exynos-iommu.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. */
  6. #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
  7. #define DEBUG
  8. #endif
  9. #include <linux/clk.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/err.h>
  12. #include <linux/io.h>
  13. #include <linux/iommu.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/kmemleak.h>
  16. #include <linux/list.h>
  17. #include <linux/of.h>
  18. #include <linux/of_platform.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/pm_runtime.h>
  21. #include <linux/slab.h>
  22. typedef u32 sysmmu_iova_t;
  23. typedef u32 sysmmu_pte_t;
  24. /* We do not consider super section mapping (16MB) */
  25. #define SECT_ORDER 20
  26. #define LPAGE_ORDER 16
  27. #define SPAGE_ORDER 12
  28. #define SECT_SIZE (1 << SECT_ORDER)
  29. #define LPAGE_SIZE (1 << LPAGE_ORDER)
  30. #define SPAGE_SIZE (1 << SPAGE_ORDER)
  31. #define SECT_MASK (~(SECT_SIZE - 1))
  32. #define LPAGE_MASK (~(LPAGE_SIZE - 1))
  33. #define SPAGE_MASK (~(SPAGE_SIZE - 1))
  34. #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
  35. ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
  36. #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
  37. #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
  38. #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
  39. ((*(sent) & 3) == 1))
  40. #define lv1ent_section(sent) ((*(sent) & 3) == 2)
  41. #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
  42. #define lv2ent_small(pent) ((*(pent) & 2) == 2)
  43. #define lv2ent_large(pent) ((*(pent) & 3) == 1)
  44. /*
  45. * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
  46. * v5.0 introduced support for 36bit physical address space by shifting
  47. * all page entry values by 4 bits.
  48. * All SYSMMU controllers in the system support the address spaces of the same
  49. * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
  50. * value (0 or 4).
  51. */
  52. static short PG_ENT_SHIFT = -1;
  53. #define SYSMMU_PG_ENT_SHIFT 0
  54. #define SYSMMU_V5_PG_ENT_SHIFT 4
  55. static const sysmmu_pte_t *LV1_PROT;
  56. static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
  57. ((0 << 15) | (0 << 10)), /* no access */
  58. ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
  59. ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
  60. ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
  61. };
  62. static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
  63. (0 << 4), /* no access */
  64. (1 << 4), /* IOMMU_READ only */
  65. (2 << 4), /* IOMMU_WRITE only */
  66. (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
  67. };
  68. static const sysmmu_pte_t *LV2_PROT;
  69. static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
  70. ((0 << 9) | (0 << 4)), /* no access */
  71. ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
  72. ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
  73. ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
  74. };
  75. static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
  76. (0 << 2), /* no access */
  77. (1 << 2), /* IOMMU_READ only */
  78. (2 << 2), /* IOMMU_WRITE only */
  79. (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
  80. };
  81. #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
  82. #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
  83. #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
  84. #define section_offs(iova) (iova & (SECT_SIZE - 1))
  85. #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
  86. #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
  87. #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
  88. #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
  89. #define NUM_LV1ENTRIES 4096
  90. #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
  91. static u32 lv1ent_offset(sysmmu_iova_t iova)
  92. {
  93. return iova >> SECT_ORDER;
  94. }
  95. static u32 lv2ent_offset(sysmmu_iova_t iova)
  96. {
  97. return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
  98. }
  99. #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
  100. #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
  101. #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
  102. #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
  103. #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
  104. #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
  105. #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
  106. #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
  107. #define CTRL_ENABLE 0x5
  108. #define CTRL_BLOCK 0x7
  109. #define CTRL_DISABLE 0x0
  110. #define CFG_LRU 0x1
  111. #define CFG_EAP (1 << 2)
  112. #define CFG_QOS(n) ((n & 0xF) << 7)
  113. #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
  114. #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
  115. #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
  116. #define CTRL_VM_ENABLE BIT(0)
  117. #define CTRL_VM_FAULT_MODE_STALL BIT(3)
  118. #define CAPA0_CAPA1_EXIST BIT(11)
  119. #define CAPA1_VCR_ENABLED BIT(14)
  120. /* common registers */
  121. #define REG_MMU_CTRL 0x000
  122. #define REG_MMU_CFG 0x004
  123. #define REG_MMU_STATUS 0x008
  124. #define REG_MMU_VERSION 0x034
  125. #define MMU_MAJ_VER(val) ((val) >> 7)
  126. #define MMU_MIN_VER(val) ((val) & 0x7F)
  127. #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
  128. #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
  129. /* v1.x - v3.x registers */
  130. #define REG_PAGE_FAULT_ADDR 0x024
  131. #define REG_AW_FAULT_ADDR 0x028
  132. #define REG_AR_FAULT_ADDR 0x02C
  133. #define REG_DEFAULT_SLAVE_ADDR 0x030
  134. /* v5.x registers */
  135. #define REG_V5_FAULT_AR_VA 0x070
  136. #define REG_V5_FAULT_AW_VA 0x080
  137. /* v7.x registers */
  138. #define REG_V7_CAPA0 0x870
  139. #define REG_V7_CAPA1 0x874
  140. #define REG_V7_CTRL_VM 0x8000
  141. #define has_sysmmu(dev) (dev_iommu_priv_get(dev) != NULL)
  142. static struct device *dma_dev;
  143. static struct kmem_cache *lv2table_kmem_cache;
  144. static sysmmu_pte_t *zero_lv2_table;
  145. #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
  146. static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
  147. {
  148. return pgtable + lv1ent_offset(iova);
  149. }
  150. static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
  151. {
  152. return (sysmmu_pte_t *)phys_to_virt(
  153. lv2table_base(sent)) + lv2ent_offset(iova);
  154. }
  155. /*
  156. * IOMMU fault information register
  157. */
  158. struct sysmmu_fault_info {
  159. unsigned int bit; /* bit number in STATUS register */
  160. unsigned short addr_reg; /* register to read VA fault address */
  161. const char *name; /* human readable fault name */
  162. unsigned int type; /* fault type for report_iommu_fault */
  163. };
  164. static const struct sysmmu_fault_info sysmmu_faults[] = {
  165. { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
  166. { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
  167. { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
  168. { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
  169. { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
  170. { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
  171. { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
  172. { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
  173. };
  174. static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
  175. { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
  176. { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
  177. { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
  178. { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
  179. { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
  180. { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
  181. { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
  182. { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
  183. { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
  184. { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
  185. };
  186. /*
  187. * This structure is attached to dev->iommu->priv of the master device
  188. * on device add, contains a list of SYSMMU controllers defined by device tree,
  189. * which are bound to given master device. It is usually referenced by 'owner'
  190. * pointer.
