leds-qcom-lpg.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2017-2022 Linaro Ltd
  4. * Copyright (c) 2010-2012, The Linux Foundation. All rights reserved.
  5. */
  6. #include <linux/bits.h>
  7. #include <linux/bitfield.h>
  8. #include <linux/led-class-multicolor.h>
  9. #include <linux/module.h>
  10. #include <linux/of.h>
  11. #include <linux/of_device.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/pwm.h>
  14. #include <linux/regmap.h>
  15. #include <linux/slab.h>
  16. #define LPG_SUBTYPE_REG 0x05
  17. #define LPG_SUBTYPE_LPG 0x2
  18. #define LPG_SUBTYPE_PWM 0xb
  19. #define LPG_SUBTYPE_LPG_LITE 0x11
  20. #define LPG_PATTERN_CONFIG_REG 0x40
  21. #define LPG_SIZE_CLK_REG 0x41
  22. #define PWM_CLK_SELECT_MASK GENMASK(1, 0)
  23. #define LPG_PREDIV_CLK_REG 0x42
  24. #define PWM_FREQ_PRE_DIV_MASK GENMASK(6, 5)
  25. #define PWM_FREQ_EXP_MASK GENMASK(2, 0)
  26. #define PWM_TYPE_CONFIG_REG 0x43
  27. #define PWM_VALUE_REG 0x44
  28. #define PWM_ENABLE_CONTROL_REG 0x46
  29. #define PWM_SYNC_REG 0x47
  30. #define LPG_RAMP_DURATION_REG 0x50
  31. #define LPG_HI_PAUSE_REG 0x52
  32. #define LPG_LO_PAUSE_REG 0x54
  33. #define LPG_HI_IDX_REG 0x56
  34. #define LPG_LO_IDX_REG 0x57
  35. #define PWM_SEC_ACCESS_REG 0xd0
  36. #define PWM_DTEST_REG(x) (0xe2 + (x) - 1)
  37. #define TRI_LED_SRC_SEL 0x45
  38. #define TRI_LED_EN_CTL 0x46
  39. #define TRI_LED_ATC_CTL 0x47
  40. #define LPG_LUT_REG(x) (0x40 + (x) * 2)
  41. #define RAMP_CONTROL_REG 0xc8
  42. #define LPG_RESOLUTION 512
  43. #define LPG_MAX_M 7
  44. struct lpg_channel;
  45. struct lpg_data;
  46. /**
  47. * struct lpg - LPG device context
  48. * @dev: pointer to LPG device
  49. * @map: regmap for register access
  50. * @lock: used to synchronize LED and pwm callback requests
  51. * @pwm: PWM-chip object, if operating in PWM mode
  52. * @data: reference to version specific data
  53. * @lut_base: base address of the LUT block (optional)
  54. * @lut_size: number of entries in the LUT block
  55. * @lut_bitmap: allocation bitmap for LUT entries
  56. * @triled_base: base address of the TRILED block (optional)
  57. * @triled_src: power-source for the TRILED
  58. * @triled_has_atc_ctl: true if there is TRI_LED_ATC_CTL register
  59. * @triled_has_src_sel: true if there is TRI_LED_SRC_SEL register
  60. * @channels: list of PWM channels
  61. * @num_channels: number of @channels
  62. */
  63. struct lpg {
  64. struct device *dev;
  65. struct regmap *map;
  66. struct mutex lock;
  67. struct pwm_chip pwm;
  68. const struct lpg_data *data;
  69. u32 lut_base;
  70. u32 lut_size;
  71. unsigned long *lut_bitmap;
  72. u32 triled_base;
  73. u32 triled_src;
  74. bool triled_has_atc_ctl;
  75. bool triled_has_src_sel;
  76. struct lpg_channel *channels;
  77. unsigned int num_channels;
  78. };
  79. /**
  80. * struct lpg_channel - per channel data
  81. * @lpg: reference to parent lpg
  82. * @base: base address of the PWM channel
  83. * @triled_mask: mask in TRILED to enable this channel
  84. * @lut_mask: mask in LUT to start pattern generator for this channel
  85. * @subtype: PMIC hardware block subtype
  86. * @in_use: channel is exposed to LED framework
  87. * @color: color of the LED attached to this channel
  88. * @dtest_line: DTEST line for output, or 0 if disabled
  89. * @dtest_value: DTEST line configuration
  90. * @pwm_value: duty (in microseconds) of the generated pulses, overridden by LUT
  91. * @enabled: output enabled?
  92. * @period: period (in nanoseconds) of the generated pulses
  93. * @clk_sel: reference clock frequency selector
  94. * @pre_div_sel: divider selector of the reference clock
  95. * @pre_div_exp: exponential divider of the reference clock
  96. * @ramp_enabled: duty cycle is driven by iterating over lookup table
  97. * @ramp_ping_pong: reverse through pattern, rather than wrapping to start
  98. * @ramp_oneshot: perform only a single pass over the pattern
  99. * @ramp_reverse: iterate over pattern backwards
  100. * @ramp_tick_ms: length (in milliseconds) of one step in the pattern
  101. * @ramp_lo_pause_ms: pause (in milliseconds) before iterating over pattern
  102. * @ramp_hi_pause_ms: pause (in milliseconds) after iterating over pattern
  103. * @pattern_lo_idx: start index of associated pattern
  104. * @pattern_hi_idx: last index of associated pattern
  105. */
  106. struct lpg_channel {
  107. struct lpg *lpg;
  108. u32 base;
  109. unsigned int triled_mask;
  110. unsigned int lut_mask;
  111. unsigned int subtype;
  112. bool in_use;
  113. int color;
  114. u32 dtest_line;
  115. u32 dtest_value;
  116. u16 pwm_value;
  117. bool enabled;
  118. u64 period;
  119. unsigned int clk_sel;
  120. unsigned int pre_div_sel;
  121. unsigned int pre_div_exp;
  122. bool ramp_enabled;
  123. bool ramp_ping_pong;
  124. bool ramp_oneshot;
  125. bool ramp_reverse;
  126. unsigned short ramp_tick_ms;
  127. unsigned long ramp_lo_pause_ms;
