raid5.h 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _RAID5_H
  3. #define _RAID5_H
  4. #include <linux/raid/xor.h>
  5. #include <linux/dmaengine.h>
  6. #include <linux/local_lock.h>
  7. /*
  8. *
  9. * Each stripe contains one buffer per device. Each buffer can be in
  10. * one of a number of states stored in "flags". Changes between
  11. * these states happen *almost* exclusively under the protection of the
  12. * STRIPE_ACTIVE flag. Some very specific changes can happen in bi_end_io, and
  13. * these are not protected by STRIPE_ACTIVE.
  14. *
  15. * The flag bits that are used to represent these states are:
  16. * R5_UPTODATE and R5_LOCKED
  17. *
  18. * State Empty == !UPTODATE, !LOCK
  19. * We have no data, and there is no active request
  20. * State Want == !UPTODATE, LOCK
  21. * A read request is being submitted for this block
  22. * State Dirty == UPTODATE, LOCK
  23. * Some new data is in this buffer, and it is being written out
  24. * State Clean == UPTODATE, !LOCK
  25. * We have valid data which is the same as on disc
  26. *
  27. * The possible state transitions are:
  28. *
  29. * Empty -> Want - on read or write to get old data for parity calc
  30. * Empty -> Dirty - on compute_parity to satisfy write/sync request.
  31. * Empty -> Clean - on compute_block when computing a block for failed drive
  32. * Want -> Empty - on failed read
  33. * Want -> Clean - on successful completion of read request
  34. * Dirty -> Clean - on successful completion of write request
  35. * Dirty -> Clean - on failed write
  36. * Clean -> Dirty - on compute_parity to satisfy write/sync (RECONSTRUCT or RMW)
  37. *
  38. * The Want->Empty, Want->Clean, Dirty->Clean, transitions
  39. * all happen in b_end_io at interrupt time.
  40. * Each sets the Uptodate bit before releasing the Lock bit.
  41. * This leaves one multi-stage transition:
  42. * Want->Dirty->Clean
  43. * This is safe because thinking that a Clean buffer is actually dirty
  44. * will at worst delay some action, and the stripe will be scheduled
  45. * for attention after the transition is complete.
  46. *
  47. * There is one possibility that is not covered by these states. That
  48. * is if one drive has failed and there is a spare being rebuilt. We
  49. * can't distinguish between a clean block that has been generated
  50. * from parity calculations, and a clean block that has been
  51. * successfully written to the spare ( or to parity when resyncing).
  52. * To distinguish these states we have a stripe bit STRIPE_INSYNC that
  53. * is set whenever a write is scheduled to the spare, or to the parity
  54. * disc if there is no spare. A sync request clears this bit, and
  55. * when we find it set with no buffers locked, we know the sync is
  56. * complete.
  57. *
  58. * Buffers for the md device that arrive via make_request are attached
  59. * to the appropriate stripe in one of two lists linked on b_reqnext.
  60. * One list (bh_read) for read requests, one (bh_write) for write.
  61. * There should never be more than one buffer on the two lists
  62. * together, but we are not guaranteed of that so we allow for more.
  63. *
  64. * If a buffer is on the read list when the associated cache buffer is
  65. * Uptodate, the data is copied into the read buffer and it's b_end_io
  66. * routine is called. This may happen in the end_request routine only
  67. * if the buffer has just successfully been read. end_request should
  68. * remove the buffers from the list and then set the Uptodate bit on
  69. * the buffer. Other threads may do this only if they first check
  70. * that the Uptodate bit is set. Once they have checked that they may
  71. * take buffers off the read queue.
  72. *
  73. * When a buffer on the write list is committed for write it is copied
  74. * into the cache buffer, which is then marked dirty, and moved onto a
  75. * third list, the written list (bh_written). Once both the parity
  76. * block and the cached buffer are successfully written, any buffer on
  77. * a written list can be returned with b_end_io.
  78. *
  79. * The write list and read list both act as fifos. The read list,
  80. * write list and written list are protected by the device_lock.
  81. * The device_lock is only for list manipulations and will only be
  82. * held for a very short time. It can be claimed from interrupts.
  83. *
  84. *
  85. * Stripes in the stripe cache can be on one of two lists (or on
  86. * neither). The "inactive_list" contains stripes which are not
  87. * currently being used for any request. They can freely be reused
  88. * for another stripe. The "handle_list" contains stripes that need
  89. * to be handled in some way. Both of these are fifo queues. Each
  90. * stripe is also (potentially) linked to a hash bucket in the hash
  91. * table so that it can be found by sector number. Stripes that are
  92. * not hashed must be on the inactive_list, and will normally be at
  93. * the front. All stripes start life this way.