  191. */
  192. struct exynos_iommu_owner {
  193. struct list_head controllers; /* list of sysmmu_drvdata.owner_node */
  194. struct iommu_domain *domain; /* domain this device is attached */
  195. struct mutex rpm_lock; /* for runtime pm of all sysmmus */
  196. };
  197. /*
  198. * This structure exynos specific generalization of struct iommu_domain.
  199. * It contains list of SYSMMU controllers from all master devices, which has
  200. * been attached to this domain and page tables of IO address space defined by
  201. * it. It is usually referenced by 'domain' pointer.
  202. */
  203. struct exynos_iommu_domain {
  204. struct list_head clients; /* list of sysmmu_drvdata.domain_node */
  205. sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
  206. short *lv2entcnt; /* free lv2 entry counter for each section */
  207. spinlock_t lock; /* lock for modyfying list of clients */
  208. spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
  209. struct iommu_domain domain; /* generic domain data structure */
  210. };
  211. /*
  212. * SysMMU version specific data. Contains offsets for the registers which can
  213. * be found in different SysMMU variants, but have different offset values.
  214. */
  215. struct sysmmu_variant {
  216. u32 pt_base; /* page table base address (physical) */
  217. u32 flush_all; /* invalidate all TLB entries */
  218. u32 flush_entry; /* invalidate specific TLB entry */
  219. u32 flush_range; /* invalidate TLB entries in specified range */
  220. u32 flush_start; /* start address of range invalidation */
  221. u32 flush_end; /* end address of range invalidation */
  222. u32 int_status; /* interrupt status information */
  223. u32 int_clear; /* clear the interrupt */
  224. };
  225. /*
  226. * This structure hold all data of a single SYSMMU controller, this includes
  227. * hw resources like registers and clocks, pointers and list nodes to connect
  228. * it to all other structures, internal state and parameters read from device
  229. * tree. It is usually referenced by 'data' pointer.
  230. */
  231. struct sysmmu_drvdata {
  232. struct device *sysmmu; /* SYSMMU controller device */
  233. struct device *master; /* master device (owner) */
  234. struct device_link *link; /* runtime PM link to master */
  235. void __iomem *sfrbase; /* our registers */
  236. struct clk *clk; /* SYSMMU's clock */
  237. struct clk *aclk; /* SYSMMU's aclk clock */
  238. struct clk *pclk; /* SYSMMU's pclk clock */
  239. struct clk *clk_master; /* master's device clock */
  240. spinlock_t lock; /* lock for modyfying state */
  241. bool active; /* current status */
  242. struct exynos_iommu_domain *domain; /* domain we belong to */
  243. struct list_head domain_node; /* node for domain clients list */
  244. struct list_head owner_node; /* node for owner controllers list */
  245. phys_addr_t pgtable; /* assigned page table structure */
  246. unsigned int version; /* our version */
  247. struct iommu_device iommu; /* IOMMU core handle */
  248. const struct sysmmu_variant *variant; /* version specific data */
  249. /* v7 fields */
  250. bool has_vcr; /* virtual machine control register */
  251. };
  252. #define SYSMMU_REG(data, reg) ((data)->sfrbase + (data)->variant->reg)
  253. /* SysMMU v1..v3 */
  254. static const struct sysmmu_variant sysmmu_v1_variant = {
  255. .flush_all = 0x0c,
  256. .flush_entry = 0x10,
  257. .pt_base = 0x14,
  258. .int_status = 0x18,
  259. .int_clear = 0x1c,
  260. };
  261. /* SysMMU v5 and v7 (non-VM capable) */
  262. static const struct sysmmu_variant sysmmu_v5_variant = {
  263. .pt_base = 0x0c,
  264. .flush_all = 0x10,
  265. .flush_entry = 0x14,
  266. .flush_range = 0x18,
  267. .flush_start = 0x20,
  268. .flush_end = 0x24,
  269. .int_status = 0x60,
  270. .int_clear = 0x64,
  271. };
  272. /* SysMMU v7: VM capable register set */
  273. static const struct sysmmu_variant sysmmu_v7_vm_variant = {
  274. .pt_base = 0x800c,
  275. .flush_all = 0x8010,
  276. .flush_entry = 0x8014,
  277. .flush_range = 0x8018,
  278. .flush_start = 0x8020,
  279. .flush_end = 0x8024,
  280. .int_status = 0x60,
  281. .int_clear = 0x64,
  282. };
  283. static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
  284. {
  285. return container_of(dom, struct exynos_iommu_domain, domain);
  286. }
  287. static void sysmmu_unblock(struct sysmmu_drvdata *data)
  288. {
  289. writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
  290. }
  291. static bool sysmmu_block(struct sysmmu_drvdata *data)
  292. {
  293. int i = 120;
  294. writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
  295. while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
  296. --i;
  297. if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
  298. sysmmu_unblock(data);
  299. return false;
  300. }
  301. return true;
  302. }
  303. static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
  304. {
  305. writel(0x1, SYSMMU_REG(data, flush_all));
  306. }
  307. static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
  308. sysmmu_iova_t iova, unsigned int num_inv)
  309. {
  310. unsigned int i;
  311. if (MMU_MAJ_VER(data->version) < 5 || num_inv == 1) {
  312. for (i = 0; i < num_inv; i++) {
  313. writel((iova & SPAGE_MASK) | 1,
  314. SYSMMU_REG(data, flush_entry));
  315. iova += SPAGE_SIZE;
  316. }
  317. } else {
  318. writel(iova & SPAGE_MASK, SYSMMU_REG(data, flush_start));
  319. writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
  320. SYSMMU_REG(data, flush_end));
  321. writel(0x1, SYSMMU_REG(data, flush_range));
  322. }
  323. }
  324. static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
  325. {
  326. u32 pt_base;
  327. if (MMU_MAJ_VER(data->version) < 5)
  328. pt_base = pgd;
  329. else
  330. pt_base = pgd >> SPAGE_ORDER;
  331. writel(pt_base, SYSMMU_REG(data, pt_base));
  332. __sysmmu_tlb_invalidate(data);