  128. unsigned long ramp_hi_pause_ms;
  129. unsigned int pattern_lo_idx;
  130. unsigned int pattern_hi_idx;
  131. };
  132. /**
  133. * struct lpg_led - logical LED object
  134. * @lpg: lpg context reference
  135. * @cdev: LED class device
  136. * @mcdev: Multicolor LED class device
  137. * @num_channels: number of @channels
  138. * @channels: list of channels associated with the LED
  139. */
  140. struct lpg_led {
  141. struct lpg *lpg;
  142. struct led_classdev cdev;
  143. struct led_classdev_mc mcdev;
  144. unsigned int num_channels;
  145. struct lpg_channel *channels[];
  146. };
  147. /**
  148. * struct lpg_channel_data - per channel initialization data
  149. * @base: base address for PWM channel registers
  150. * @triled_mask: bitmask for controlling this channel in TRILED
  151. */
  152. struct lpg_channel_data {
  153. unsigned int base;
  154. u8 triled_mask;
  155. };
  156. /**
  157. * struct lpg_data - initialization data
  158. * @lut_base: base address of LUT block
  159. * @lut_size: number of entries in LUT
  160. * @triled_base: base address of TRILED
  161. * @triled_has_atc_ctl: true if there is TRI_LED_ATC_CTL register
  162. * @triled_has_src_sel: true if there is TRI_LED_SRC_SEL register
  163. * @num_channels: number of channels in LPG
  164. * @channels: list of channel initialization data
  165. */
  166. struct lpg_data {
  167. unsigned int lut_base;
  168. unsigned int lut_size;
  169. unsigned int triled_base;
  170. bool triled_has_atc_ctl;
  171. bool triled_has_src_sel;
  172. int num_channels;
  173. const struct lpg_channel_data *channels;
  174. };
  175. static int triled_set(struct lpg *lpg, unsigned int mask, unsigned int enable)
  176. {
  177. /* Skip if we don't have a triled block */
  178. if (!lpg->triled_base)
  179. return 0;
  180. return regmap_update_bits(lpg->map, lpg->triled_base + TRI_LED_EN_CTL,
  181. mask, enable);
  182. }
  183. static int lpg_lut_store(struct lpg *lpg, struct led_pattern *pattern,
  184. size_t len, unsigned int *lo_idx, unsigned int *hi_idx)
  185. {
  186. unsigned int idx;
  187. u16 val;
  188. int i;
  189. idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size,
  190. 0, len, 0);
  191. if (idx >= lpg->lut_size)
  192. return -ENOMEM;
  193. for (i = 0; i < len; i++) {
  194. val = pattern[i].brightness;
  195. regmap_bulk_write(lpg->map, lpg->lut_base + LPG_LUT_REG(idx + i),
  196. &val, sizeof(val));
  197. }
  198. bitmap_set(lpg->lut_bitmap, idx, len);
  199. *lo_idx = idx;
  200. *hi_idx = idx + len - 1;
  201. return 0;
  202. }
  203. static void lpg_lut_free(struct lpg *lpg, unsigned int lo_idx, unsigned int hi_idx)
  204. {
  205. int len;
  206. len = hi_idx - lo_idx + 1;
  207. if (len == 1)
  208. return;
  209. bitmap_clear(lpg->lut_bitmap, lo_idx, len);
  210. }
  211. static int lpg_lut_sync(struct lpg *lpg, unsigned int mask)
  212. {
  213. return regmap_write(lpg->map, lpg->lut_base + RAMP_CONTROL_REG, mask);
  214. }
  215. static const unsigned int lpg_clk_rates[] = {0, 1024, 32768, 19200000};
  216. static const unsigned int lpg_pre_divs[] = {1, 3, 5, 6};
  217. static int lpg_calc_freq(struct lpg_channel *chan, uint64_t period)
  218. {
  219. unsigned int clk_sel, best_clk = 0;
  220. unsigned int div, best_div = 0;
  221. unsigned int m, best_m = 0;
  222. unsigned int error;
  223. unsigned int best_err = UINT_MAX;
  224. u64 best_period = 0;
  225. u64 max_period;
  226. /*
  227. * The PWM period is determined by:
  228. *
  229. * resolution * pre_div * 2^M
  230. * period = --------------------------
  231. * refclk
  232. *
  233. * With resolution fixed at 2^9 bits, pre_div = {1, 3, 5, 6} and
  234. * M = [0..7].
  235. *
  236. * This allows for periods between 27uS and 384s, as the PWM framework
  237. * wants a period of equal or lower length than requested, reject
  238. * anything below 27uS.
  239. */
  240. if (period <= (u64)NSEC_PER_SEC * LPG_RESOLUTION / 19200000)
  241. return -EINVAL;
  242. /* Limit period to largest possible value, to avoid overflows */
  243. max_period = (u64)NSEC_PER_SEC * LPG_RESOLUTION * 6 * (1 << LPG_MAX_M) / 1024;
  244. if (period > max_period)
  245. period = max_period;
  246. /*
  247. * Search for the pre_div, refclk and M by solving the rewritten formula
  248. * for each refclk and pre_div value:
  249. *
  250. * period * refclk
  251. * M = log2 -------------------------------------
  252. * NSEC_PER_SEC * pre_div * resolution
  253. */
  254. for (clk_sel = 1; clk_sel < ARRAY_SIZE(lpg_clk_rates); clk_sel++) {
  255. u64 numerator = period * lpg_clk_rates[clk_sel];
  256. for (div = 0; div < ARRAY_SIZE(lpg_pre_divs); div++) {
  257. u64 denominator = (u64)NSEC_PER_SEC * lpg_pre_divs[div] * LPG_RESOLUTION;
  258. u64 actual;
  259. u64 ratio;
  260. if (numerator < denominator)
  261. continue;
  262. ratio = div64_u64(numerator, denominator);
  263. m = ilog2(ratio);