  94. *
  95. * The inactive_list, handle_list and hash bucket lists are all protected by the
  96. * device_lock.
  97. * - stripes have a reference counter. If count==0, they are on a list.
  98. * - If a stripe might need handling, STRIPE_HANDLE is set.
  99. * - When refcount reaches zero, then if STRIPE_HANDLE it is put on
  100. * handle_list else inactive_list
  101. *
  102. * This, combined with the fact that STRIPE_HANDLE is only ever
  103. * cleared while a stripe has a non-zero count means that if the
  104. * refcount is 0 and STRIPE_HANDLE is set, then it is on the
  105. * handle_list and if recount is 0 and STRIPE_HANDLE is not set, then
  106. * the stripe is on inactive_list.
  107. *
  108. * The possible transitions are:
  109. * activate an unhashed/inactive stripe (get_active_stripe())
  110. * lockdev check-hash unlink-stripe cnt++ clean-stripe hash-stripe unlockdev
  111. * activate a hashed, possibly active stripe (get_active_stripe())
  112. * lockdev check-hash if(!cnt++)unlink-stripe unlockdev
  113. * attach a request to an active stripe (add_stripe_bh())
  114. * lockdev attach-buffer unlockdev
  115. * handle a stripe (handle_stripe())
  116. * setSTRIPE_ACTIVE, clrSTRIPE_HANDLE ...
  117. * (lockdev check-buffers unlockdev) ..
  118. * change-state ..
  119. * record io/ops needed clearSTRIPE_ACTIVE schedule io/ops
  120. * release an active stripe (release_stripe())
  121. * lockdev if (!--cnt) { if STRIPE_HANDLE, add to handle_list else add to inactive-list } unlockdev
  122. *
  123. * The refcount counts each thread that have activated the stripe,
  124. * plus raid5d if it is handling it, plus one for each active request
  125. * on a cached buffer, and plus one if the stripe is undergoing stripe
  126. * operations.
  127. *
  128. * The stripe operations are:
  129. * -copying data between the stripe cache and user application buffers
  130. * -computing blocks to save a disk access, or to recover a missing block
  131. * -updating the parity on a write operation (reconstruct write and
  132. * read-modify-write)
  133. * -checking parity correctness
  134. * -running i/o to disk
  135. * These operations are carried out by raid5_run_ops which uses the async_tx
  136. * api to (optionally) offload operations to dedicated hardware engines.
  137. * When requesting an operation handle_stripe sets the pending bit for the
  138. * operation and increments the count. raid5_run_ops is then run whenever
  139. * the count is non-zero.
  140. * There are some critical dependencies between the operations that prevent some
  141. * from being requested while another is in flight.
  142. * 1/ Parity check operations destroy the in cache version of the parity block,
  143. * so we prevent parity dependent operations like writes and compute_blocks
  144. * from starting while a check is in progress. Some dma engines can perform
  145. * the check without damaging the parity block, in these cases the parity
  146. * block is re-marked up to date (assuming the check was successful) and is
  147. * not re-read from disk.
  148. * 2/ When a write operation is requested we immediately lock the affected
  149. * blocks, and mark them as not up to date. This causes new read requests
  150. * to be held off, as well as parity checks and compute block operations.
  151. * 3/ Once a compute block operation has been requested handle_stripe treats
  152. * that block as if it is up to date. raid5_run_ops guaruntees that any
  153. * operation that is dependent on the compute block result is initiated after
  154. * the compute block completes.
  155. */
  156. /*
  157. * Operations state - intermediate states that are visible outside of
  158. * STRIPE_ACTIVE.