  333. }
  334. static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
  335. {
  336. BUG_ON(clk_prepare_enable(data->clk_master));
  337. BUG_ON(clk_prepare_enable(data->clk));
  338. BUG_ON(clk_prepare_enable(data->pclk));
  339. BUG_ON(clk_prepare_enable(data->aclk));
  340. }
  341. static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
  342. {
  343. clk_disable_unprepare(data->aclk);
  344. clk_disable_unprepare(data->pclk);
  345. clk_disable_unprepare(data->clk);
  346. clk_disable_unprepare(data->clk_master);
  347. }
  348. static bool __sysmmu_has_capa1(struct sysmmu_drvdata *data)
  349. {
  350. u32 capa0 = readl(data->sfrbase + REG_V7_CAPA0);
  351. return capa0 & CAPA0_CAPA1_EXIST;
  352. }
  353. static void __sysmmu_get_vcr(struct sysmmu_drvdata *data)
  354. {
  355. u32 capa1 = readl(data->sfrbase + REG_V7_CAPA1);
  356. data->has_vcr = capa1 & CAPA1_VCR_ENABLED;
  357. }
  358. static void __sysmmu_get_version(struct sysmmu_drvdata *data)
  359. {
  360. u32 ver;
  361. __sysmmu_enable_clocks(data);
  362. ver = readl(data->sfrbase + REG_MMU_VERSION);
  363. /* controllers on some SoCs don't report proper version */
  364. if (ver == 0x80000001u)
  365. data->version = MAKE_MMU_VER(1, 0);
  366. else
  367. data->version = MMU_RAW_VER(ver);
  368. dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
  369. MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
  370. if (MMU_MAJ_VER(data->version) < 5) {
  371. data->variant = &sysmmu_v1_variant;
  372. } else if (MMU_MAJ_VER(data->version) < 7) {
  373. data->variant = &sysmmu_v5_variant;
  374. } else {
  375. if (__sysmmu_has_capa1(data))
  376. __sysmmu_get_vcr(data);
  377. if (data->has_vcr)
  378. data->variant = &sysmmu_v7_vm_variant;
  379. else
  380. data->variant = &sysmmu_v5_variant;
  381. }
  382. __sysmmu_disable_clocks(data);
  383. }
  384. static void show_fault_information(struct sysmmu_drvdata *data,
  385. const struct sysmmu_fault_info *finfo,
  386. sysmmu_iova_t fault_addr)
  387. {
  388. sysmmu_pte_t *ent;
  389. dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
  390. dev_name(data->master), finfo->name, fault_addr);
  391. dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
  392. ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
  393. dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
  394. if (lv1ent_page(ent)) {
  395. ent = page_entry(ent, fault_addr);
  396. dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
  397. }
  398. }
  399. static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
  400. {
  401. /* SYSMMU is in blocked state when interrupt occurred. */
  402. struct sysmmu_drvdata *data = dev_id;
  403. const struct sysmmu_fault_info *finfo;
  404. unsigned int i, n, itype;
  405. sysmmu_iova_t fault_addr;
  406. int ret = -ENOSYS;
  407. WARN_ON(!data->active);
  408. if (MMU_MAJ_VER(data->version) < 5) {
  409. finfo = sysmmu_faults;
  410. n = ARRAY_SIZE(sysmmu_faults);
  411. } else {
  412. finfo = sysmmu_v5_faults;
  413. n = ARRAY_SIZE(sysmmu_v5_faults);
  414. }
  415. spin_lock(&data->lock);
  416. clk_enable(data->clk_master);
  417. itype = __ffs(readl(SYSMMU_REG(data, int_status)));
  418. for (i = 0; i < n; i++, finfo++)
  419. if (finfo->bit == itype)
  420. break;
  421. /* unknown/unsupported fault */
  422. BUG_ON(i == n);
  423. /* print debug message */
  424. fault_addr = readl(data->sfrbase + finfo->addr_reg);
  425. show_fault_information(data, finfo, fault_addr);
  426. if (data->domain)
  427. ret = report_iommu_fault(&data->domain->domain,
  428. data->master, fault_addr, finfo->type);
  429. /* fault is not recovered by fault handler */
  430. BUG_ON(ret != 0);
  431. writel(1 << itype, SYSMMU_REG(data, int_clear));
  432. sysmmu_unblock(data);
  433. clk_disable(data->clk_master);
  434. spin_unlock(&data->lock);
  435. return IRQ_HANDLED;
  436. }
  437. static void __sysmmu_disable(struct sysmmu_drvdata *data)
  438. {
  439. unsigned long flags;
  440. clk_enable(data->clk_master);
  441. spin_lock_irqsave(&data->lock, flags);
  442. writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
  443. writel(0, data->sfrbase + REG_MMU_CFG);
  444. data->active = false;
  445. spin_unlock_irqrestore(&data->lock, flags);
  446. __sysmmu_disable_clocks(data);
  447. }
  448. static void __sysmmu_init_config(struct sysmmu_drvdata *data)
  449. {
  450. unsigned int cfg;
  451. if (data->version <= MAKE_MMU_VER(3, 1))
  452. cfg = CFG_LRU | CFG_QOS(15);
  453. else if (data->version <= MAKE_MMU_VER(3, 2))
  454. cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
  455. else
  456. cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
  457. cfg |= CFG_EAP; /* enable access protection bits check */
  458. writel(cfg, data->sfrbase + REG_MMU_CFG);
  459. }
  460. static void __sysmmu_enable_vid(struct sysmmu_drvdata *data)
  461. {
  462. u32 ctrl;
  463. if (MMU_MAJ_VER(data->version) < 7 || !data->has_vcr)
  464. return;
  465. ctrl = readl(data->sfrbase + REG_V7_CTRL_VM);
  466. ctrl |= CTRL_VM_ENABLE | CTRL_VM_FAULT_MODE_STALL;
  467. writel(ctrl, data->sfrbase + REG_V7_CTRL_VM);
  468. }
  469. static void __sysmmu_enable(struct sysmmu_drvdata *data)
  470. {
  471. unsigned long flags;
  472. __sysmmu_enable_clocks(data);
  473. spin_lock_irqsave(&data->lock, flags);
  474. writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
  475. __sysmmu_init_config(data);
  476. __sysmmu_set_ptbase(data, data->pgtable);
  477. __sysmmu_enable_vid(data);
  478. writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
  479. data->active = true;
  480. spin_unlock_irqrestore(&data->lock, flags);
  481. /*
  482. * SYSMMU driver keeps master's clock enabled only for the short
  483. * time, while accessing the registers. For performing address
  484. * translation during DMA transaction it relies on the client
  485. * driver to enable it.
