%d\n", ret);
  272. return ret;
  273. }
  274. static int af9033_sleep(struct dvb_frontend *fe)
  275. {
  276. struct af9033_dev *dev = fe->demodulator_priv;
  277. struct i2c_client *client = dev->client;
  278. int ret;
  279. unsigned int utmp;
  280. dev_dbg(&client->dev, "\n");
  281. ret = regmap_write(dev->regmap, 0x80004c, 0x01);
  282. if (ret)
  283. goto err;
  284. ret = regmap_write(dev->regmap, 0x800000, 0x00);
  285. if (ret)
  286. goto err;
  287. ret = regmap_read_poll_timeout(dev->regmap, 0x80004c, utmp, utmp == 0,
  288. 5000, 1000000);
  289. if (ret)
  290. goto err;
  291. ret = regmap_update_bits(dev->regmap, 0x80fb24, 0x08, 0x08);
  292. if (ret)
  293. goto err;
  294. /* Prevent current leak by setting TS interface to parallel mode */
  295. if (dev->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  296. /* Enable parallel TS */
  297. ret = regmap_update_bits(dev->regmap, 0x00d917, 0x01, 0x00);
  298. if (ret)
  299. goto err;
  300. ret = regmap_update_bits(dev->regmap, 0x00d916, 0x01, 0x01);
  301. if (ret)
  302. goto err;
  303. }
  304. return 0;
  305. err:
  306. dev_dbg(&client->dev, "failed=%d\n", ret);
  307. return ret;
  308. }
  309. static int af9033_get_tune_settings(struct dvb_frontend *fe,
  310. struct dvb_frontend_tune_settings *fesettings)
  311. {
  312. /* 800 => 2000 because IT9135 v2 is slow to gain lock */
  313. fesettings->min_delay_ms = 2000;
  314. fesettings->step_size = 0;
  315. fesettings->max_drift = 0;
  316. return 0;
  317. }
  318. static int af9033_set_frontend(struct dvb_frontend *fe)
  319. {
  320. struct af9033_dev *dev = fe->demodulator_priv;
  321. struct i2c_client *client = dev->client;
  322. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  323. int ret, i;
  324. unsigned int utmp, adc_freq;
  325. u8 tmp, buf[3], bandwidth_reg_val;
  326. u32 if_frequency;
  327. dev_dbg(&client->dev, "frequency=%u bandwidth_hz=%u\n",
  328. c->frequency, c->bandwidth_hz);
  329. /* Check bandwidth */
  330. switch (c->bandwidth_hz) {
  331. case 6000000:
  332. bandwidth_reg_val = 0x00;
  333. break;
  334. case 7000000:
  335. bandwidth_reg_val = 0x01;
  336. break;
  337. case 8000000:
  338. bandwidth_reg_val = 0x02;
  339. break;
  340. default:
  341. dev_dbg(&client->dev, "invalid bandwidth_hz\n");
  342. ret = -EINVAL;
  343. goto err;
  344. }
  345. /* Program tuner */
  346. if (fe->ops.tuner_ops.set_params)
  347. fe->ops.tuner_ops.set_params(fe);
  348. /* Coefficients */
  349. if (c->bandwidth_hz != dev->bandwidth_hz) {
  350. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  351. if (coeff_lut[i].clock == dev->cfg.clock &&
  352. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  353. break;
  354. }
  355. }
  356. if (i == ARRAY_SIZE(coeff_lut)) {
  357. dev_err(&client->dev,
  358. "Couldn't find config for clock %u\n",
  359. dev->cfg.clock);
  360. ret = -EINVAL;
  361. goto err;
  362. }
  363. ret = regmap_bulk_write(dev->regmap, 0x800001, coeff_lut[i].val,
  364. sizeof(coeff_lut[i].val));
  365. if (ret)