  159. * In general _idle indicates nothing is running, _run indicates a data
  160. * processing operation is active, and _result means the data processing result
  161. * is stable and can be acted upon. For simple operations like biofill and
  162. * compute that only have an _idle and _run state they are indicated with
  163. * sh->state flags (STRIPE_BIOFILL_RUN and STRIPE_COMPUTE_RUN)
  164. */
  165. /**
  166. * enum check_states - handles syncing / repairing a stripe
  167. * @check_state_idle - check operations are quiesced
  168. * @check_state_run - check operation is running
  169. * @check_state_result - set outside lock when check result is valid
  170. * @check_state_compute_run - check failed and we are repairing
  171. * @check_state_compute_result - set outside lock when compute result is valid
  172. */
  173. enum check_states {
  174. check_state_idle = 0,
  175. check_state_run, /* xor parity check */
  176. check_state_run_q, /* q-parity check */
  177. check_state_run_pq, /* pq dual parity check */
  178. check_state_check_result,
  179. check_state_compute_run, /* parity repair */
  180. check_state_compute_result,
  181. };
  182. /**
  183. * enum reconstruct_states - handles writing or expanding a stripe
  184. */
  185. enum reconstruct_states {
  186. reconstruct_state_idle = 0,
  187. reconstruct_state_prexor_drain_run, /* prexor-write */
  188. reconstruct_state_drain_run, /* write */
  189. reconstruct_state_run, /* expand */
  190. reconstruct_state_prexor_drain_result,
  191. reconstruct_state_drain_result,
  192. reconstruct_state_result,
  193. };
  194. #define DEFAULT_STRIPE_SIZE 4096
  195. struct stripe_head {
  196. struct hlist_node hash;
  197. struct list_head lru; /* inactive_list or handle_list */
  198. struct llist_node release_list;
  199. struct r5conf *raid_conf;
  200. short generation; /* increments with every
  201. * reshape */
  202. sector_t sector; /* sector of this row */
  203. short pd_idx; /* parity disk index */
  204. short qd_idx; /* 'Q' disk index for raid6 */
  205. short ddf_layout;/* use DDF ordering to calculate Q */
  206. short hash_lock_index;
  207. unsigned long state; /* state flags */
  208. atomic_t count; /* nr of active thread/requests */
  209. int bm_seq; /* sequence number for bitmap flushes */
  210. int disks; /* disks in stripe */
  211. int overwrite_disks; /* total overwrite disks in stripe,
  212. * this is only checked when stripe
  213. * has STRIPE_BATCH_READY
  214. */
  215. enum check_states check_state;
  216. enum reconstruct_states reconstruct_state;
  217. spinlock_t stripe_lock;
  218. int cpu;
  219. struct r5worker_group *group;
  220. struct stripe_head *batch_head; /* protected by stripe lock */
  221. spinlock_t batch_lock; /* only header's lock is useful */
  222. struct list_head batch_list; /* protected by head's batch lock*/
  223. union {
  224. struct r5l_io_unit *log_io;
  225. struct ppl_io_unit *ppl_io;
  226. };
  227. struct list_head log_list;
  228. sector_t log_start; /* first meta block on the journal */
  229. struct list_head r5c; /* for r5c_cache->stripe_in_journal */
  230. struct page *ppl_page; /* partial parity of this stripe */
  231. /**
  232. * struct stripe_operations
  233. * @target - STRIPE_OP_COMPUTE_BLK target
  234. * @target2 - 2nd compute target in the raid6 case
  235. * @zero_sum_result - P and Q verification flags
  236. * @request - async service request flags for raid_run_ops
  237. */
  238. struct stripe_operations {
  239. int target, target2;
  240. enum sum_check_flags zero_sum_result;
  241. } ops;
  242. #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
  243. /* These pages will be used by bios in dev[i] */
  244. struct page **pages;
  245. int nr_pages; /* page array size */
  246. int stripes_per_page;
  247. #endif
  248. struct r5dev {
  249. /* rreq and rvec are used for the replacement device when
  250. * writing data to both devices.
  251. */
  252. struct bio req, rreq;
  253. struct bio_vec vec, rvec;
  254. struct page *page, *orig_page;
  255. unsigned int offset; /* offset of the page */
  256. struct bio *toread, *read, *towrite, *written;
  257. sector_t sector; /* sector of this page */
  258. unsigned long flags;
  259. u32 log_checksum;
  260. unsigned short write_hint;
  261. } dev[1]; /* allocated with extra space depending of RAID geometry */
  262. };
  263. /* stripe_head_state - collects and tracks the dynamic state of a stripe_head
  264. * for handle_stripe.
  265. */
  266. struct stripe_head_state {
  267. /* 'syncing' means that we need to read all devices, either
  268. * to check/correct parity, or to reconstruct a missing device.
  269. * 'replacing' means we are replacing one or more drives and
  270. * the source is valid at this point so we don't need to
  271. * read all devices, just the replacement targets.