  486. */
  487. clk_disable(data->clk_master);
  488. }
  489. static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
  490. sysmmu_iova_t iova)
  491. {
  492. unsigned long flags;
  493. spin_lock_irqsave(&data->lock, flags);
  494. if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
  495. clk_enable(data->clk_master);
  496. if (sysmmu_block(data)) {
  497. if (data->version >= MAKE_MMU_VER(5, 0))
  498. __sysmmu_tlb_invalidate(data);
  499. else
  500. __sysmmu_tlb_invalidate_entry(data, iova, 1);
  501. sysmmu_unblock(data);
  502. }
  503. clk_disable(data->clk_master);
  504. }
  505. spin_unlock_irqrestore(&data->lock, flags);
  506. }
  507. static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
  508. sysmmu_iova_t iova, size_t size)
  509. {
  510. unsigned long flags;
  511. spin_lock_irqsave(&data->lock, flags);
  512. if (data->active) {
  513. unsigned int num_inv = 1;
  514. clk_enable(data->clk_master);
  515. /*
  516. * L2TLB invalidation required
  517. * 4KB page: 1 invalidation
  518. * 64KB page: 16 invalidations
  519. * 1MB page: 64 invalidations
  520. * because it is set-associative TLB
  521. * with 8-way and 64 sets.
  522. * 1MB page can be cached in one of all sets.
  523. * 64KB page can be one of 16 consecutive sets.
  524. */
  525. if (MMU_MAJ_VER(data->version) == 2)
  526. num_inv = min_t(unsigned int, size / SPAGE_SIZE, 64);
  527. if (sysmmu_block(data)) {
  528. __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
  529. sysmmu_unblock(data);
  530. }
  531. clk_disable(data->clk_master);
  532. }
  533. spin_unlock_irqrestore(&data->lock, flags);
  534. }
  535. static const struct iommu_ops exynos_iommu_ops;
  536. static int exynos_sysmmu_probe(struct platform_device *pdev)
  537. {
  538. int irq, ret;
  539. struct device *dev = &pdev->dev;
  540. struct sysmmu_drvdata *data;
  541. struct resource *res;
  542. data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
  543. if (!data)
  544. return -ENOMEM;
  545. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  546. data->sfrbase = devm_ioremap_resource(dev, res);
  547. if (IS_ERR(data->sfrbase))
  548. return PTR_ERR(data->sfrbase);
  549. irq = platform_get_irq(pdev, 0);
  550. if (irq <= 0)
  551. return irq;
  552. ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
  553. dev_name(dev), data);
  554. if (ret) {
  555. dev_err(dev, "Unabled to register handler of irq %d\n", irq);
  556. return ret;
  557. }
  558. data->clk = devm_clk_get(dev, "sysmmu");
  559. if (PTR_ERR(data->clk) == -ENOENT)
  560. data->clk = NULL;
  561. else if (IS_ERR(data->clk))
  562. return PTR_ERR(data->clk);
  563. data->aclk = devm_clk_get(dev, "aclk");
  564. if (PTR_ERR(data->aclk) == -ENOENT)
  565. data->aclk = NULL;
  566. else if (IS_ERR(data->aclk))
  567. return PTR_ERR(data->aclk);
  568. data->pclk = devm_clk_get(dev, "pclk");
  569. if (PTR_ERR(data->pclk) == -ENOENT)
  570. data->pclk = NULL;
  571. else if (IS_ERR(data->pclk))
  572. return PTR_ERR(data->pclk);
  573. if (!data->clk && (!data->aclk || !data->pclk)) {
  574. dev_err(dev, "Failed to get device clock(s)!\n");
  575. return -ENOSYS;
  576. }
  577. data->clk_master = devm_clk_get(dev, "master");
  578. if (PTR_ERR(data->clk_master) == -ENOENT)
  579. data->clk_master = NULL;
  580. else if (IS_ERR(data->clk_master))
  581. return PTR_ERR(data->clk_master);
  582. data->sysmmu = dev;
  583. spin_lock_init(&data->lock);
  584. __sysmmu_get_version(data);
  585. ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
  586. dev_name(data->sysmmu));
  587. if (ret)
  588. return ret;
  589. ret = iommu_device_register(&data->iommu, &exynos_iommu_ops, dev);
  590. if (ret)
  591. goto err_iommu_register;
  592. platform_set_drvdata(pdev, data);
  593. if (PG_ENT_SHIFT < 0) {
  594. if (MMU_MAJ_VER(data->version) < 5) {
  595. PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
  596. LV1_PROT = SYSMMU_LV1_PROT;
  597. LV2_PROT = SYSMMU_LV2_PROT;
  598. } else {
  599. PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
  600. LV1_PROT = SYSMMU_V5_LV1_PROT;
  601. LV2_PROT = SYSMMU_V5_LV2_PROT;
  602. }
  603. }
  604. if (MMU_MAJ_VER(data->version) >= 5) {
  605. ret = dma_set_mask(dev, DMA_BIT_MASK(36));
  606. if (ret) {
  607. dev_err(dev, "Unable to set DMA mask: %d\n", ret);
  608. goto err_dma_set_mask;
  609. }
  610. }
  611. /*
  612. * use the first registered sysmmu device for performing
  613. * dma mapping operations on iommu page tables (cpu cache flush)
  614. */
  615. if (!dma_dev)
  616. dma_dev = &pdev->dev;
  617. pm_runtime_enable(dev);
  618. return 0;
  619. err_dma_set_mask:
  620. iommu_device_unregister(&data->iommu);
  621. err_iommu_register:
  622. iommu_device_sysfs_remove(&data->iommu);
  623. return ret;
  624. }
  625. static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
  626. {
  627. struct sysmmu_drvdata *data = dev_get_drvdata(dev);
  628. struct device *master = data->master;
  629. if (master) {
  630. struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
  631. mutex_lock(&owner->rpm_lock);
  632. if (data->domain) {
  633. dev_dbg(data->sysmmu, "saving state\n");
  634. __sysmmu_disable(data);
  635. }
  636. mutex_unlock(&owner->rpm_lock);
  637. }
  638. return 0;
  639. }
  640. static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
  641. {
  642. struct sysmmu_drvdata *data = dev_get_drvdata(dev);
  643. struct device *master = data->master;
  644. if (master) {