  366. goto err;
  367. }
  368. /* IF frequency control */
  369. if (c->bandwidth_hz != dev->bandwidth_hz) {
  370. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  371. if (clock_adc_lut[i].clock == dev->cfg.clock)
  372. break;
  373. }
  374. if (i == ARRAY_SIZE(clock_adc_lut)) {
  375. dev_err(&client->dev,
  376. "Couldn't find ADC clock for clock %u\n",
  377. dev->cfg.clock);
  378. ret = -EINVAL;
  379. goto err;
  380. }
  381. adc_freq = clock_adc_lut[i].adc;
  382. if (dev->cfg.adc_multiplier == AF9033_ADC_MULTIPLIER_2X)
  383. adc_freq = 2 * adc_freq;
  384. /* Get used IF frequency */
  385. if (fe->ops.tuner_ops.get_if_frequency)
  386. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  387. else
  388. if_frequency = 0;
  389. utmp = DIV_ROUND_CLOSEST_ULL((u64)if_frequency * 0x800000,
  390. adc_freq);
  391. if (!dev->cfg.spec_inv && if_frequency)
  392. utmp = 0x800000 - utmp;
  393. buf[0] = (utmp >> 0) & 0xff;
  394. buf[1] = (utmp >> 8) & 0xff;
  395. buf[2] = (utmp >> 16) & 0xff;
  396. ret = regmap_bulk_write(dev->regmap, 0x800029, buf, 3);
  397. if (ret)
  398. goto err;
  399. dev_dbg(&client->dev, "if_frequency_cw=%06x\n", utmp);
  400. dev->bandwidth_hz = c->bandwidth_hz;
  401. }
  402. ret = regmap_update_bits(dev->regmap, 0x80f904, 0x03,
  403. bandwidth_reg_val);
  404. if (ret)
  405. goto err;
  406. ret = regmap_write(dev->regmap, 0x800040, 0x00);
  407. if (ret)
  408. goto err;
  409. ret = regmap_write(dev->regmap, 0x800047, 0x00);
  410. if (ret)
  411. goto err;
  412. ret = regmap_update_bits(dev->regmap, 0x80f999, 0x01, 0x00);
  413. if (ret)
  414. goto err;
  415. if (c->frequency <= 230000000)
  416. tmp = 0x00; /* VHF */
  417. else
  418. tmp = 0x01; /* UHF */
  419. ret = regmap_write(dev->regmap, 0x80004b, tmp);
  420. if (ret)
  421. goto err;
  422. /* Reset FSM */
  423. ret = regmap_write(dev->regmap, 0x800000, 0x00);
  424. if (ret)
  425. goto err;
  426. return 0;
  427. err:
  428. dev_dbg(&client->dev, "failed=%d\n", ret);
  429. return ret;
  430. }
  431. static int af9033_get_frontend(struct dvb_frontend *fe,
  432. struct dtv_frontend_properties *c)
  433. {
  434. struct af9033_dev *dev = fe->demodulator_priv;
  435. struct i2c_client *client = dev->client;
  436. int ret;
  437. u8 buf[8];
  438. dev_dbg(&client->dev, "\n");
  439. /* Read all needed TPS registers */
  440. ret = regmap_bulk_read(dev->regmap, 0x80f900, buf, 8);
  441. if (ret)
  442. goto err;
  443. switch ((buf[0] >> 0) & 3) {
  444. case 0:
  445. c->transmission_mode = TRANSMISSION_MODE_2K;
  446. break;
  447. case 1:
  448. c->transmission_mode = TRANSMISSION_MODE_8K;
  449. break;
  450. }
  451. switch ((buf[1] >> 0) & 3) {
  452. case 0:
  453. c->guard_interval = GUARD_INTERVAL_1_32;
  454. break;
  455. case 1:
  456. c->guard_interval = GUARD_INTERVAL_1_16;
  457. break;
  458. case 2:
  459. c->guard_interval = GUARD_INTERVAL_1_8;
  460. break;
  461. case 3:
  462. c->guard_interval = GUARD_INTERVAL_1_4;
  463. break;
  464. }
  465. switch ((buf[2] >> 0) & 7) {