  272. */
  273. int syncing, expanding, expanded, replacing;
  274. int locked, uptodate, to_read, to_write, failed, written;
  275. int to_fill, compute, req_compute, non_overwrite;
  276. int injournal, just_cached;
  277. int failed_num[2];
  278. int p_failed, q_failed;
  279. int dec_preread_active;
  280. unsigned long ops_request;
  281. struct md_rdev *blocked_rdev;
  282. int handle_bad_blocks;
  283. int log_failed;
  284. int waiting_extra_page;
  285. };
  286. /* Flags for struct r5dev.flags */
  287. enum r5dev_flags {
  288. R5_UPTODATE, /* page contains current data */
  289. R5_LOCKED, /* IO has been submitted on "req" */
  290. R5_DOUBLE_LOCKED,/* Cannot clear R5_LOCKED until 2 writes complete */
  291. R5_OVERWRITE, /* towrite covers whole page */
  292. /* and some that are internal to handle_stripe */
  293. R5_Insync, /* rdev && rdev->in_sync at start */
  294. R5_Wantread, /* want to schedule a read */
  295. R5_Wantwrite,
  296. R5_Overlap, /* There is a pending overlapping request
  297. * on this block */
  298. R5_ReadNoMerge, /* prevent bio from merging in block-layer */
  299. R5_ReadError, /* seen a read error here recently */
  300. R5_ReWrite, /* have tried to over-write the readerror */
  301. R5_Expanded, /* This block now has post-expand data */
  302. R5_Wantcompute, /* compute_block in progress treat as
  303. * uptodate
  304. */
  305. R5_Wantfill, /* dev->toread contains a bio that needs
  306. * filling
  307. */
  308. R5_Wantdrain, /* dev->towrite needs to be drained */
  309. R5_WantFUA, /* Write should be FUA */
  310. R5_SyncIO, /* The IO is sync */
  311. R5_WriteError, /* got a write error - need to record it */
  312. R5_MadeGood, /* A bad block has been fixed by writing to it */
  313. R5_ReadRepl, /* Will/did read from replacement rather than orig */
  314. R5_MadeGoodRepl,/* A bad block on the replacement device has been
  315. * fixed by writing to it */
  316. R5_NeedReplace, /* This device has a replacement which is not
  317. * up-to-date at this stripe. */
  318. R5_WantReplace, /* We need to update the replacement, we have read
  319. * data in, and now is a good time to write it out.
  320. */
  321. R5_Discard, /* Discard the stripe */
  322. R5_SkipCopy, /* Don't copy data from bio to stripe cache */
  323. R5_InJournal, /* data being written is in the journal device.
  324. * if R5_InJournal is set for parity pd_idx, all the
  325. * data and parity being written are in the journal
  326. * device
  327. */
  328. R5_OrigPageUPTDODATE, /* with write back cache, we read old data into
  329. * dev->orig_page for prexor. When this flag is
  330. * set, orig_page contains latest data in the
  331. * raid disk.
  332. */
  333. };
  334. /*
  335. * Stripe state
  336. */
  337. enum {
  338. STRIPE_ACTIVE,
  339. STRIPE_HANDLE,
  340. STRIPE_SYNC_REQUESTED,
  341. STRIPE_SYNCING,
  342. STRIPE_INSYNC,
  343. STRIPE_REPLACED,
  344. STRIPE_PREREAD_ACTIVE,
  345. STRIPE_DELAYED,
  346. STRIPE_DEGRADED,
  347. STRIPE_BIT_DELAY,
  348. STRIPE_EXPANDING,
  349. STRIPE_EXPAND_SOURCE,
  350. STRIPE_EXPAND_READY,
  351. STRIPE_IO_STARTED, /* do not count towards 'bypass_count' */
  352. STRIPE_FULL_WRITE, /* all blocks are set to be overwritten */
  353. STRIPE_BIOFILL_RUN,
  354. STRIPE_COMPUTE_RUN,
  355. STRIPE_ON_UNPLUG_LIST,
  356. STRIPE_DISCARD,
  357. STRIPE_ON_RELEASE_LIST,
  358. STRIPE_BATCH_READY,
  359. STRIPE_BATCH_ERR,
  360. STRIPE_BITMAP_PENDING, /* Being added to bitmap, don't add
  361. * to batch yet.