  264. if (m > LPG_MAX_M)
  265. m = LPG_MAX_M;
  266. actual = DIV_ROUND_UP_ULL(denominator * (1 << m), lpg_clk_rates[clk_sel]);
  267. error = period - actual;
  268. if (error < best_err) {
  269. best_err = error;
  270. best_div = div;
  271. best_m = m;
  272. best_clk = clk_sel;
  273. best_period = actual;
  274. }
  275. }
  276. }
  277. chan->clk_sel = best_clk;
  278. chan->pre_div_sel = best_div;
  279. chan->pre_div_exp = best_m;
  280. chan->period = best_period;
  281. return 0;
  282. }
  283. static void lpg_calc_duty(struct lpg_channel *chan, uint64_t duty)
  284. {
  285. unsigned int max = LPG_RESOLUTION - 1;
  286. unsigned int val;
  287. val = div64_u64(duty * lpg_clk_rates[chan->clk_sel],
  288. (u64)NSEC_PER_SEC * lpg_pre_divs[chan->pre_div_sel] * (1 << chan->pre_div_exp));
  289. chan->pwm_value = min(val, max);
  290. }
  291. static void lpg_apply_freq(struct lpg_channel *chan)
  292. {
  293. unsigned long val;
  294. struct lpg *lpg = chan->lpg;
  295. if (!chan->enabled)
  296. return;
  297. val = chan->clk_sel;
  298. /* Specify 9bit resolution, based on the subtype of the channel */
  299. switch (chan->subtype) {
  300. case LPG_SUBTYPE_LPG:
  301. val |= GENMASK(5, 4);
  302. break;
  303. case LPG_SUBTYPE_PWM:
  304. val |= BIT(2);
  305. break;
  306. case LPG_SUBTYPE_LPG_LITE:
  307. default:
  308. val |= BIT(4);
  309. break;
  310. }
  311. regmap_write(lpg->map, chan->base + LPG_SIZE_CLK_REG, val);
  312. val = FIELD_PREP(PWM_FREQ_PRE_DIV_MASK, chan->pre_div_sel) |
  313. FIELD_PREP(PWM_FREQ_EXP_MASK, chan->pre_div_exp);
  314. regmap_write(lpg->map, chan->base + LPG_PREDIV_CLK_REG, val);
  315. }
  316. #define LPG_ENABLE_GLITCH_REMOVAL BIT(5)
  317. static void lpg_enable_glitch(struct lpg_channel *chan)
  318. {
  319. struct lpg *lpg = chan->lpg;
  320. regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG,
  321. LPG_ENABLE_GLITCH_REMOVAL, 0);
  322. }
  323. static void lpg_disable_glitch(struct lpg_channel *chan)
  324. {
  325. struct lpg *lpg = chan->lpg;
  326. regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG,
  327. LPG_ENABLE_GLITCH_REMOVAL,
  328. LPG_ENABLE_GLITCH_REMOVAL);
  329. }
  330. static void lpg_apply_pwm_value(struct lpg_channel *chan)
  331. {
  332. struct lpg *lpg = chan->lpg;
  333. u16 val = chan->pwm_value;
  334. if (!chan->enabled)
  335. return;
  336. regmap_bulk_write(lpg->map, chan->base + PWM_VALUE_REG, &val, sizeof(val));
  337. }
  338. #define LPG_PATTERN_CONFIG_LO_TO_HI BIT(4)
  339. #define LPG_PATTERN_CONFIG_REPEAT BIT(3)
  340. #define LPG_PATTERN_CONFIG_TOGGLE BIT(2)
  341. #define LPG_PATTERN_CONFIG_PAUSE_HI BIT(1)
  342. #define LPG_PATTERN_CONFIG_PAUSE_LO BIT(0)
  343. static void lpg_apply_lut_control(struct lpg_channel *chan)
  344. {
  345. struct lpg *lpg = chan->lpg;
  346. unsigned int hi_pause;
  347. unsigned int lo_pause;
  348. unsigned int conf = 0;
  349. unsigned int lo_idx = chan->pattern_lo_idx;
  350. unsigned int hi_idx = chan->pattern_hi_idx;
  351. u16 step = chan->ramp_tick_ms;
  352. if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx)
  353. return;
  354. hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, step);
  355. lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, step);
  356. if (!chan->ramp_reverse)
  357. conf |= LPG_PATTERN_CONFIG_LO_TO_HI;
  358. if (!chan->ramp_oneshot)
  359. conf |= LPG_PATTERN_CONFIG_REPEAT;
  360. if (chan->ramp_ping_pong)
  361. conf |= LPG_PATTERN_CONFIG_TOGGLE;
  362. if (chan->ramp_hi_pause_ms)
  363. conf |= LPG_PATTERN_CONFIG_PAUSE_HI;
  364. if (chan->ramp_lo_pause_ms)
  365. conf |= LPG_PATTERN_CONFIG_PAUSE_LO;
  366. regmap_write(lpg->map, chan->base + LPG_PATTERN_CONFIG_REG, conf);
  367. regmap_write(lpg->map, chan->base + LPG_HI_IDX_REG, hi_idx);
  368. regmap_write(lpg->map, chan->base + LPG_LO_IDX_REG, lo_idx);
  369. regmap_bulk_write(lpg->map, chan->base + LPG_RAMP_DURATION_REG, &step, sizeof(step));
  370. regmap_write(lpg->map, chan->base + LPG_HI_PAUSE_REG, hi_pause);
  371. regmap_write(lpg->map, chan->base + LPG_LO_PAUSE_REG, lo_pause);
  372. }
  373. #define LPG_ENABLE_CONTROL_OUTPUT BIT(7)
  374. #define LPG_ENABLE_CONTROL_BUFFER_TRISTATE BIT(5)
  375. #define LPG_ENABLE_CONTROL_SRC_PWM BIT(2)
  376. #define LPG_ENABLE_CONTROL_RAMP_GEN BIT(1)
  377. static void lpg_apply_control(struct lpg_channel *chan)
  378. {
  379. unsigned int ctrl;
  380. struct lpg *lpg = chan->lpg;
  381. ctrl = LPG_ENABLE_CONTROL_BUFFER_TRISTATE;
  382. if (chan->enabled)
  383. ctrl |= LPG_ENABLE_CONTROL_OUTPUT;
  384. if (chan->pattern_lo_idx != chan->pattern_hi_idx)
  385. ctrl |= LPG_ENABLE_CONTROL_RAMP_GEN;
  386. else
  387. ctrl |= LPG_ENABLE_CONTROL_SRC_PWM;
  388. regmap_write(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, ctrl);
  389. /*
  390. * Due to LPG hardware bug, in the PWM mode, having enabled PWM,
  391. * We have to write PWM values one more time.