  466. case 0:
  467. c->hierarchy = HIERARCHY_NONE;
  468. break;
  469. case 1:
  470. c->hierarchy = HIERARCHY_1;
  471. break;
  472. case 2:
  473. c->hierarchy = HIERARCHY_2;
  474. break;
  475. case 3:
  476. c->hierarchy = HIERARCHY_4;
  477. break;
  478. }
  479. switch ((buf[3] >> 0) & 3) {
  480. case 0:
  481. c->modulation = QPSK;
  482. break;
  483. case 1:
  484. c->modulation = QAM_16;
  485. break;
  486. case 2:
  487. c->modulation = QAM_64;
  488. break;
  489. }
  490. switch ((buf[4] >> 0) & 3) {
  491. case 0:
  492. c->bandwidth_hz = 6000000;
  493. break;
  494. case 1:
  495. c->bandwidth_hz = 7000000;
  496. break;
  497. case 2:
  498. c->bandwidth_hz = 8000000;
  499. break;
  500. }
  501. switch ((buf[6] >> 0) & 7) {
  502. case 0:
  503. c->code_rate_HP = FEC_1_2;
  504. break;
  505. case 1:
  506. c->code_rate_HP = FEC_2_3;
  507. break;
  508. case 2:
  509. c->code_rate_HP = FEC_3_4;
  510. break;
  511. case 3:
  512. c->code_rate_HP = FEC_5_6;
  513. break;
  514. case 4:
  515. c->code_rate_HP = FEC_7_8;
  516. break;
  517. case 5:
  518. c->code_rate_HP = FEC_NONE;
  519. break;
  520. }
  521. switch ((buf[7] >> 0) & 7) {
  522. case 0:
  523. c->code_rate_LP = FEC_1_2;
  524. break;
  525. case 1:
  526. c->code_rate_LP = FEC_2_3;
  527. break;
  528. case 2:
  529. c->code_rate_LP = FEC_3_4;
  530. break;
  531. case 3:
  532. c->code_rate_LP = FEC_5_6;
  533. break;
  534. case 4:
  535. c->code_rate_LP = FEC_7_8;
  536. break;
  537. case 5:
  538. c->code_rate_LP = FEC_NONE;
  539. break;
  540. }
  541. return 0;
  542. err:
  543. dev_dbg(&client->dev, "failed=%d\n", ret);
  544. return ret;
  545. }
  546. static int af9033_read_status(struct dvb_frontend *fe, enum fe_status *status)
  547. {
  548. struct af9033_dev *dev = fe->demodulator_priv;
  549. struct i2c_client *client = dev->client;
  550. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  551. int ret, tmp = 0;
  552. u8 buf[7];
  553. unsigned int utmp, utmp1;
  554. dev_dbg(&client->dev, "\n");
  555. *status = 0;
  556. /* Radio channel status: 0=no result, 1=has signal, 2=no signal */
  557. ret = regmap_read(dev->regmap, 0x800047, &utmp);
  558. if (ret)
  559. goto err;
  560. /* Has signal */
  561. if (utmp == 0x01)
  562. *status |= FE_HAS_SIGNAL;
  563. if (utmp != 0x02) {
  564. /* TPS lock */
  565. ret = regmap_read(dev->regmap, 0x80f5a9, &utmp);
  566. if (ret)
  567. goto err;
  568. if ((utmp >> 0) & 0x01)
  569. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  570. FE_HAS_VITERBI;
  571. /* Full lock */
  572. ret = regmap_read(dev->regmap, 0x80f999, &utmp);
  573. if (ret)
  574. goto err;
  575. if ((utmp >> 0) & 0x01)
  576. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  577. FE_HAS_VITERBI | FE_HAS_SYNC |
  578. FE_HAS_LOCK;
  579. }
  580. dev->fe_status = *status;
  581. /* Signal strength */
  582. if (dev->fe_status & FE_HAS_SIGNAL) {
  583. if (dev->is_af9035) {
  584. ret = regmap_read(dev->regmap, 0x80004a, &utmp);
  585. if (ret)
  586. goto err;