  362. */
  363. STRIPE_LOG_TRAPPED, /* trapped into log (see raid5-cache.c)
  364. * this bit is used in two scenarios:
  365. *
  366. * 1. write-out phase
  367. * set in first entry of r5l_write_stripe
  368. * clear in second entry of r5l_write_stripe
  369. * used to bypass logic in handle_stripe
  370. *
  371. * 2. caching phase
  372. * set in r5c_try_caching_write()
  373. * clear when journal write is done
  374. * used to initiate r5c_cache_data()
  375. * also used to bypass logic in handle_stripe
  376. */
  377. STRIPE_R5C_CACHING, /* the stripe is in caching phase
  378. * see more detail in the raid5-cache.c
  379. */
  380. STRIPE_R5C_PARTIAL_STRIPE, /* in r5c cache (to-be/being handled or
  381. * in conf->r5c_partial_stripe_list)
  382. */
  383. STRIPE_R5C_FULL_STRIPE, /* in r5c cache (to-be/being handled or
  384. * in conf->r5c_full_stripe_list)
  385. */
  386. STRIPE_R5C_PREFLUSH, /* need to flush journal device */
  387. };
  388. #define STRIPE_EXPAND_SYNC_FLAGS \
  389. ((1 << STRIPE_EXPAND_SOURCE) |\
  390. (1 << STRIPE_EXPAND_READY) |\
  391. (1 << STRIPE_EXPANDING) |\
  392. (1 << STRIPE_SYNC_REQUESTED))
  393. /*
  394. * Operation request flags
  395. */
  396. enum {
  397. STRIPE_OP_BIOFILL,
  398. STRIPE_OP_COMPUTE_BLK,
  399. STRIPE_OP_PREXOR,
  400. STRIPE_OP_BIODRAIN,
  401. STRIPE_OP_RECONSTRUCT,
  402. STRIPE_OP_CHECK,
  403. STRIPE_OP_PARTIAL_PARITY,
  404. };
  405. /*
  406. * RAID parity calculation preferences
  407. */
  408. enum {
  409. PARITY_DISABLE_RMW = 0,
  410. PARITY_ENABLE_RMW,
  411. PARITY_PREFER_RMW,
  412. };
  413. /*
  414. * Pages requested from set_syndrome_sources()
  415. */
  416. enum {
  417. SYNDROME_SRC_ALL,
  418. SYNDROME_SRC_WANT_DRAIN,
  419. SYNDROME_SRC_WRITTEN,
  420. };
  421. /*
  422. * Plugging:
  423. *
  424. * To improve write throughput, we need to delay the handling of some
  425. * stripes until there has been a chance that several write requests
  426. * for the one stripe have all been collected.
  427. * In particular, any write request that would require pre-reading
  428. * is put on a "delayed" queue until there are no stripes currently
  429. * in a pre-read phase. Further, if the "delayed" queue is empty when
  430. * a stripe is put on it then we "plug" the queue and do not process it
  431. * until an unplug call is made. (the unplug_io_fn() is called).
  432. *
  433. * When preread is initiated on a stripe, we set PREREAD_ACTIVE and add
  434. * it to the count of prereading stripes.
  435. * When write is initiated, or the stripe refcnt == 0 (just in case) we
  436. * clear the PREREAD_ACTIVE flag and decrement the count
  437. * Whenever the 'handle' queue is empty and the device is not plugged, we
  438. * move any strips from delayed to handle and clear the DELAYED flag and set
  439. * PREREAD_ACTIVE.
  440. * In stripe_handle, if we find pre-reading is necessary, we do it if
  441. * PREREAD_ACTIVE is set, else we set DELAYED which will send it to the delayed queue.
  442. * HANDLE gets cleared if stripe_handle leaves nothing locked.
  443. */
  444. /* Note: disk_info.rdev can be set to NULL asynchronously by raid5_remove_disk.
  445. * There are three safe ways to access disk_info.rdev.
  446. * 1/ when holding mddev->reconfig_mutex
  447. * 2/ when resync/recovery/reshape is known to be happening - i.e. in code that
  448. * is called as part of performing resync/recovery/reshape.
  449. * 3/ while holding rcu_read_lock(), use rcu_dereference to get the pointer
  450. * and if it is non-NULL, increment rdev->nr_pending before dropping the RCU
  451. * lock.
  452. * When .rdev is set to NULL, the nr_pending count checked again and if
  453. * it has been incremented, the pointer is put back in .rdev.
  454. */
  455. struct disk_info {
  456. struct md_rdev __rcu *rdev;
  457. struct md_rdev __rcu *replacement;
  458. struct page *extra_page; /* extra page to use in prexor */
  459. };
  460. /*
  461. * Stripe cache
  462. */
  463. #define NR_STRIPES 256
  464. #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
  465. #define STRIPE_SIZE PAGE_SIZE
  466. #define STRIPE_SHIFT (PAGE_SHIFT - 9)
  467. #define STRIPE_SECTORS (STRIPE_SIZE>>9)
  468. #endif
  469. #define IO_THRESHOLD 1
  470. #define BYPASS_THRESHOLD 1
  471. #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
  472. #define HASH_MASK (NR_HASH - 1)
  473. #define MAX_STRIPE_BATCH 8
  474. /* NOTE NR_STRIPE_HASH_LOCKS must remain below 64.