  392. */
  393. if (chan->enabled)
  394. lpg_apply_pwm_value(chan);
  395. }
  396. #define LPG_SYNC_PWM BIT(0)
  397. static void lpg_apply_sync(struct lpg_channel *chan)
  398. {
  399. struct lpg *lpg = chan->lpg;
  400. regmap_write(lpg->map, chan->base + PWM_SYNC_REG, LPG_SYNC_PWM);
  401. }
  402. static int lpg_parse_dtest(struct lpg *lpg)
  403. {
  404. struct lpg_channel *chan;
  405. struct device_node *np = lpg->dev->of_node;
  406. int count;
  407. int ret;
  408. int i;
  409. count = of_property_count_u32_elems(np, "qcom,dtest");
  410. if (count == -EINVAL) {
  411. return 0;
  412. } else if (count < 0) {
  413. ret = count;
  414. goto err_malformed;
  415. } else if (count != lpg->data->num_channels * 2) {
  416. dev_err(lpg->dev, "qcom,dtest needs to be %d items\n",
  417. lpg->data->num_channels * 2);
  418. return -EINVAL;
  419. }
  420. for (i = 0; i < lpg->data->num_channels; i++) {
  421. chan = &lpg->channels[i];
  422. ret = of_property_read_u32_index(np, "qcom,dtest", i * 2,
  423. &chan->dtest_line);
  424. if (ret)
  425. goto err_malformed;
  426. ret = of_property_read_u32_index(np, "qcom,dtest", i * 2 + 1,
  427. &chan->dtest_value);
  428. if (ret)
  429. goto err_malformed;
  430. }
  431. return 0;
  432. err_malformed:
  433. dev_err(lpg->dev, "malformed qcom,dtest\n");
  434. return ret;
  435. }
  436. static void lpg_apply_dtest(struct lpg_channel *chan)
  437. {
  438. struct lpg *lpg = chan->lpg;
  439. if (!chan->dtest_line)
  440. return;
  441. regmap_write(lpg->map, chan->base + PWM_SEC_ACCESS_REG, 0xa5);
  442. regmap_write(lpg->map, chan->base + PWM_DTEST_REG(chan->dtest_line),
  443. chan->dtest_value);
  444. }
  445. static void lpg_apply(struct lpg_channel *chan)
  446. {
  447. lpg_disable_glitch(chan);
  448. lpg_apply_freq(chan);
  449. lpg_apply_pwm_value(chan);
  450. lpg_apply_control(chan);
  451. lpg_apply_sync(chan);
  452. lpg_apply_lut_control(chan);
  453. lpg_enable_glitch(chan);
  454. }
  455. static void lpg_brightness_set(struct lpg_led *led, struct led_classdev *cdev,
  456. struct mc_subled *subleds)
  457. {
  458. enum led_brightness brightness;
  459. struct lpg_channel *chan;
  460. unsigned int triled_enabled = 0;
  461. unsigned int triled_mask = 0;
  462. unsigned int lut_mask = 0;
  463. unsigned int duty;
  464. struct lpg *lpg = led->lpg;
  465. int i;
  466. for (i = 0; i < led->num_channels; i++) {
  467. chan = led->channels[i];
  468. brightness = subleds[i].brightness;
  469. if (brightness == LED_OFF) {
  470. chan->enabled = false;
  471. chan->ramp_enabled = false;
  472. } else if (chan->pattern_lo_idx != chan->pattern_hi_idx) {
  473. lpg_calc_freq(chan, NSEC_PER_MSEC);
  474. chan->enabled = true;
  475. chan->ramp_enabled = true;
  476. lut_mask |= chan->lut_mask;
  477. triled_enabled |= chan->triled_mask;
  478. } else {
  479. lpg_calc_freq(chan, NSEC_PER_MSEC);
  480. duty = div_u64(brightness * chan->period, cdev->max_brightness);
  481. lpg_calc_duty(chan, duty);
  482. chan->enabled = true;
  483. chan->ramp_enabled = false;
  484. triled_enabled |= chan->triled_mask;
  485. }
  486. triled_mask |= chan->triled_mask;
  487. lpg_apply(chan);
  488. }
  489. /* Toggle triled lines */
  490. if (triled_mask)
  491. triled_set(lpg, triled_mask, triled_enabled);
  492. /* Trigger start of ramp generator(s) */
  493. if (lut_mask)
  494. lpg_lut_sync(lpg, lut_mask);
  495. }
  496. static int lpg_brightness_single_set(struct led_classdev *cdev,
  497. enum led_brightness value)
  498. {
  499. struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
  500. struct mc_subled info;
  501. mutex_lock(&led->lpg->lock);
  502. info.brightness = value;
  503. lpg_brightness_set(led, cdev, &info);
  504. mutex_unlock(&led->lpg->lock);
  505. return 0;
  506. }
  507. static int lpg_brightness_mc_set(struct led_classdev *cdev,
  508. enum led_brightness value)
  509. {
  510. struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
  511. struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
  512. mutex_lock(&led->lpg->lock);
  513. led_mc_calc_color_components(mc, value);
  514. lpg_brightness_set(led, cdev, mc->subled_info);
  515. mutex_unlock(&led->lpg->lock);
  516. return 0;
  517. }
  518. static int lpg_blink_set(struct lpg_led *led,
  519. unsigned long *delay_on, unsigned long *delay_off)
  520. {
  521. struct lpg_channel *chan;
  522. unsigned int period;
  523. unsigned int triled_mask = 0;
  524. struct lpg *lpg = led->lpg;
  525. u64 duty;
  526. int i;
  527. if (!*delay_on && !*delay_off) {
  528. *delay_on = 500;
  529. *delay_off = 500;
  530. }
  531. duty = *delay_on * NSEC_PER_MSEC;
  532. period = (*delay_on + *delay_off) * NSEC_PER_MSEC;
  533. for (i = 0; i < led->num_channels; i++) {
  534. chan = led->channels[i];
  535. lpg_calc_freq(chan, period);
  536. lpg_calc_duty(chan, duty);
  537. chan->enabled = true;
  538. chan->ramp_enabled = false;
  539. triled_mask |= chan->triled_mask;
  540. lpg_apply(chan);
  541. }
  542. /* Enable triled lines */
  543. triled_set(lpg, triled_mask, triled_mask);
  544. chan = led->channels[0];
  545. duty = div_u64(chan->pwm_value * chan->period, LPG_RESOLUTION);
  546. *delay_on = div_u64(duty, NSEC_PER_MSEC);
  547. *delay_off = div_u64(chan->period - duty, NSEC_PER_MSEC);
  548. return 0;
  549. }
  550. static int lpg_blink_single_set(struct led_classdev *cdev,
  551. unsigned long *delay_on, unsigned long *delay_off)
  552. {
  553. struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
  554. int ret;
  555. mutex_lock(&led->lpg->lock);
  556. ret = lpg_blink_set(led, delay_on, delay_off);
  557. mutex_unlock(&led->lpg->lock);
  558. return ret;
  559. }
  560. static int lpg_blink_mc_set(struct led_classdev *cdev,
  561. unsigned long *delay_on, unsigned long *delay_off)
  562. {
  563. struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
  564. struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
  565. int ret;
  566. mutex_lock(&led->lpg->lock);
  567. ret = lpg_blink_set(led, delay_on, delay_off);
  568. mutex_unlock(&led->lpg->lock);
  569. return ret;
  570. }
  571. static int lpg_pattern_set(struct lpg_led *led, struct led_pattern *led_pattern,
  572. u32 len, int repeat)
  573. {
  574. struct lpg_channel *chan;
  575. struct lpg *lpg = led->lpg;
  576. struct led_pattern *pattern;
  577. unsigned int brightness_a;
  578. unsigned int brightness_b;
  579. unsigned int actual_len;
  580. unsigned int hi_pause;
  581. unsigned int lo_pause;
  582. unsigned int delta_t;
  583. unsigned int lo_idx;
  584. unsigned int hi_idx;
  585. unsigned int i;
  586. bool ping_pong = true;
  587. int ret = -EINVAL;
  588. /* Hardware only support oneshot or indefinite loops */
  589. if (repeat != -1 && repeat != 1)
  590. return -EINVAL;
  591. /*
  592. * The standardized leds-trigger-pattern format defines that the
  593. * brightness of the LED follows a linear transition from one entry
  594. * in the pattern to the next, over the given delta_t time. It
  595. * describes that the way to perform instant transitions a zero-length
  596. * entry should be added following a pattern entry.