  645. struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
  646. mutex_lock(&owner->rpm_lock);
  647. if (data->domain) {
  648. dev_dbg(data->sysmmu, "restoring state\n");
  649. __sysmmu_enable(data);
  650. }
  651. mutex_unlock(&owner->rpm_lock);
  652. }
  653. return 0;
  654. }
  655. static const struct dev_pm_ops sysmmu_pm_ops = {
  656. SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
  657. SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
  658. pm_runtime_force_resume)
  659. };
  660. static const struct of_device_id sysmmu_of_match[] = {
  661. { .compatible = "samsung,exynos-sysmmu", },
  662. { },
  663. };
  664. static struct platform_driver exynos_sysmmu_driver __refdata = {
  665. .probe = exynos_sysmmu_probe,
  666. .driver = {
  667. .name = "exynos-sysmmu",
  668. .of_match_table = sysmmu_of_match,
  669. .pm = &sysmmu_pm_ops,
  670. .suppress_bind_attrs = true,
  671. }
  672. };
  673. static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
  674. {
  675. dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
  676. DMA_TO_DEVICE);
  677. *ent = cpu_to_le32(val);
  678. dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
  679. DMA_TO_DEVICE);
  680. }
  681. static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
  682. {
  683. struct exynos_iommu_domain *domain;
  684. dma_addr_t handle;
  685. int i;
  686. /* Check if correct PTE offsets are initialized */
  687. BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
  688. if (type != IOMMU_DOMAIN_DMA && type != IOMMU_DOMAIN_UNMANAGED)
  689. return NULL;
  690. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  691. if (!domain)
  692. return NULL;
  693. domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
  694. if (!domain->pgtable)
  695. goto err_pgtable;
  696. domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
  697. if (!domain->lv2entcnt)
  698. goto err_counter;
  699. /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
  700. for (i = 0; i < NUM_LV1ENTRIES; i++)
  701. domain->pgtable[i] = ZERO_LV2LINK;
  702. handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
  703. DMA_TO_DEVICE);
  704. /* For mapping page table entries we rely on dma == phys */
  705. BUG_ON(handle != virt_to_phys(domain->pgtable));
  706. if (dma_mapping_error(dma_dev, handle))
  707. goto err_lv2ent;
  708. spin_lock_init(&domain->lock);
  709. spin_lock_init(&domain->pgtablelock);
  710. INIT_LIST_HEAD(&domain->clients);
  711. domain->domain.geometry.aperture_start = 0;
  712. domain->domain.geometry.aperture_end = ~0UL;
  713. domain->domain.geometry.force_aperture = true;
  714. return &domain->domain;
  715. err_lv2ent:
  716. free_pages((unsigned long)domain->lv2entcnt, 1);
  717. err_counter:
  718. free_pages((unsigned long)domain->pgtable, 2);
  719. err_pgtable:
  720. kfree(domain);
  721. return NULL;
  722. }
  723. static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
  724. {
  725. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  726. struct sysmmu_drvdata *data, *next;
  727. unsigned long flags;
  728. int i;
  729. WARN_ON(!list_empty(&domain->clients));
  730. spin_lock_irqsave(&domain->lock, flags);
  731. list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
  732. spin_lock(&data->lock);
  733. __sysmmu_disable(data);
  734. data->pgtable = 0;
  735. data->domain = NULL;
  736. list_del_init(&data->domain_node);
  737. spin_unlock(&data->lock);
  738. }
  739. spin_unlock_irqrestore(&domain->lock, flags);
  740. dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
  741. DMA_TO_DEVICE);
  742. for (i = 0; i < NUM_LV1ENTRIES; i++)
  743. if (lv1ent_page(domain->pgtable + i)) {
  744. phys_addr_t base = lv2table_base(domain->pgtable + i);
  745. dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
  746. DMA_TO_DEVICE);
  747. kmem_cache_free(lv2table_kmem_cache,
  748. phys_to_virt(base));
  749. }
  750. free_pages((unsigned long)domain->pgtable, 2);
  751. free_pages((unsigned long)domain->lv2entcnt, 1);
  752. kfree(domain);
  753. }
  754. static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
  755. struct device *dev)
  756. {
  757. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  758. struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
  759. phys_addr_t pagetable = virt_to_phys(domain->pgtable);
  760. struct sysmmu_drvdata *data, *next;
  761. unsigned long flags;
  762. if (!has_sysmmu(dev) || owner->domain != iommu_domain)
  763. return;
  764. mutex_lock(&owner->rpm_lock);
  765. list_for_each_entry(data, &owner->controllers, owner_node) {
  766. pm_runtime_get_noresume(data->sysmmu);
  767. if (pm_runtime_active(data->sysmmu))
  768. __sysmmu_disable(data);
  769. pm_runtime_put(data->sysmmu);
  770. }
  771. spin_lock_irqsave(&domain->lock, flags);
  772. list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
  773. spin_lock(&data->lock);
  774. data->pgtable = 0;
  775. data->domain = NULL;
  776. list_del_init(&data->domain_node);
  777. spin_unlock(&data->lock);
  778. }
  779. owner->domain = NULL;
  780. spin_unlock_irqrestore(&domain->lock, flags);
  781. mutex_unlock(&owner->rpm_lock);
  782. dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
  783. &pagetable);
  784. }
  785. static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
  786. struct device *dev)
  787. {
  788. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  789. struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