  475. * This is because we sometimes take all the spinlocks
  476. * and creating that much locking depth can cause
  477. * problems.
  478. */
  479. #define NR_STRIPE_HASH_LOCKS 8
  480. #define STRIPE_HASH_LOCKS_MASK (NR_STRIPE_HASH_LOCKS - 1)
  481. struct r5worker {
  482. struct work_struct work;
  483. struct r5worker_group *group;
  484. struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
  485. bool working;
  486. };
  487. struct r5worker_group {
  488. struct list_head handle_list;
  489. struct list_head loprio_list;
  490. struct r5conf *conf;
  491. struct r5worker *workers;
  492. int stripes_cnt;
  493. };
  494. /*
  495. * r5c journal modes of the array: write-back or write-through.
  496. * write-through mode has identical behavior as existing log only
  497. * implementation.
  498. */
  499. enum r5c_journal_mode {
  500. R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
  501. R5C_JOURNAL_MODE_WRITE_BACK = 1,
  502. };
  503. enum r5_cache_state {
  504. R5_INACTIVE_BLOCKED, /* release of inactive stripes blocked,
  505. * waiting for 25% to be free
  506. */
  507. R5_ALLOC_MORE, /* It might help to allocate another
  508. * stripe.
  509. */
  510. R5_DID_ALLOC, /* A stripe was allocated, don't allocate
  511. * more until at least one has been
  512. * released. This avoids flooding
  513. * the cache.
  514. */
  515. R5C_LOG_TIGHT, /* log device space tight, need to
  516. * prioritize stripes at last_checkpoint
  517. */
  518. R5C_LOG_CRITICAL, /* log device is running out of space,
  519. * only process stripes that are already
  520. * occupying the log
  521. */
  522. R5C_EXTRA_PAGE_IN_USE, /* a stripe is using disk_info.extra_page
  523. * for prexor
  524. */
  525. };
  526. #define PENDING_IO_MAX 512
  527. #define PENDING_IO_ONE_FLUSH 128
  528. struct r5pending_data {
  529. struct list_head sibling;
  530. sector_t sector; /* stripe sector */
  531. struct bio_list bios;
  532. };
  533. struct raid5_percpu {
  534. struct page *spare_page; /* Used when checking P/Q in raid6 */
  535. void *scribble; /* space for constructing buffer
  536. * lists and performing address
  537. * conversions
  538. */
  539. int scribble_obj_size;
  540. local_lock_t lock;
  541. };
  542. struct r5conf {
  543. struct hlist_head *stripe_hashtbl;
  544. /* only protect corresponding hash list and inactive_list */
  545. spinlock_t hash_locks[NR_STRIPE_HASH_LOCKS];
  546. struct mddev *mddev;
  547. int chunk_sectors;
  548. int level, algorithm, rmw_level;
  549. int max_degraded;
  550. int raid_disks;
  551. int max_nr_stripes;
  552. int min_nr_stripes;
  553. #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
  554. unsigned long stripe_size;
  555. unsigned int stripe_shift;
  556. unsigned long stripe_sectors;
  557. #endif
  558. /* reshape_progress is the leading edge of a 'reshape'
  559. * It has value MaxSector when no reshape is happening
  560. * If delta_disks < 0, it is the last sector we started work on,
  561. * else is it the next sector to work on.
  562. */
  563. sector_t reshape_progress;
  564. /* reshape_safe is the trailing edge of a reshape. We know that
  565. * before (or after) this address, all reshape has completed.
  566. */
  567. sector_t reshape_safe;
  568. int previous_raid_disks;
  569. int prev_chunk_sectors;
  570. int prev_algo;
  571. short generation; /* increments with every reshape */
  572. seqcount_spinlock_t gen_lock; /* lock against generation changes */
  573. unsigned long reshape_checkpoint; /* Time we last updated
  574. * metadata */
  575. long long min_offset_diff; /* minimum difference between
  576. * data_offset and
  577. * new_data_offset across all
  578. * devices. May be negative,
  579. * but is closest to zero.