  597. *
  598. * The LPG hardware is only able to perform the latter (no linear
  599. * transitions), so require each entry in the pattern to be followed by
  600. * a zero-length transition.
  601. */
  602. if (len % 2)
  603. return -EINVAL;
  604. pattern = kcalloc(len / 2, sizeof(*pattern), GFP_KERNEL);
  605. if (!pattern)
  606. return -ENOMEM;
  607. for (i = 0; i < len; i += 2) {
  608. if (led_pattern[i].brightness != led_pattern[i + 1].brightness)
  609. goto out_free_pattern;
  610. if (led_pattern[i + 1].delta_t != 0)
  611. goto out_free_pattern;
  612. pattern[i / 2].brightness = led_pattern[i].brightness;
  613. pattern[i / 2].delta_t = led_pattern[i].delta_t;
  614. }
  615. len /= 2;
  616. /*
  617. * Specifying a pattern of length 1 causes the hardware to iterate
  618. * through the entire LUT, so prohibit this.
  619. */
  620. if (len < 2)
  621. goto out_free_pattern;
  622. /*
  623. * The LPG plays patterns with at a fixed pace, a "low pause" can be
  624. * used to stretch the first delay of the pattern and a "high pause"
  625. * the last one.
  626. *
  627. * In order to save space the pattern can be played in "ping pong"
  628. * mode, in which the pattern is first played forward, then "high
  629. * pause" is applied, then the pattern is played backwards and finally
  630. * the "low pause" is applied.
  631. *
  632. * The middle elements of the pattern are used to determine delta_t and
  633. * the "low pause" and "high pause" multipliers are derrived from this.
  634. *
  635. * The first element in the pattern is used to determine "low pause".
  636. *
  637. * If the specified pattern is a palindrome the ping pong mode is
  638. * enabled. In this scenario the delta_t of the middle entry (i.e. the
  639. * last in the programmed pattern) determines the "high pause".
  640. */
  641. /* Detect palindromes and use "ping pong" to reduce LUT usage */
  642. for (i = 0; i < len / 2; i++) {
  643. brightness_a = pattern[i].brightness;
  644. brightness_b = pattern[len - i - 1].brightness;
  645. if (brightness_a != brightness_b) {
  646. ping_pong = false;
  647. break;
  648. }
  649. }
  650. /* The pattern length to be written to the LUT */
  651. if (ping_pong)
  652. actual_len = (len + 1) / 2;
  653. else
  654. actual_len = len;
  655. /*
  656. * Validate that all delta_t in the pattern are the same, with the
  657. * exception of the middle element in case of ping_pong.
  658. */
  659. delta_t = pattern[1].delta_t;
  660. for (i = 2; i < len; i++) {
  661. if (pattern[i].delta_t != delta_t) {
  662. /*
  663. * Allow last entry in the full or shortened pattern to
  664. * specify hi pause. Reject other variations.
  665. */
  666. if (i != actual_len - 1)
  667. goto out_free_pattern;
  668. }
  669. }
  670. /* LPG_RAMP_DURATION_REG is a 9bit */
  671. if (delta_t >= BIT(9))
  672. goto out_free_pattern;
  673. /* Find "low pause" and "high pause" in the pattern */
  674. lo_pause = pattern[0].delta_t;
  675. hi_pause = pattern[actual_len - 1].delta_t;
  676. mutex_lock(&lpg->lock);
  677. ret = lpg_lut_store(lpg, pattern, actual_len, &lo_idx, &hi_idx);
  678. if (ret < 0)
  679. goto out_unlock;
  680. for (i = 0; i < led->num_channels; i++) {
  681. chan = led->channels[i];
  682. chan->ramp_tick_ms = delta_t;
  683. chan->ramp_ping_pong = ping_pong;
  684. chan->ramp_oneshot = repeat != -1;
  685. chan->ramp_lo_pause_ms = lo_pause;
  686. chan->ramp_hi_pause_ms = hi_pause;
  687. chan->pattern_lo_idx = lo_idx;
  688. chan->pattern_hi_idx = hi_idx;
  689. }
  690. out_unlock:
  691. mutex_unlock(&lpg->lock);
  692. out_free_pattern:
  693. kfree(pattern);
  694. return ret;
  695. }
  696. static int lpg_pattern_single_set(struct led_classdev *cdev,
  697. struct led_pattern *pattern, u32 len,
  698. int repeat)
  699. {
  700. struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
  701. int ret;
  702. ret = lpg_pattern_set(led, pattern, len, repeat);
  703. if (ret < 0)
  704. return ret;
  705. lpg_brightness_single_set(cdev, LED_FULL);
  706. return 0;
  707. }
  708. static int lpg_pattern_mc_set(struct led_classdev *cdev,
  709. struct led_pattern *pattern, u32 len,
  710. int repeat)
  711. {
  712. struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
  713. struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
  714. int ret;
  715. ret = lpg_pattern_set(led, pattern, len, repeat);
  716. if (ret < 0)
  717. return ret;
  718. led_mc_calc_color_components(mc, LED_FULL);
  719. lpg_brightness_set(led, cdev, mc->subled_info);
  720. return 0;
  721. }
  722. static int lpg_pattern_clear(struct lpg_led *led)
  723. {
  724. struct lpg_channel *chan;
  725. struct lpg *lpg = led->lpg;
  726. int i;
  727. mutex_lock(&lpg->lock);
  728. chan = led->channels[0];
  729. lpg_lut_free(lpg, chan->pattern_lo_idx, chan->pattern_hi_idx);
  730. for (i = 0; i < led->num_channels; i++) {
  731. chan = led->channels[i];
  732. chan->pattern_lo_idx = 0;
  733. chan->pattern_hi_idx = 0;
  734. }
  735. mutex_unlock(&lpg->lock);
  736. return 0;
  737. }
  738. static int lpg_pattern_single_clear(struct led_classdev *cdev)
  739. {
  740. struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
  741. return lpg_pattern_clear(led);
  742. }
  743. static int lpg_pattern_mc_clear(struct led_classdev *cdev)
  744. {
  745. struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
  746. struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
  747. return lpg_pattern_clear(led);
  748. }
  749. static int lpg_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
  750. {
  751. struct lpg *lpg = container_of(chip, struct lpg, pwm);
  752. struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
  753. return chan->in_use ? -EBUSY : 0;
  754. }
  755. /*
  756. * Limitations:
  757. * - Updating both duty and period is not done atomically, so the output signal
  758. * will momentarily be a mix of the settings.