  790. struct sysmmu_drvdata *data;
  791. phys_addr_t pagetable = virt_to_phys(domain->pgtable);
  792. unsigned long flags;
  793. if (!has_sysmmu(dev))
  794. return -ENODEV;
  795. if (owner->domain)
  796. exynos_iommu_detach_device(owner->domain, dev);
  797. mutex_lock(&owner->rpm_lock);
  798. spin_lock_irqsave(&domain->lock, flags);
  799. list_for_each_entry(data, &owner->controllers, owner_node) {
  800. spin_lock(&data->lock);
  801. data->pgtable = pagetable;
  802. data->domain = domain;
  803. list_add_tail(&data->domain_node, &domain->clients);
  804. spin_unlock(&data->lock);
  805. }
  806. owner->domain = iommu_domain;
  807. spin_unlock_irqrestore(&domain->lock, flags);
  808. list_for_each_entry(data, &owner->controllers, owner_node) {
  809. pm_runtime_get_noresume(data->sysmmu);
  810. if (pm_runtime_active(data->sysmmu))
  811. __sysmmu_enable(data);
  812. pm_runtime_put(data->sysmmu);
  813. }
  814. mutex_unlock(&owner->rpm_lock);
  815. dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
  816. &pagetable);
  817. return 0;
  818. }
  819. static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
  820. sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
  821. {
  822. if (lv1ent_section(sent)) {
  823. WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
  824. return ERR_PTR(-EADDRINUSE);
  825. }
  826. if (lv1ent_fault(sent)) {
  827. dma_addr_t handle;
  828. sysmmu_pte_t *pent;
  829. bool need_flush_flpd_cache = lv1ent_zero(sent);
  830. pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
  831. BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
  832. if (!pent)
  833. return ERR_PTR(-ENOMEM);
  834. exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
  835. kmemleak_ignore(pent);
  836. *pgcounter = NUM_LV2ENTRIES;
  837. handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
  838. DMA_TO_DEVICE);
  839. if (dma_mapping_error(dma_dev, handle)) {
  840. kmem_cache_free(lv2table_kmem_cache, pent);
  841. return ERR_PTR(-EADDRINUSE);
  842. }
  843. /*
  844. * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
  845. * FLPD cache may cache the address of zero_l2_table. This
  846. * function replaces the zero_l2_table with new L2 page table
  847. * to write valid mappings.
  848. * Accessing the valid area may cause page fault since FLPD
  849. * cache may still cache zero_l2_table for the valid area
  850. * instead of new L2 page table that has the mapping
  851. * information of the valid area.
  852. * Thus any replacement of zero_l2_table with other valid L2
  853. * page table must involve FLPD cache invalidation for System
  854. * MMU v3.3.
  855. * FLPD cache invalidation is performed with TLB invalidation
  856. * by VPN without blocking. It is safe to invalidate TLB without
  857. * blocking because the target address of TLB invalidation is
  858. * not currently mapped.
  859. */
  860. if (need_flush_flpd_cache) {
  861. struct sysmmu_drvdata *data;
  862. spin_lock(&domain->lock);
  863. list_for_each_entry(data, &domain->clients, domain_node)
  864. sysmmu_tlb_invalidate_flpdcache(data, iova);
  865. spin_unlock(&domain->lock);
  866. }
  867. }
  868. return page_entry(sent, iova);
  869. }
  870. static int lv1set_section(struct exynos_iommu_domain *domain,
  871. sysmmu_pte_t *sent, sysmmu_iova_t iova,
  872. phys_addr_t paddr, int prot, short *pgcnt)
  873. {
  874. if (lv1ent_section(sent)) {
  875. WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
  876. iova);
  877. return -EADDRINUSE;
  878. }
  879. if (lv1ent_page(sent)) {
  880. if (*pgcnt != NUM_LV2ENTRIES) {
  881. WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
  882. iova);
  883. return -EADDRINUSE;
  884. }
  885. kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
  886. *pgcnt = 0;
  887. }
  888. exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
  889. spin_lock(&domain->lock);
  890. if (lv1ent_page_zero(sent)) {
  891. struct sysmmu_drvdata *data;
  892. /*
  893. * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
  894. * entry by speculative prefetch of SLPD which has no mapping.
  895. */
  896. list_for_each_entry(data, &domain->clients, domain_node)
  897. sysmmu_tlb_invalidate_flpdcache(data, iova);
  898. }
  899. spin_unlock(&domain->lock);
  900. return 0;
  901. }
  902. static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
  903. int prot, short *pgcnt)
  904. {
  905. if (size == SPAGE_SIZE) {
  906. if (WARN_ON(!lv2ent_fault(pent)))
  907. return -EADDRINUSE;
  908. exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
  909. *pgcnt -= 1;
  910. } else { /* size == LPAGE_SIZE */
  911. int i;
  912. dma_addr_t pent_base = virt_to_phys(pent);
  913. dma_sync_single_for_cpu(dma_dev, pent_base,
  914. sizeof(*pent) * SPAGES_PER_LPAGE,
  915. DMA_TO_DEVICE);
  916. for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
  917. if (WARN_ON(!lv2ent_fault(pent))) {
  918. if (i > 0)
  919. memset(pent - i, 0, sizeof(*pent) * i);
  920. return -EADDRINUSE;
  921. }
  922. *pent = mk_lv2ent_lpage(paddr, prot);
  923. }
  924. dma_sync_single_for_device(dma_dev, pent_base,
  925. sizeof(*pent) * SPAGES_PER_LPAGE,
  926. DMA_TO_DEVICE);
  927. *pgcnt -= SPAGES_PER_LPAGE;
  928. }
  929. return 0;
  930. }
  931. /*
  932. * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
  933. *
  934. * System MMU v3.x has advanced logic to improve address translation
  935. * performance with caching more page table entries by a page table walk.