  580. */
  581. struct list_head handle_list; /* stripes needing handling */
  582. struct list_head loprio_list; /* low priority stripes */
  583. struct list_head hold_list; /* preread ready stripes */
  584. struct list_head delayed_list; /* stripes that have plugged requests */
  585. struct list_head bitmap_list; /* stripes delaying awaiting bitmap update */
  586. struct bio *retry_read_aligned; /* currently retrying aligned bios */
  587. unsigned int retry_read_offset; /* sector offset into retry_read_aligned */
  588. struct bio *retry_read_aligned_list; /* aligned bios retry list */
  589. atomic_t preread_active_stripes; /* stripes with scheduled io */
  590. atomic_t active_aligned_reads;
  591. atomic_t pending_full_writes; /* full write backlog */
  592. int bypass_count; /* bypassed prereads */
  593. int bypass_threshold; /* preread nice */
  594. int skip_copy; /* Don't copy data from bio to stripe cache */
  595. struct list_head *last_hold; /* detect hold_list promotions */
  596. atomic_t reshape_stripes; /* stripes with pending writes for reshape */
  597. /* unfortunately we need two cache names as we temporarily have
  598. * two caches.
  599. */
  600. int active_name;
  601. char cache_name[2][32];
  602. struct kmem_cache *slab_cache; /* for allocating stripes */
  603. struct mutex cache_size_mutex; /* Protect changes to cache size */
  604. int seq_flush, seq_write;
  605. int quiesce;
  606. int fullsync; /* set to 1 if a full sync is needed,
  607. * (fresh device added).
  608. * Cleared when a sync completes.
  609. */
  610. int recovery_disabled;
  611. /* per cpu variables */
  612. struct raid5_percpu __percpu *percpu;
  613. int scribble_disks;
  614. int scribble_sectors;
  615. struct hlist_node node;
  616. /*
  617. * Free stripes pool
  618. */
  619. atomic_t active_stripes;
  620. struct list_head inactive_list[NR_STRIPE_HASH_LOCKS];
  621. atomic_t r5c_cached_full_stripes;
  622. struct list_head r5c_full_stripe_list;
  623. atomic_t r5c_cached_partial_stripes;
  624. struct list_head r5c_partial_stripe_list;
  625. atomic_t r5c_flushing_full_stripes;
  626. atomic_t r5c_flushing_partial_stripes;
  627. atomic_t empty_inactive_list_nr;
  628. struct llist_head released_stripes;
  629. wait_queue_head_t wait_for_quiescent;
  630. wait_queue_head_t wait_for_stripe;
  631. wait_queue_head_t wait_for_overlap;
  632. unsigned long cache_state;
  633. struct shrinker shrinker;
  634. int pool_size; /* number of disks in stripeheads in pool */
  635. spinlock_t device_lock;
  636. struct disk_info *disks;
  637. struct bio_set bio_split;
  638. /* When taking over an array from a different personality, we store
  639. * the new thread here until we fully activate the array.
  640. */
  641. struct md_thread *thread;
  642. struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
  643. struct r5worker_group *worker_groups;
  644. int group_cnt;
  645. int worker_cnt_per_group;
  646. struct r5l_log *log;
  647. void *log_private;
  648. spinlock_t pending_bios_lock;
  649. bool batch_bio_dispatch;
  650. struct r5pending_data *pending_data;
  651. struct list_head free_list;
  652. struct list_head pending_list;
  653. int pending_data_cnt;
  654. struct r5pending_data *next_pending_data;
  655. };
  656. #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
  657. #define RAID5_STRIPE_SIZE(conf) STRIPE_SIZE
  658. #define RAID5_STRIPE_SHIFT(conf) STRIPE_SHIFT
  659. #define RAID5_STRIPE_SECTORS(conf) STRIPE_SECTORS
  660. #else
  661. #define RAID5_STRIPE_SIZE(conf) ((conf)->stripe_size)
  662. #define RAID5_STRIPE_SHIFT(conf) ((conf)->stripe_shift)
  663. #define RAID5_STRIPE_SECTORS(conf) ((conf)->stripe_sectors)
  664. #endif
  665. /* bio's attached to a stripe+device for I/O are linked together in bi_sector
  666. * order without overlap. There may be several bio's per stripe+device, and
  667. * a bio could span several devices.
  668. * When walking this list for a particular stripe+device, we must never proceed
  669. * beyond a bio that extends past this device, as the next bio might no longer
  670. * be valid.
  671. * This function is used to determine the 'next' bio in the list, given the
  672. * sector of the current stripe+device
  673. */
  674. static inline struct bio *r5_next_bio(struct r5conf *conf, struct bio *bio, sector_t sector)
  675. {
  676. if (bio_end_sector(bio) < sector + RAID5_STRIPE_SECTORS(conf))
  677. return bio->bi_next;
  678. else
  679. return NULL;
  680. }
  681. /*
  682. * Our supported algorithms
  683. */
  684. #define ALGORITHM_LEFT_ASYMMETRIC 0 /* Rotating Parity N with Data Restart */
  685. #define ALGORITHM_RIGHT_ASYMMETRIC 1 /* Rotating Parity 0 with Data Restart */
  686. #define ALGORITHM_LEFT_SYMMETRIC 2 /* Rotating Parity N with Data Continuation */
  687. #define ALGORITHM_RIGHT_SYMMETRIC 3 /* Rotating Parity 0 with Data Continuation */
  688. /* Define non-rotating (raid4) algorithms. These allow
  689. * conversion of raid4 to raid5.