  587. tmp = -utmp * 1000;
  588. } else {
  589. ret = regmap_read(dev->regmap, 0x8000f7, &utmp);
  590. if (ret)
  591. goto err;
  592. tmp = (utmp - 100) * 1000;
  593. }
  594. c->strength.len = 1;
  595. c->strength.stat[0].scale = FE_SCALE_DECIBEL;
  596. c->strength.stat[0].svalue = tmp;
  597. } else {
  598. c->strength.len = 1;
  599. c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  600. }
  601. /* CNR */
  602. if (dev->fe_status & FE_HAS_VITERBI) {
  603. /* Read raw SNR value */
  604. ret = regmap_bulk_read(dev->regmap, 0x80002c, buf, 3);
  605. if (ret)
  606. goto err;
  607. utmp1 = buf[2] << 16 | buf[1] << 8 | buf[0] << 0;
  608. /* Read superframe number */
  609. ret = regmap_read(dev->regmap, 0x80f78b, &utmp);
  610. if (ret)
  611. goto err;
  612. if (utmp)
  613. utmp1 /= utmp;
  614. /* Read current transmission mode */
  615. ret = regmap_read(dev->regmap, 0x80f900, &utmp);
  616. if (ret)
  617. goto err;
  618. switch ((utmp >> 0) & 3) {
  619. case 0:
  620. /* 2k */
  621. utmp1 *= 4;
  622. break;
  623. case 1:
  624. /* 8k */
  625. utmp1 *= 1;
  626. break;
  627. case 2:
  628. /* 4k */
  629. utmp1 *= 2;
  630. break;
  631. default:
  632. utmp1 *= 0;
  633. break;
  634. }
  635. /* Read current modulation */
  636. ret = regmap_read(dev->regmap, 0x80f903, &utmp);
  637. if (ret)
  638. goto err;
  639. switch ((utmp >> 0) & 3) {
  640. case 0:
  641. /*
  642. * QPSK
  643. * CNR[dB] 13 * -log10((1690000 - value) / value) + 2.6
  644. * value [653799, 1689999], 2.6 / 13 = 3355443
  645. */
  646. utmp1 = clamp(utmp1, 653799U, 1689999U);
  647. utmp1 = ((u64)(intlog10(utmp1)
  648. - intlog10(1690000 - utmp1)
  649. + 3355443) * 13 * 1000) >> 24;
  650. break;
  651. case 1:
  652. /*
  653. * QAM-16
  654. * CNR[dB] 6 * log10((value - 370000) / (828000 - value)) + 15.7
  655. * value [371105, 827999], 15.7 / 6 = 43900382
  656. */
  657. utmp1 = clamp(utmp1, 371105U, 827999U);
  658. utmp1 = ((u64)(intlog10(utmp1 - 370000)
  659. - intlog10(828000 - utmp1)
  660. + 43900382) * 6 * 1000) >> 24;
  661. break;
  662. case 2:
  663. /*
  664. * QAM-64
  665. * CNR[dB] 8 * log10((value - 193000) / (425000 - value)) + 23.8
  666. * value [193246, 424999], 23.8 / 8 = 49912218
  667. */
  668. utmp1 = clamp(utmp1, 193246U, 424999U);
  669. utmp1 = ((u64)(intlog10(utmp1 - 193000)
  670. - intlog10(425000 - utmp1)
  671. + 49912218) * 8 * 1000) >> 24;
  672. break;
  673. default:
  674. utmp1 = 0;
  675. break;
  676. }
  677. dev_dbg(&client->dev, "cnr=%u\n", utmp1);
  678. c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
  679. c->cnr.stat[0].svalue = utmp1;
  680. } else {
  681. c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  682. }
  683. /* UCB/PER/BER */
  684. if (dev->fe_status & FE_HAS_LOCK) {
  685. /* Outer FEC, 204 byte packets */
  686. u16 abort_packet_count, rsd_packet_count;
  687. /* Inner FEC, bits */
  688. u32 rsd_bit_err_count;
  689. /*
  690. * Packet count used for measurement is 10000
  691. * (rsd_packet_count). Maybe it should be increased?