  759. * - Changed parameters takes effect immediately.
  760. * - A disabled channel outputs a logical 0.
  761. */
  762. static int lpg_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
  763. const struct pwm_state *state)
  764. {
  765. struct lpg *lpg = container_of(chip, struct lpg, pwm);
  766. struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
  767. int ret = 0;
  768. if (state->polarity != PWM_POLARITY_NORMAL)
  769. return -EINVAL;
  770. mutex_lock(&lpg->lock);
  771. if (state->enabled) {
  772. ret = lpg_calc_freq(chan, state->period);
  773. if (ret < 0)
  774. goto out_unlock;
  775. lpg_calc_duty(chan, state->duty_cycle);
  776. }
  777. chan->enabled = state->enabled;
  778. lpg_apply(chan);
  779. triled_set(lpg, chan->triled_mask, chan->enabled ? chan->triled_mask : 0);
  780. out_unlock:
  781. mutex_unlock(&lpg->lock);
  782. return ret;
  783. }
  784. static int lpg_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
  785. struct pwm_state *state)
  786. {
  787. struct lpg *lpg = container_of(chip, struct lpg, pwm);
  788. struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
  789. unsigned int pre_div;
  790. unsigned int refclk;
  791. unsigned int val;
  792. unsigned int m;
  793. u16 pwm_value;
  794. int ret;
  795. ret = regmap_read(lpg->map, chan->base + LPG_SIZE_CLK_REG, &val);
  796. if (ret)
  797. return 0;
  798. refclk = lpg_clk_rates[val & PWM_CLK_SELECT_MASK];
  799. if (refclk) {
  800. ret = regmap_read(lpg->map, chan->base + LPG_PREDIV_CLK_REG, &val);
  801. if (ret)
  802. return 0;
  803. pre_div = lpg_pre_divs[FIELD_GET(PWM_FREQ_PRE_DIV_MASK, val)];
  804. m = FIELD_GET(PWM_FREQ_EXP_MASK, val);
  805. ret = regmap_bulk_read(lpg->map, chan->base + PWM_VALUE_REG, &pwm_value, sizeof(pwm_value));
  806. if (ret)
  807. return 0;
  808. state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * LPG_RESOLUTION * pre_div * (1 << m), refclk);
  809. state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pwm_value * pre_div * (1 << m), refclk);
  810. } else {
  811. state->period = 0;
  812. state->duty_cycle = 0;
  813. }
  814. ret = regmap_read(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, &val);
  815. if (ret)
  816. return 0;
  817. state->enabled = FIELD_GET(LPG_ENABLE_CONTROL_OUTPUT, val);
  818. state->polarity = PWM_POLARITY_NORMAL;
  819. if (state->duty_cycle > state->period)
  820. state->duty_cycle = state->period;
  821. return 0;
  822. }
  823. static const struct pwm_ops lpg_pwm_ops = {
  824. .request = lpg_pwm_request,
  825. .apply = lpg_pwm_apply,
  826. .get_state = lpg_pwm_get_state,
  827. .owner = THIS_MODULE,
  828. };
  829. static int lpg_add_pwm(struct lpg *lpg)
  830. {
  831. int ret;
  832. lpg->pwm.base = -1;
  833. lpg->pwm.dev = lpg->dev;
  834. lpg->pwm.npwm = lpg->num_channels;
  835. lpg->pwm.ops = &lpg_pwm_ops;
  836. ret = pwmchip_add(&lpg->pwm);
  837. if (ret)
  838. dev_err(lpg->dev, "failed to add PWM chip: ret %d\n", ret);
  839. return ret;
  840. }
  841. static int lpg_parse_channel(struct lpg *lpg, struct device_node *np,
  842. struct lpg_channel **channel)
  843. {
  844. struct lpg_channel *chan;
  845. u32 color = LED_COLOR_ID_GREEN;
  846. u32 reg;
  847. int ret;
  848. ret = of_property_read_u32(np, "reg", &reg);
  849. if (ret || !reg || reg > lpg->num_channels) {
  850. dev_err(lpg->dev, "invalid \"reg\" of %pOFn\n", np);
  851. return -EINVAL;
  852. }
  853. chan = &lpg->channels[reg - 1];
  854. chan->in_use = true;
  855. ret = of_property_read_u32(np, "color", &color);
  856. if (ret < 0 && ret != -EINVAL) {
  857. dev_err(lpg->dev, "failed to parse \"color\" of %pOF\n", np);
  858. return ret;
  859. }
  860. chan->color = color;
  861. *channel = chan;
  862. return 0;
  863. }
  864. static int lpg_add_led(struct lpg *lpg, struct device_node *np)
  865. {
  866. struct led_init_data init_data = {};
  867. struct led_classdev *cdev;
  868. struct device_node *child;
  869. struct mc_subled *info;
  870. struct lpg_led *led;
  871. const char *state;
  872. int num_channels;
  873. u32 color = 0;
  874. int ret;
  875. int i;
  876. ret = of_property_read_u32(np, "color", &color);
  877. if (ret < 0 && ret != -EINVAL) {
  878. dev_err(lpg->dev, "failed to parse \"color\" of %pOF\n", np);
  879. return ret;
  880. }
  881. if (color == LED_COLOR_ID_RGB)
  882. num_channels = of_get_available_child_count(np);
  883. else
  884. num_channels = 1;
  885. led = devm_kzalloc(lpg->dev, struct_size(led, channels, num_channels), GFP_KERNEL);
  886. if (!led)
  887. return -ENOMEM;
  888. led->lpg = lpg;
  889. led->num_channels = num_channels;
  890. if (color == LED_COLOR_ID_RGB) {
  891. info = devm_kcalloc(lpg->dev, num_channels, sizeof(*info), GFP_KERNEL);
  892. if (!info)
  893. return -ENOMEM;
  894. i = 0;
  895. for_each_available_child_of_node(np, child) {
  896. ret = lpg_parse_channel(lpg, child, &led->channels[i]);
  897. if (ret < 0) {
  898. of_node_put(child);