  936. * However, the logic has a bug that while caching faulty page table entries,
  937. * System MMU reports page fault if the cached fault entry is hit even though
  938. * the fault entry is updated to a valid entry after the entry is cached.
  939. * To prevent caching faulty page table entries which may be updated to valid
  940. * entries later, the virtual memory manager should care about the workaround
  941. * for the problem. The following describes the workaround.
  942. *
  943. * Any two consecutive I/O virtual address regions must have a hole of 128KiB
  944. * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
  945. *
  946. * Precisely, any start address of I/O virtual region must be aligned with
  947. * the following sizes for System MMU v3.1 and v3.2.
  948. * System MMU v3.1: 128KiB
  949. * System MMU v3.2: 256KiB
  950. *
  951. * Because System MMU v3.3 caches page table entries more aggressively, it needs
  952. * more workarounds.
  953. * - Any two consecutive I/O virtual regions must have a hole of size larger
  954. * than or equal to 128KiB.
  955. * - Start address of an I/O virtual region must be aligned by 128KiB.
  956. */
  957. static int exynos_iommu_map(struct iommu_domain *iommu_domain,
  958. unsigned long l_iova, phys_addr_t paddr, size_t size,
  959. int prot, gfp_t gfp)
  960. {
  961. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  962. sysmmu_pte_t *entry;
  963. sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
  964. unsigned long flags;
  965. int ret = -ENOMEM;
  966. BUG_ON(domain->pgtable == NULL);
  967. prot &= SYSMMU_SUPPORTED_PROT_BITS;
  968. spin_lock_irqsave(&domain->pgtablelock, flags);
  969. entry = section_entry(domain->pgtable, iova);
  970. if (size == SECT_SIZE) {
  971. ret = lv1set_section(domain, entry, iova, paddr, prot,
  972. &domain->lv2entcnt[lv1ent_offset(iova)]);
  973. } else {
  974. sysmmu_pte_t *pent;
  975. pent = alloc_lv2entry(domain, entry, iova,
  976. &domain->lv2entcnt[lv1ent_offset(iova)]);
  977. if (IS_ERR(pent))
  978. ret = PTR_ERR(pent);
  979. else
  980. ret = lv2set_page(pent, paddr, size, prot,
  981. &domain->lv2entcnt[lv1ent_offset(iova)]);
  982. }
  983. if (ret)
  984. pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
  985. __func__, ret, size, iova);
  986. spin_unlock_irqrestore(&domain->pgtablelock, flags);
  987. return ret;
  988. }
  989. static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
  990. sysmmu_iova_t iova, size_t size)
  991. {
  992. struct sysmmu_drvdata *data;
  993. unsigned long flags;
  994. spin_lock_irqsave(&domain->lock, flags);
  995. list_for_each_entry(data, &domain->clients, domain_node)
  996. sysmmu_tlb_invalidate_entry(data, iova, size);
  997. spin_unlock_irqrestore(&domain->lock, flags);
  998. }
  999. static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
  1000. unsigned long l_iova, size_t size,
  1001. struct iommu_iotlb_gather *gather)
  1002. {
  1003. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  1004. sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
  1005. sysmmu_pte_t *ent;
  1006. size_t err_pgsize;
  1007. unsigned long flags;
  1008. BUG_ON(domain->pgtable == NULL);
  1009. spin_lock_irqsave(&domain->pgtablelock, flags);
  1010. ent = section_entry(domain->pgtable, iova);
  1011. if (lv1ent_section(ent)) {
  1012. if (WARN_ON(size < SECT_SIZE)) {
  1013. err_pgsize = SECT_SIZE;
  1014. goto err;
  1015. }
  1016. /* workaround for h/w bug in System MMU v3.3 */
  1017. exynos_iommu_set_pte(ent, ZERO_LV2LINK);
  1018. size = SECT_SIZE;
  1019. goto done;
  1020. }
  1021. if (unlikely(lv1ent_fault(ent))) {
  1022. if (size > SECT_SIZE)
  1023. size = SECT_SIZE;
  1024. goto done;
  1025. }
  1026. /* lv1ent_page(sent) == true here */
  1027. ent = page_entry(ent, iova);
  1028. if (unlikely(lv2ent_fault(ent))) {
  1029. size = SPAGE_SIZE;
  1030. goto done;
  1031. }
  1032. if (lv2ent_small(ent)) {
  1033. exynos_iommu_set_pte(ent, 0);
  1034. size = SPAGE_SIZE;
  1035. domain->lv2entcnt[lv1ent_offset(iova)] += 1;
  1036. goto done;
  1037. }
  1038. /* lv1ent_large(ent) == true here */
  1039. if (WARN_ON(size < LPAGE_SIZE)) {
  1040. err_pgsize = LPAGE_SIZE;
  1041. goto err;
  1042. }
  1043. dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
  1044. sizeof(*ent) * SPAGES_PER_LPAGE,
  1045. DMA_TO_DEVICE);
  1046. memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
  1047. dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
  1048. sizeof(*ent) * SPAGES_PER_LPAGE,
  1049. DMA_TO_DEVICE);
  1050. size = LPAGE_SIZE;
  1051. domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
  1052. done:
  1053. spin_unlock_irqrestore(&domain->pgtablelock, flags);
  1054. exynos_iommu_tlb_invalidate_entry(domain, iova, size);
  1055. return size;
  1056. err:
  1057. spin_unlock_irqrestore(&domain->pgtablelock, flags);
  1058. pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
  1059. __func__, size, iova, err_pgsize);
  1060. return 0;
  1061. }
  1062. static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
  1063. dma_addr_t iova)
  1064. {
  1065. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  1066. sysmmu_pte_t *entry;
  1067. unsigned long flags;
  1068. phys_addr_t phys = 0;
  1069. spin_lock_irqsave(&domain->pgtablelock, flags);
  1070. entry = section_entry(domain->pgtable, iova);
  1071. if (lv1ent_section(entry)) {
  1072. phys = section_phys(entry) + section_offs(iova);
  1073. } else if (lv1ent_page(entry)) {
  1074. entry = page_entry(entry, iova);
  1075. if (lv2ent_large(entry))
  1076. phys = lpage_phys(entry) + lpage_offs(iova);
  1077. else if (lv2ent_small(entry))
  1078. phys = spage_phys(entry) + spage_offs(iova);
  1079. }
  1080. spin_unlock_irqrestore(&domain->pgtablelock, flags);
  1081. return phys;
  1082. }
  1083. static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
  1084. {
  1085. struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
  1086. struct sysmmu_drvdata *data;
  1087. if (!has_sysmmu(dev))
  1088. return ERR_PTR(-ENODEV);
  1089. list_for_each_entry(data, &owner->controllers, owner_node) {
  1090. /*
  1091. * SYSMMU will be runtime activated via device link
  1092. * (dependency) to its master device, so there are no
  1093. * direct calls to pm_runtime_get/put in this driver.