  692. */
  693. ret = regmap_bulk_read(dev->regmap, 0x800032, buf, 7);
  694. if (ret)
  695. goto err;
  696. abort_packet_count = (buf[1] << 8) | (buf[0] << 0);
  697. rsd_bit_err_count = (buf[4] << 16) | (buf[3] << 8) | buf[2];
  698. rsd_packet_count = (buf[6] << 8) | (buf[5] << 0);
  699. dev->error_block_count += abort_packet_count;
  700. dev->total_block_count += rsd_packet_count;
  701. dev->post_bit_error += rsd_bit_err_count;
  702. dev->post_bit_count += rsd_packet_count * 204 * 8;
  703. c->block_count.len = 1;
  704. c->block_count.stat[0].scale = FE_SCALE_COUNTER;
  705. c->block_count.stat[0].uvalue = dev->total_block_count;
  706. c->block_error.len = 1;
  707. c->block_error.stat[0].scale = FE_SCALE_COUNTER;
  708. c->block_error.stat[0].uvalue = dev->error_block_count;
  709. c->post_bit_count.len = 1;
  710. c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
  711. c->post_bit_count.stat[0].uvalue = dev->post_bit_count;
  712. c->post_bit_error.len = 1;
  713. c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
  714. c->post_bit_error.stat[0].uvalue = dev->post_bit_error;
  715. }
  716. return 0;
  717. err:
  718. dev_dbg(&client->dev, "failed=%d\n", ret);
  719. return ret;
  720. }
  721. static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
  722. {
  723. struct af9033_dev *dev = fe->demodulator_priv;
  724. struct i2c_client *client = dev->client;
  725. struct dtv_frontend_properties *c = &dev->fe.dtv_property_cache;
  726. int ret;
  727. unsigned int utmp;
  728. dev_dbg(&client->dev, "\n");
  729. /* Use DVBv5 CNR */
  730. if (c->cnr.stat[0].scale == FE_SCALE_DECIBEL) {
  731. /* Return 0.1 dB for AF9030 and 0-0xffff for IT9130. */
  732. if (dev->is_af9035) {
  733. /* 1000x => 10x (0.1 dB) */
  734. *snr = div_s64(c->cnr.stat[0].svalue, 100);
  735. } else {
  736. /* 1000x => 1x (1 dB) */
  737. *snr = div_s64(c->cnr.stat[0].svalue, 1000);
  738. /* Read current modulation */
  739. ret = regmap_read(dev->regmap, 0x80f903, &utmp);
  740. if (ret)
  741. goto err;
  742. /* scale value to 0x0000-0xffff */
  743. switch ((utmp >> 0) & 3) {
  744. case 0:
  745. *snr = *snr * 0xffff / 23;
  746. break;
  747. case 1:
  748. *snr = *snr * 0xffff / 26;
  749. break;
  750. case 2:
  751. *snr = *snr * 0xffff / 32;
  752. break;
  753. default:
  754. ret = -EINVAL;
  755. goto err;
  756. }
  757. }
  758. } else {
  759. *snr = 0;
  760. }
  761. return 0;
  762. err:
  763. dev_dbg(&client->dev, "failed=%d\n", ret);
  764. return ret;
  765. }
  766. static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  767. {
  768. struct af9033_dev *dev = fe->demodulator_priv;
  769. struct i2c_client *client = dev->client;
  770. struct dtv_frontend_properties *c = &dev->fe.dtv_property_cache;
  771. int ret, tmp, power_real;
  772. unsigned int utmp;
  773. u8 gain_offset, buf[7];
  774. dev_dbg(&client->dev, "\n");