  899. return ret;
  900. }
  901. info[i].color_index = led->channels[i]->color;
  902. info[i].intensity = 0;
  903. i++;
  904. }
  905. led->mcdev.subled_info = info;
  906. led->mcdev.num_colors = num_channels;
  907. cdev = &led->mcdev.led_cdev;
  908. cdev->brightness_set_blocking = lpg_brightness_mc_set;
  909. cdev->blink_set = lpg_blink_mc_set;
  910. /* Register pattern accessors only if we have a LUT block */
  911. if (lpg->lut_base) {
  912. cdev->pattern_set = lpg_pattern_mc_set;
  913. cdev->pattern_clear = lpg_pattern_mc_clear;
  914. }
  915. } else {
  916. ret = lpg_parse_channel(lpg, np, &led->channels[0]);
  917. if (ret < 0)
  918. return ret;
  919. cdev = &led->cdev;
  920. cdev->brightness_set_blocking = lpg_brightness_single_set;
  921. cdev->blink_set = lpg_blink_single_set;
  922. /* Register pattern accessors only if we have a LUT block */
  923. if (lpg->lut_base) {
  924. cdev->pattern_set = lpg_pattern_single_set;
  925. cdev->pattern_clear = lpg_pattern_single_clear;
  926. }
  927. }
  928. cdev->default_trigger = of_get_property(np, "linux,default-trigger", NULL);
  929. cdev->max_brightness = LPG_RESOLUTION - 1;
  930. if (!of_property_read_string(np, "default-state", &state) &&
  931. !strcmp(state, "on"))
  932. cdev->brightness = cdev->max_brightness;
  933. else
  934. cdev->brightness = LED_OFF;
  935. cdev->brightness_set_blocking(cdev, cdev->brightness);
  936. init_data.fwnode = of_fwnode_handle(np);
  937. if (color == LED_COLOR_ID_RGB)
  938. ret = devm_led_classdev_multicolor_register_ext(lpg->dev, &led->mcdev, &init_data);
  939. else
  940. ret = devm_led_classdev_register_ext(lpg->dev, &led->cdev, &init_data);
  941. if (ret)
  942. dev_err(lpg->dev, "unable to register %s\n", cdev->name);
  943. return ret;
  944. }
  945. static int lpg_init_channels(struct lpg *lpg)
  946. {
  947. const struct lpg_data *data = lpg->data;
  948. struct lpg_channel *chan;
  949. int i;
  950. lpg->num_channels = data->num_channels;
  951. lpg->channels = devm_kcalloc(lpg->dev, data->num_channels,
  952. sizeof(struct lpg_channel), GFP_KERNEL);
  953. if (!lpg->channels)
  954. return -ENOMEM;
  955. for (i = 0; i < data->num_channels; i++) {
  956. chan = &lpg->channels[i];
  957. chan->lpg = lpg;
  958. chan->base = data->channels[i].base;
  959. chan->triled_mask = data->channels[i].triled_mask;
  960. chan->lut_mask = BIT(i);
  961. regmap_read(lpg->map, chan->base + LPG_SUBTYPE_REG, &chan->subtype);
  962. }
  963. return 0;
  964. }
  965. static int lpg_init_triled(struct lpg *lpg)
  966. {
  967. struct device_node *np = lpg->dev->of_node;
  968. int ret;
  969. /* Skip initialization if we don't have a triled block */
  970. if (!lpg->data->triled_base)
  971. return 0;
  972. lpg->triled_base = lpg->data->triled_base;
  973. lpg->triled_has_atc_ctl = lpg->data->triled_has_atc_ctl;
  974. lpg->triled_has_src_sel = lpg->data->triled_has_src_sel;
  975. if (lpg->triled_has_src_sel) {
  976. ret = of_property_read_u32(np, "qcom,power-source", &lpg->triled_src);
  977. if (ret || lpg->triled_src == 2 || lpg->triled_src > 3) {
  978. dev_err(lpg->dev, "invalid power source\n");
  979. return -EINVAL;
  980. }
  981. }
  982. /* Disable automatic trickle charge LED */
  983. if (lpg->triled_has_atc_ctl)
  984. regmap_write(lpg->map, lpg->triled_base + TRI_LED_ATC_CTL, 0);
  985. /* Configure power source */
  986. if (lpg->triled_has_src_sel)
  987. regmap_write(lpg->map, lpg->triled_base + TRI_LED_SRC_SEL, lpg->triled_src);
  988. /* Default all outputs to off */
  989. regmap_write(lpg->map, lpg->triled_base + TRI_LED_EN_CTL, 0);
  990. return 0;
  991. }
  992. static int lpg_init_lut(struct lpg *lpg)
  993. {
  994. const struct lpg_data *data = lpg->data;
  995. if (!data->lut_base)
  996. return 0;
  997. lpg->lut_base = data->lut_base;
  998. lpg->lut_size = data->lut_size;
  999. lpg->lut_bitmap = devm_bitmap_zalloc(lpg->dev, lpg->lut_size, GFP_KERNEL);
  1000. if (!lpg->lut_bitmap)
  1001. return -ENOMEM;
  1002. return 0;
  1003. }
  1004. static int lpg_probe(struct platform_device *pdev)
  1005. {
  1006. struct device_node *np;
  1007. struct lpg *lpg;
  1008. int ret;
  1009. int i;
  1010. lpg = devm_kzalloc(&pdev->dev, sizeof(*lpg), GFP_KERNEL);
  1011. if (!lpg)
  1012. return -ENOMEM;
  1013. lpg->data = of_device_get_match_data(&pdev->dev);
  1014. if (!lpg->data)
  1015. return -EINVAL;
  1016. platform_set_drvdata(pdev, lpg);
  1017. lpg->dev = &pdev->dev;
  1018. mutex_init(&lpg->lock);
  1019. lpg->map = dev_get_regmap(pdev->dev.parent, NULL);
  1020. if (!lpg->map)
  1021. return dev_err_probe(&pdev->dev, -ENXIO, "parent regmap unavailable\n");
  1022. ret = lpg_init_channels(lpg);
  1023. if (ret < 0)
  1024. return ret;
  1025. ret = lpg_parse_dtest(lpg);
  1026. if (ret < 0)
  1027. return ret;
  1028. ret = lpg_init_triled(lpg);
  1029. if (ret < 0)
  1030. return ret;
  1031. ret = lpg_init_lut(lpg);
  1032. if (ret < 0)
  1033. return ret;