  690. */
  691. #define ALGORITHM_PARITY_0 4 /* P or P,Q are initial devices */
  692. #define ALGORITHM_PARITY_N 5 /* P or P,Q are final devices. */
  693. /* DDF RAID6 layouts differ from md/raid6 layouts in two ways.
  694. * Firstly, the exact positioning of the parity block is slightly
  695. * different between the 'LEFT_*' modes of md and the "_N_*" modes
  696. * of DDF.
  697. * Secondly, or order of datablocks over which the Q syndrome is computed
  698. * is different.
  699. * Consequently we have different layouts for DDF/raid6 than md/raid6.
  700. * These layouts are from the DDFv1.2 spec.
  701. * Interestingly DDFv1.2-Errata-A does not specify N_CONTINUE but
  702. * leaves RLQ=3 as 'Vendor Specific'
  703. */
  704. #define ALGORITHM_ROTATING_ZERO_RESTART 8 /* DDF PRL=6 RLQ=1 */
  705. #define ALGORITHM_ROTATING_N_RESTART 9 /* DDF PRL=6 RLQ=2 */
  706. #define ALGORITHM_ROTATING_N_CONTINUE 10 /*DDF PRL=6 RLQ=3 */
  707. /* For every RAID5 algorithm we define a RAID6 algorithm
  708. * with exactly the same layout for data and parity, and
  709. * with the Q block always on the last device (N-1).
  710. * This allows trivial conversion from RAID5 to RAID6
  711. */
  712. #define ALGORITHM_LEFT_ASYMMETRIC_6 16
  713. #define ALGORITHM_RIGHT_ASYMMETRIC_6 17
  714. #define ALGORITHM_LEFT_SYMMETRIC_6 18
  715. #define ALGORITHM_RIGHT_SYMMETRIC_6 19
  716. #define ALGORITHM_PARITY_0_6 20
  717. #define ALGORITHM_PARITY_N_6 ALGORITHM_PARITY_N
  718. static inline int algorithm_valid_raid5(int layout)
  719. {
  720. return (layout >= 0) &&
  721. (layout <= 5);
  722. }
  723. static inline int algorithm_valid_raid6(int layout)
  724. {
  725. return (layout >= 0 && layout <= 5)
  726. ||
  727. (layout >= 8 && layout <= 10)
  728. ||
  729. (layout >= 16 && layout <= 20);
  730. }
  731. static inline int algorithm_is_DDF(int layout)
  732. {
  733. return layout >= 8 && layout <= 10;
  734. }
  735. #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
  736. /*
  737. * Return offset of the corresponding page for r5dev.
  738. */
  739. static inline int raid5_get_page_offset(struct stripe_head *sh, int disk_idx)
  740. {
  741. return (disk_idx % sh->stripes_per_page) * RAID5_STRIPE_SIZE(sh->raid_conf);
  742. }
  743. /*
  744. * Return corresponding page address for r5dev.
  745. */
  746. static inline struct page *
  747. raid5_get_dev_page(struct stripe_head *sh, int disk_idx)
  748. {
  749. return sh->pages[disk_idx / sh->stripes_per_page];
  750. }
  751. #endif
  752. void md_raid5_kick_device(struct r5conf *conf);
  753. int raid5_set_cache_size(struct mddev *mddev, int size);
  754. sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous);
  755. void raid5_release_stripe(struct stripe_head *sh);
  756. sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
  757. int previous, int *dd_idx, struct stripe_head *sh);
  758. struct stripe_request_ctx;
  759. /* get stripe from previous generation (when reshaping) */
  760. #define R5_GAS_PREVIOUS (1 << 0)
  761. /* do not block waiting for a free stripe */
  762. #define R5_GAS_NOBLOCK (1 << 1)
  763. /* do not block waiting for quiesce to be released */
  764. #define R5_GAS_NOQUIESCE (1 << 2)
  765. struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
  766. struct stripe_request_ctx *ctx, sector_t sector,
  767. unsigned int flags);
  768. int raid5_calc_degraded(struct r5conf *conf);
  769. int r5c_journal_mode_set(struct mddev *mddev, int journal_mode);
  770. #endif