  775. if (dev->is_af9035) {
  776. /* Read signal strength of 0-100 scale */
  777. ret = regmap_read(dev->regmap, 0x800048, &utmp);
  778. if (ret)
  779. goto err;
  780. /* Scale value to 0x0000-0xffff */
  781. *strength = utmp * 0xffff / 100;
  782. } else {
  783. ret = regmap_read(dev->regmap, 0x8000f7, &utmp);
  784. if (ret)
  785. goto err;
  786. ret = regmap_bulk_read(dev->regmap, 0x80f900, buf, 7);
  787. if (ret)
  788. goto err;
  789. if (c->frequency <= 300000000)
  790. gain_offset = 7; /* VHF */
  791. else
  792. gain_offset = 4; /* UHF */
  793. power_real = (utmp - 100 - gain_offset) -
  794. power_reference[((buf[3] >> 0) & 3)][((buf[6] >> 0) & 7)];
  795. if (power_real < -15)
  796. tmp = 0;
  797. else if ((power_real >= -15) && (power_real < 0))
  798. tmp = (2 * (power_real + 15)) / 3;
  799. else if ((power_real >= 0) && (power_real < 20))
  800. tmp = 4 * power_real + 10;
  801. else if ((power_real >= 20) && (power_real < 35))
  802. tmp = (2 * (power_real - 20)) / 3 + 90;
  803. else
  804. tmp = 100;
  805. /* Scale value to 0x0000-0xffff */
  806. *strength = tmp * 0xffff / 100;
  807. }
  808. return 0;
  809. err:
  810. dev_dbg(&client->dev, "failed=%d\n", ret);
  811. return ret;
  812. }
  813. static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
  814. {
  815. struct af9033_dev *dev = fe->demodulator_priv;
  816. *ber = (dev->post_bit_error - dev->post_bit_error_prev);
  817. dev->post_bit_error_prev = dev->post_bit_error;
  818. return 0;
  819. }
  820. static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  821. {
  822. struct af9033_dev *dev = fe->demodulator_priv;
  823. *ucblocks = dev->error_block_count;
  824. return 0;
  825. }
  826. static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  827. {
  828. struct af9033_dev *dev = fe->demodulator_priv;
  829. struct i2c_client *client = dev->client;
  830. int ret;
  831. dev_dbg(&client->dev, "enable=%d\n", enable);
  832. ret = regmap_update_bits(dev->regmap, 0x00fa04, 0x01, enable);
  833. if (ret)
  834. goto err;
  835. return 0;
  836. err:
  837. dev_dbg(&client->dev, "failed=%d\n", ret);
  838. return ret;
  839. }
  840. static int af9033_pid_filter_ctrl(struct dvb_frontend *fe, int onoff)
  841. {
  842. struct af9033_dev *dev = fe->demodulator_priv;
  843. struct i2c_client *client = dev->client;
  844. int ret;
  845. dev_dbg(&client->dev, "onoff=%d\n", onoff);
  846. ret = regmap_update_bits(dev->regmap, 0x80f993, 0x01, onoff);
  847. if (ret)
  848. goto err;
  849. return 0;
  850. err:
  851. dev_dbg(&client->dev, "failed=%d\n", ret);
  852. return ret;
  853. }
  854. static int af9033_pid_filter(struct dvb_frontend *fe, int index, u16 pid,
  855. int onoff)
  856. {
  857. struct af9033_dev *dev = fe->demodulator_priv;
  858. struct i2c_client *client = dev->client;
  859. int ret;