  1094. */
  1095. data->link = device_link_add(dev, data->sysmmu,
  1096. DL_FLAG_STATELESS |
  1097. DL_FLAG_PM_RUNTIME);
  1098. }
  1099. /* There is always at least one entry, see exynos_iommu_of_xlate() */
  1100. data = list_first_entry(&owner->controllers,
  1101. struct sysmmu_drvdata, owner_node);
  1102. return &data->iommu;
  1103. }
  1104. static void exynos_iommu_release_device(struct device *dev)
  1105. {
  1106. struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
  1107. struct sysmmu_drvdata *data;
  1108. if (owner->domain) {
  1109. struct iommu_group *group = iommu_group_get(dev);
  1110. if (group) {
  1111. WARN_ON(owner->domain !=
  1112. iommu_group_default_domain(group));
  1113. exynos_iommu_detach_device(owner->domain, dev);
  1114. iommu_group_put(group);
  1115. }
  1116. }
  1117. list_for_each_entry(data, &owner->controllers, owner_node)
  1118. device_link_del(data->link);
  1119. }
  1120. static int exynos_iommu_of_xlate(struct device *dev,
  1121. struct of_phandle_args *spec)
  1122. {
  1123. struct platform_device *sysmmu = of_find_device_by_node(spec->np);
  1124. struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
  1125. struct sysmmu_drvdata *data, *entry;
  1126. if (!sysmmu)
  1127. return -ENODEV;
  1128. data = platform_get_drvdata(sysmmu);
  1129. if (!data) {
  1130. put_device(&sysmmu->dev);
  1131. return -ENODEV;
  1132. }
  1133. if (!owner) {
  1134. owner = kzalloc(sizeof(*owner), GFP_KERNEL);
  1135. if (!owner) {
  1136. put_device(&sysmmu->dev);
  1137. return -ENOMEM;
  1138. }
  1139. INIT_LIST_HEAD(&owner->controllers);
  1140. mutex_init(&owner->rpm_lock);
  1141. dev_iommu_priv_set(dev, owner);
  1142. }
  1143. list_for_each_entry(entry, &owner->controllers, owner_node)
  1144. if (entry == data)
  1145. return 0;
  1146. list_add_tail(&data->owner_node, &owner->controllers);
  1147. data->master = dev;
  1148. return 0;
  1149. }
  1150. static const struct iommu_ops exynos_iommu_ops = {
  1151. .domain_alloc = exynos_iommu_domain_alloc,
  1152. .device_group = generic_device_group,
  1153. .probe_device = exynos_iommu_probe_device,
  1154. .release_device = exynos_iommu_release_device,
  1155. .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
  1156. .of_xlate = exynos_iommu_of_xlate,
  1157. .default_domain_ops = &(const struct iommu_domain_ops) {
  1158. .attach_dev = exynos_iommu_attach_device,
  1159. .detach_dev = exynos_iommu_detach_device,
  1160. .map = exynos_iommu_map,
  1161. .unmap = exynos_iommu_unmap,
  1162. .iova_to_phys = exynos_iommu_iova_to_phys,
  1163. .free = exynos_iommu_domain_free,
  1164. }
  1165. };
  1166. static int __init exynos_iommu_init(void)
  1167. {
  1168. struct device_node *np;
  1169. int ret;
  1170. np = of_find_matching_node(NULL, sysmmu_of_match);
  1171. if (!np)
  1172. return 0;
  1173. of_node_put(np);
  1174. lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
  1175. LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
  1176. if (!lv2table_kmem_cache) {
  1177. pr_err("%s: Failed to create kmem cache\n", __func__);
  1178. return -ENOMEM;
  1179. }
  1180. ret = platform_driver_register(&exynos_sysmmu_driver);
  1181. if (ret) {
  1182. pr_err("%s: Failed to register driver\n", __func__);
  1183. goto err_reg_driver;
  1184. }
  1185. zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
  1186. if (zero_lv2_table == NULL) {
  1187. pr_err("%s: Failed to allocate zero level2 page table\n",
  1188. __func__);
  1189. ret = -ENOMEM;
  1190. goto err_zero_lv2;
  1191. }
  1192. return 0;
  1193. err_zero_lv2:
  1194. platform_driver_unregister(&exynos_sysmmu_driver);
  1195. err_reg_driver:
  1196. kmem_cache_destroy(lv2table_kmem_cache);
  1197. return ret;
  1198. }
  1199. core_initcall(exynos_iommu_init);