  1034. for_each_available_child_of_node(pdev->dev.of_node, np) {
  1035. ret = lpg_add_led(lpg, np);
  1036. if (ret) {
  1037. of_node_put(np);
  1038. return ret;
  1039. }
  1040. }
  1041. for (i = 0; i < lpg->num_channels; i++)
  1042. lpg_apply_dtest(&lpg->channels[i]);
  1043. return lpg_add_pwm(lpg);
  1044. }
  1045. static int lpg_remove(struct platform_device *pdev)
  1046. {
  1047. struct lpg *lpg = platform_get_drvdata(pdev);
  1048. pwmchip_remove(&lpg->pwm);
  1049. return 0;
  1050. }
  1051. static const struct lpg_data pm8916_pwm_data = {
  1052. .num_channels = 1,
  1053. .channels = (const struct lpg_channel_data[]) {
  1054. { .base = 0xbc00 },
  1055. },
  1056. };
  1057. static const struct lpg_data pm8941_lpg_data = {
  1058. .lut_base = 0xb000,
  1059. .lut_size = 64,
  1060. .triled_base = 0xd000,
  1061. .triled_has_atc_ctl = true,
  1062. .triled_has_src_sel = true,
  1063. .num_channels = 8,
  1064. .channels = (const struct lpg_channel_data[]) {
  1065. { .base = 0xb100 },
  1066. { .base = 0xb200 },
  1067. { .base = 0xb300 },
  1068. { .base = 0xb400 },
  1069. { .base = 0xb500, .triled_mask = BIT(5) },
  1070. { .base = 0xb600, .triled_mask = BIT(6) },
  1071. { .base = 0xb700, .triled_mask = BIT(7) },
  1072. { .base = 0xb800 },
  1073. },
  1074. };
  1075. static const struct lpg_data pm8994_lpg_data = {
  1076. .lut_base = 0xb000,
  1077. .lut_size = 64,
  1078. .num_channels = 6,
  1079. .channels = (const struct lpg_channel_data[]) {
  1080. { .base = 0xb100 },
  1081. { .base = 0xb200 },
  1082. { .base = 0xb300 },
  1083. { .base = 0xb400 },
  1084. { .base = 0xb500 },
  1085. { .base = 0xb600 },
  1086. },
  1087. };
  1088. static const struct lpg_data pmi8994_lpg_data = {
  1089. .lut_base = 0xb000,
  1090. .lut_size = 24,
  1091. .triled_base = 0xd000,
  1092. .triled_has_atc_ctl = true,
  1093. .triled_has_src_sel = true,
  1094. .num_channels = 4,
  1095. .channels = (const struct lpg_channel_data[]) {
  1096. { .base = 0xb100, .triled_mask = BIT(5) },
  1097. { .base = 0xb200, .triled_mask = BIT(6) },
  1098. { .base = 0xb300, .triled_mask = BIT(7) },
  1099. { .base = 0xb400 },
  1100. },
  1101. };
  1102. static const struct lpg_data pmi8998_lpg_data = {
  1103. .lut_base = 0xb000,
  1104. .lut_size = 49,
  1105. .triled_base = 0xd000,
  1106. .num_channels = 6,
  1107. .channels = (const struct lpg_channel_data[]) {
  1108. { .base = 0xb100 },
  1109. { .base = 0xb200 },
  1110. { .base = 0xb300, .triled_mask = BIT(5) },
  1111. { .base = 0xb400, .triled_mask = BIT(6) },
  1112. { .base = 0xb500, .triled_mask = BIT(7) },
  1113. { .base = 0xb600 },
  1114. },
  1115. };
  1116. static const struct lpg_data pm8150b_lpg_data = {
  1117. .lut_base = 0xb000,
  1118. .lut_size = 24,
  1119. .triled_base = 0xd000,
  1120. .num_channels = 2,
  1121. .channels = (const struct lpg_channel_data[]) {
  1122. { .base = 0xb100, .triled_mask = BIT(7) },
  1123. { .base = 0xb200, .triled_mask = BIT(6) },
  1124. },
  1125. };
  1126. static const struct lpg_data pm8150l_lpg_data = {
  1127. .lut_base = 0xb000,
  1128. .lut_size = 48,
  1129. .triled_base = 0xd000,
  1130. .num_channels = 5,
  1131. .channels = (const struct lpg_channel_data[]) {
  1132. { .base = 0xb100, .triled_mask = BIT(7) },
  1133. { .base = 0xb200, .triled_mask = BIT(6) },
  1134. { .base = 0xb300, .triled_mask = BIT(5) },
  1135. { .base = 0xbc00 },
  1136. { .base = 0xbd00 },
  1137. },
  1138. };
  1139. static const struct lpg_data pm8350c_pwm_data = {
  1140. .triled_base = 0xef00,
  1141. .num_channels = 4,
  1142. .channels = (const struct lpg_channel_data[]) {
  1143. { .base = 0xe800, .triled_mask = BIT(7) },
  1144. { .base = 0xe900, .triled_mask = BIT(6) },
  1145. { .base = 0xea00, .triled_mask = BIT(5) },
  1146. { .base = 0xeb00 },
  1147. },
  1148. };
  1149. static const struct of_device_id lpg_of_table[] = {
  1150. { .compatible = "qcom,pm8150b-lpg", .data = &pm8150b_lpg_data },
  1151. { .compatible = "qcom,pm8150l-lpg", .data = &pm8150l_lpg_data },
  1152. { .compatible = "qcom,pm8350c-pwm", .data = &pm8350c_pwm_data },
  1153. { .compatible = "qcom,pm8916-pwm", .data = &pm8916_pwm_data },
  1154. { .compatible = "qcom,pm8941-lpg", .data = &pm8941_lpg_data },
  1155. { .compatible = "qcom,pm8994-lpg", .data = &pm8994_lpg_data },
  1156. { .compatible = "qcom,pmi8994-lpg", .data = &pmi8994_lpg_data },
  1157. { .compatible = "qcom,pmi8998-lpg", .data = &pmi8998_lpg_data },
  1158. { .compatible = "qcom,pmc8180c-lpg", .data = &pm8150l_lpg_data },
  1159. {}
  1160. };
  1161. MODULE_DEVICE_TABLE(of, lpg_of_table);
  1162. static struct platform_driver lpg_driver = {
  1163. .probe = lpg_probe,
  1164. .remove = lpg_remove,
  1165. .driver = {
  1166. .name = "qcom-spmi-lpg",
  1167. .of_match_table = lpg_of_table,
  1168. },
  1169. };
  1170. module_platform_driver(lpg_driver);
  1171. MODULE_DESCRIPTION("Qualcomm LPG LED driver");
  1172. MODULE_LICENSE("GPL v2");