  860. u8 wbuf[2] = {(pid >> 0) & 0xff, (pid >> 8) & 0xff};
  861. dev_dbg(&client->dev, "index=%d pid=%04x onoff=%d\n",
  862. index, pid, onoff);
  863. if (pid > 0x1fff)
  864. return 0;
  865. ret = regmap_bulk_write(dev->regmap, 0x80f996, wbuf, 2);
  866. if (ret)
  867. goto err;
  868. ret = regmap_write(dev->regmap, 0x80f994, onoff);
  869. if (ret)
  870. goto err;
  871. ret = regmap_write(dev->regmap, 0x80f995, index);
  872. if (ret)
  873. goto err;
  874. return 0;
  875. err:
  876. dev_dbg(&client->dev, "failed=%d\n", ret);
  877. return ret;
  878. }
  879. static const struct dvb_frontend_ops af9033_ops = {
  880. .delsys = {SYS_DVBT},
  881. .info = {
  882. .name = "Afatech AF9033 (DVB-T)",
  883. .frequency_min_hz = 174 * MHz,
  884. .frequency_max_hz = 862 * MHz,
  885. .frequency_stepsize_hz = 250 * kHz,
  886. .caps = FE_CAN_FEC_1_2 |
  887. FE_CAN_FEC_2_3 |
  888. FE_CAN_FEC_3_4 |
  889. FE_CAN_FEC_5_6 |
  890. FE_CAN_FEC_7_8 |
  891. FE_CAN_FEC_AUTO |
  892. FE_CAN_QPSK |
  893. FE_CAN_QAM_16 |
  894. FE_CAN_QAM_64 |
  895. FE_CAN_QAM_AUTO |
  896. FE_CAN_TRANSMISSION_MODE_AUTO |
  897. FE_CAN_GUARD_INTERVAL_AUTO |
  898. FE_CAN_HIERARCHY_AUTO |
  899. FE_CAN_RECOVER |
  900. FE_CAN_MUTE_TS
  901. },
  902. .init = af9033_init,
  903. .sleep = af9033_sleep,
  904. .get_tune_settings = af9033_get_tune_settings,
  905. .set_frontend = af9033_set_frontend,
  906. .get_frontend = af9033_get_frontend,
  907. .read_status = af9033_read_status,
  908. .read_snr = af9033_read_snr,
  909. .read_signal_strength = af9033_read_signal_strength,
  910. .read_ber = af9033_read_ber,
  911. .read_ucblocks = af9033_read_ucblocks,
  912. .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
  913. };
  914. static int af9033_probe(struct i2c_client *client,
  915. const struct i2c_device_id *id)
  916. {
  917. struct af9033_config *cfg = client->dev.platform_data;
  918. struct af9033_dev *dev;
  919. int ret;
  920. u8 buf[8];
  921. u32 reg;
  922. static const struct regmap_config regmap_config = {
  923. .reg_bits = 24,
  924. .val_bits = 8,
  925. };
  926. /* Allocate memory for the internal state */
  927. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  928. if (!dev) {
  929. ret = -ENOMEM;
  930. goto err;
  931. }
  932. /* Setup the state */
  933. dev->client = client;
  934. memcpy(&dev->cfg, cfg, sizeof(dev->cfg));
  935. switch (dev->cfg.ts_mode) {
  936. case AF9033_TS_MODE_PARALLEL:
  937. dev->ts_mode_parallel = true;
  938. break;
  939. case AF9033_TS_MODE_SERIAL:
  940. dev->ts_mode_serial = true;
  941. break;
  942. case AF9033_TS_MODE_USB:
  943. /* USB mode for AF9035 */
  944. default:
  945. break;
  946. }
  947. if (dev->cfg.clock != 12000000) {
  948. ret = -ENODEV;
  949. dev_err(&client->dev,
  950. "Unsupported clock %u Hz. Only 12000000 Hz is supported currently\n",
  951. dev->cfg.clock);
  952. goto err_kfree;
  953. }
  954. /* Create regmap */
  955. dev->regmap = regmap_init_i2c(client, &regmap_config);
  956. if (IS_ERR(dev->regmap)) {
  957. ret = PTR_ERR(dev->regmap);
  958. goto err_kfree;
  959. }
  960. /* Firmware version */
  961. switch (dev->cfg.tuner) {
  962. case AF9033_TUNER_IT9135_38:
  963. case AF9033_TUNER_IT9135_51:
  964. case AF9033_TUNER_IT9135_52:
  965. case AF9033_TUNER_IT9135_60:
  966. case AF9033_TUNER_IT9135_61:
  967. case AF9033_TUNER_IT9135_62:
  968. dev->is_it9135 = true;
  969. reg = 0x004bfc;
  970. break;
  971. default:
  972. dev->is_af9035 = true;
  973. reg = 0x0083e9;
  974. break;
  975. }
  976. ret = regmap_bulk_read(dev->regmap, reg, &buf[0], 4);
  977. if (ret)
  978. goto err_regmap_exit;
  979. ret = regmap_bulk_read(dev->regmap, 0x804191, &buf[4], 4);
  980. if (ret)
  981. goto err_regmap_exit;
  982. dev_info(&client->dev,
  983. "firmware version: LINK %d.%d.%d.%d - OFDM %d.%d.%d.%d\n",
  984. buf[0], buf[1], buf[2], buf[3],
  985. buf[4], buf[5], buf[6], buf[7]);
  986. /* Sleep as chip seems to be partly active by default */
  987. /* IT9135 did not like to sleep at that early */
  988. if (dev->is_af9035) {
  989. ret = regmap_write(dev->regmap, 0x80004c, 0x01);
  990. if (ret)
  991. goto err_regmap_exit;
  992. ret = regmap_write(dev->regmap, 0x800000, 0x00);
  993. if (ret)
  994. goto err_regmap_exit;
  995. }
  996. /* Create dvb frontend */
  997. memcpy(&dev->fe.ops, &af9033_ops, sizeof(dev->fe.ops));
  998. dev->fe.demodulator_priv = dev;
  999. *cfg->fe = &dev->fe;
  1000. if (cfg->ops) {
  1001. cfg->ops->pid_filter = af9033_pid_filter;
  1002. cfg->ops->pid_filter_ctrl = af9033_pid_filter_ctrl;
  1003. }
  1004. cfg->regmap = dev->regmap;
  1005. i2c_set_clientdata(client, dev);
  1006. dev_info(&client->dev, "Afatech AF9033 successfully attached\n");
  1007. return 0;
  1008. err_regmap_exit:
  1009. regmap_exit(dev->regmap);
  1010. err_kfree:
  1011. kfree(dev);
  1012. err:
  1013. dev_dbg(&client->dev, "failed=%d\n", ret);
  1014. return ret;
  1015. }
  1016. static void af9033_remove(struct i2c_client *client)
  1017. {
  1018. struct af9033_dev *dev = i2c_get_clientdata(client);
  1019. dev_dbg(&client->dev, "\n");
  1020. regmap_exit(dev->regmap);
  1021. kfree(dev);
  1022. }
  1023. static const struct i2c_device_id af9033_id_table[] = {
  1024. {"af9033", 0},
  1025. {}
  1026. };
  1027. MODULE_DEVICE_TABLE(i2c, af9033_id_table);
  1028. static struct i2c_driver af9033_driver = {
  1029. .driver = {
  1030. .name = "af9033",
  1031. .suppress_bind_attrs = true,
  1032. },
  1033. .probe = af9033_probe,
  1034. .remove = af9033_remove,
  1035. .id_table = af9033_id_table,
  1036. };
  1037. module_i2c_driver(af9033_driver);
  1038. MODULE_AUTHOR("Antti Palosaari <[email protected]>");
  1039. MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
  1040. MODULE_LICENSE("GPL");